1
|
Shirmohammadi M, Kianersi F, Shiry N, Burgos-Aceves MA, Faggio C. Biotransformation and oxidative stress markers in yellowfin seabream (Acanthopagrus latus): Interactive impacts of microplastics and florfenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176661. [PMID: 39362562 DOI: 10.1016/j.scitotenv.2024.176661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study investigates the combined toxicity of microplastics (MPs) and florfenicol (FLO) on biotransformation enzymes and oxidative stress biomarkers in the liver and kidney of yellowfin seabream (Acanthopagrus latus). Fish were fed 15 mg kg-1 of FLO and 100 or 500 mg kg-1 of MPs for 10 days. Biomarkers, including ethoxyresorufin-O-deethylase, glutathione-S-transferase, superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde (MDA), and protein carbonylation (PC), were measured in both organs at 1, 7, and 14 days post-exposure. FLO levels peaked on day 1 and declined after that. Liver biomarkers were more responsive to pollutants, with the combined exposure of FLO and MPs leading to more pronounced toxicity. By day 14, only the FLO group showed a return to baseline biomarker levels, while MDA and PC levels remained elevated in MPs and co-exposed groups. These findings highlight the importance of considering the interactive effects of multiple pollutants in addressing marine environmental stressors.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Farahnaz Kianersi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Nima Shiry
- Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mario Alberto Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
2
|
Ezatrahimi N, Soltanian S, Hoseinifar SH. Skin mucosal immune parameters and expression of the immune-relevant genes in Danio rerio treated by white button mushroom (Agaricus bisporus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01375-w. [PMID: 39105975 DOI: 10.1007/s10695-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
This study evaluates using different levels of the white button mushroom powder (WBMP) on some mucosal innate immune parameters (lysozyme, protease, esterase, alkaline phosphatase activities, and total immunoglobulin levels), and the relative expression of some principal immune-relevant genes (lysozyme, TNF-α, and IL-1β) in the zebra danio intestine. Zebrafish specimens (1.75 ± 0.25 g) were divided into experimental units based on the additives to a diet including 5, 10, and 20 g of WBMP per kilogram of food weight, alone or in conjunction with the antibiotic (10 mg/kg BW), and the AGRIMOS (1 g/kg food weight). Following the 11-day experimental duration, the skin mucus and intestine were sampled. To assess the immune gene expression, the real-time PCR detection system was conducted according to the ΔΔCt method using the IQ5 software (Bio-RAD). Results showed that all groups had a significant increase in terms of mucosal lysozyme activity compared to the control group. Examination of total immunoglobulin, protease, esterase, and ALP activity in fish under experimental treatment showed that there was no significant difference between the trial groups and the control groups. The most expression of the lysozyme gene was related to the group that was separately taken the lower concentration (5 g per kg of FW) of WBMP. In conclusion, the amount of 1% mushroom powder in the diet can improve its immune function. Our recommendation is that given the positive effects that mushroom powder added on the diet alone, avoid taking antibiotics for this purpose.
Collapse
Affiliation(s)
- Narmin Ezatrahimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Administration of Mazandaran Province, Iran Fisheries Organization, Sari, Iran
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Deng F, Wang D, Yu Y, Lu T, Li S. Systemic immune response of rainbow trout exposed to Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109305. [PMID: 38128681 DOI: 10.1016/j.fsi.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum is one of the most serious bacterial diseases leading to significant economic loss for rainbow trout (Oncorhynchus mykiss) aquaculture. However, little is known about the systemic immune response of rainbow trout against F. psychrophilum infection. This study investigated the immune response of rainbow trout to F. psychrophilum infection using multiple experiments, including bacterial load detection, phagocyte activity assessment, enzyme activity evaluation, and gene expression profiling. Results showed that the spleen index and intestinal pathogen load reached a peak at 3 days post-infection, with strong pro-inflammatory gene expression observed in rainbow trout. Leukocytes RBA and PKA were significantly elevated in the spleen, blood and intestine at 7 days post-infection. Heat map analysis demonstrated that the spleen had a more substantial pro-inflammatory response compared to the intestine post-infection and exhibited higher expression levels of immune-related genes, including IgM, il1β, il6, cd4, cd8a, cd8b, c1q, chathelicidin, inos, and lysozyme. Both Th1 and Th2 polarized responses in the spleen were activated, with Th2 (il4/13a, gata3) (FC > 4) being more intense than Th1 (tnfα, t-bet) (FC > 2). Tight junction proteins exhibited down-regulation followed by up-regulation post-infection. Collectively, the results of this study expand our current understanding of the immune response of rainbow trout post F. psychrophilum infection but also provide new avenues for investigation in salmonid aquaculture.
Collapse
Affiliation(s)
- Furong Deng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | - Yang Yu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
4
|
Shiry N, Alavinia SJ, Impellitteri F, Alavinia SJ, Faggio C. Beyond the surface: Consequences of methyl tert-butyl ether (MTBE) exposure on oxidative stress, haematology, genotoxicity, and histopathology in rainbow trout. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165784. [PMID: 37499819 DOI: 10.1016/j.scitotenv.2023.165784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Concerns have been raised about the possible environmental effects of methyl tert-butyl ether (MTBE), which is widely used as a gasoline additive. This research aimed to look at the consequences of MTBE contamination on rainbow trout (Oncorhynchus mykiss), emphasizing oxidative stress, genotoxicity, and histopathological damage. After determining the LC50-96 h value, the effects of sub-lethal doses of MTBE (0 (control), 90, 180, and 450 ppm) on rainbow trout were investigated. In fish tissues, the levels of oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. The comet assay, which measures DNA damage in erythrocytes, was used to determine genotoxicity. Histopathological examinations were done on liver and gill tissues to examine potential structural anomalies. The results of this study show that MTBE exposure caused considerable alterations in rainbow trout. Increased oxidative stress was demonstrated by elevated MDA levels and decreased SOD activity, while the comet assay revealed dose-dependent DNA damage, implying genotoxic effects. Histopathological study revealed liver and gill tissue abnormalities, including cell degeneration, necrosis, and inflammation. Overall, this research highlights the possible sub-lethal effects of MTBE contamination on rainbow trout, stressing the need of resolving this issue. Future research should look at the impacts of chronic MTBE exposure and the possibility of bioaccumulation in fish populations.
Collapse
Affiliation(s)
- Nima Shiry
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Seyed Jamal Alavinia
- Department of Epidemiology, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
5
|
Shiry N, Darvishi P, Gholamhossieni A, Pastorino P, Faggio C. Exploring the combined interplays: Effects of cypermethrin and microplastic exposure on the survival and antioxidant physiology of Astacus leptodactylus. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104257. [PMID: 37922724 DOI: 10.1016/j.jconhyd.2023.104257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Plastic waste and micro/nanoplastic particles pose a significant global environmental challenge, along with concerns surrounding certain pesticides' impact on aquatic organisms. This study investigated the effects of microplastic particles (MPPs) and cypermethrin (CYP) on crayfish, focusing on biochemical indices, lipid peroxidation, oxidative stress, hematological changes, and histopathological damage. After determining the LC50-96 h value (4.162 μg/L), crayfish were exposed to sub-lethal concentrations of CYP (1.00 ppb (20%) and 2.00 ppb (50%)) and fed a diet containing 100 mg/kg MPPs for 60 days. Hemolymph transfusion and histopathological examinations of the hepatopancreas were conducted. The results showed significant alterations in crayfish. Total protein levels decreased, indicating protein breakdown to counteract contaminants, while total cholesterol and triglyceride levels declined, suggesting impaired metabolism. Glucose levels increased in response to chemical stress. The decline in total antioxidant capacity highlighted the impact of prolonged xenobiotic exposure and oxidative stress, while increased CAT, SOD, and MDA activities helped mitigate oxidative stress and maintain cellular homeostasis. The elevated total hemocyte count, particularly in semi-granular cells, suggests their active involvement in the detoxification process. Further research is needed to fully understand the implications of these effects.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Paria Darvishi
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amin Gholamhossieni
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna, Torino, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
6
|
Mu Y, Lan M, Li Y, Zhang Z, Guan Y. Effects of florfenicol on the antioxidant and immune systems of Chinese soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108991. [PMID: 37562587 DOI: 10.1016/j.fsi.2023.108991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Florfenicol is a commonly used antibiotic for the treatment of bacterial diseases of the Chinese soft-shelled turtle (Pelodiscus sinensis). The study investigated the effects of florfenicol on the antioxidant and immune system of P. sinensis. Results showed that the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) activities were significantly increased in the 10 mg/kg and 40 mg/kg florfenicol treatment groups compared with the control group. Besides, the malondialdehyde (MDA) content was significantly increased, and the glutathione peroxidase (GSH-Px) activity was significantly decreased with 40 mg/kg florfenicol treatment. In addition, florfenicol has effects on the immune system, 10 mg/kg of florfenicol significantly promoted the activities of acid phosphatase (ACP) and alkaline phosphatase (AKP), whereas 40 mg/kg of florfenicol significantly inhibited their activities. To elucidate the molecular mechanisms, a comparative transcriptome analysis was conducted. A total of 59 differentially expressed genes (DEGs) and 12 significantly enriched KEGG pathways were identified in the 10 mg/kg group; 150 DEGs and 10 significantly enriched KEGG pathways were identified in the 40 mg/kg group. Among them, the complement and coagulation cascade pathways were the most significant which may play an important regulatory role in the immune response. The MADCAM1, STAT3, and IL4I1 genes may be the key genes of florfenicol affecting the immune response. The APOA1, APOA4, SPLA2, FADS1, and FADS2 genes may play a key role in anti-inflammatory and antioxidant effects through redox-related pathways. The study lays the foundation for a deeper understanding of the mechanism of the florfenicol effect on P. sinensis.
Collapse
Affiliation(s)
- Yuqi Mu
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengyan Lan
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yali Li
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, 071002, China; Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
7
|
Assar DH, Ragab AE, Abdelsatar E, Salah AS, Salem SMR, Hendam BM, Al Jaouni S, Al Wakeel RA, AbdEl-Kader MF, Elbialy ZI. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas hydrophila-Infected Common Carp ( Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals (Basel) 2023; 13:2229. [PMID: 37444027 DOI: 10.3390/ani13132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 32527, Egypt
| | - Essam Abdelsatar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa F AbdEl-Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafrelsheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Zanuzzo FS, Sandrelli RM, Peroni EDFC, Hall JR, Rise ML, Gamperl AK. Atlantic Salmon (Salmo salar) bacterial and viral innate immune responses are not impaired by florfenicol or tetracycline administration. FISH & SHELLFISH IMMUNOLOGY 2022; 123:298-313. [PMID: 35189324 DOI: 10.1016/j.fsi.2022.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are used to treat bacterial infections in fish aquaculture, and these drugs can interact with immune cells/the immune system and potentially leave fish vulnerable to viral, fungal, parasitic, or other bacterial infections. However, the effects of antibiotics on fish immunity have largely been overlooked by the aquaculture industry. We tested, at 12 and 20 °C, whether tetracycline and florfenicol (the most commonly used antibiotics in commercial aquaculture), affected the Atlantic salmon's capacity to respond to bacterial or viral stimulation. Atlantic salmon were acclimated to 12 or 20 °C and fed with tetracycline or florfenicol (100 and 10 mg kg of body weight-1 day-1, respectively) medicated feed for 15 or 10 days, respectively. Thereafter, we evaluated their immune function prior to, and after, an intraperitoneal injection of Forte Micro (containing inactivated cultures of Aeromonas salmonicida, Vibrio anguillarum, Vibrio ordalii and Vibrio salmonicida) or the viral mimic polyriboinosinic polyribocytidylic acid (pIC). We measured the transcript expression levels of 8 anti-bacterial and 8 anti-viral putative biomarker genes, and the innate (leukocyte respiratory burst, plasma lysozyme activity and hemolytic activity of the alternative complement pathway) and cellular (relative number of erythrocytes, lymphocytes and thrombocytes, and granulocytes such as monocytes and neutrophils) responses to these challenges. Overall, we only found a few minor effects of either tetracycline or florfenicol on immune gene expression or function at either temperature. Although several studies have reported that antibiotics may negatively affect fish immune responses, our results show that industry-relevant dietary tetracycline and florfenicol treatments do not substantially impact the salmon's innate immune responses. Currently, this is the most comprehensive study on the effects of antibiotics administrated according to industry protocols on immune function in Atlantic salmon.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada.
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada
| | - Ellen de Fátima C Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, A1C 5S7, Canada
| |
Collapse
|
9
|
Cui M, Wang Z, Yang Y, Liu R, Wu M, Li Y, Zhang Q, Xu D. Comparative Transcriptomic Analysis Reveals the Regulated Expression Profiles in Oreochromis niloticus in Response to Coinfection of Streptococcus agalactiae and Streptococcus iniae. Front Genet 2022; 13:782957. [PMID: 35309129 PMCID: PMC8927537 DOI: 10.3389/fgene.2022.782957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Tilapia (Oreochromis sp.) is one of the important economical fishes in the world. Streptococcosis is commonly found in tilapia, causing severe and devastating effects in tilapia cultures. Streptococcus agalactiae and Streptococcus iniae are the predominant pathogens causing tilapia streptococcosis. To understand the molecular mechanisms underlying differential streptococcal infection patterns, Nile tilapias (Oreochromis niloticus) were infected by 1 × 107 CFU/mL S. agalactiae, 1 × 107 CFU/mL S. iniae, and 1 × 107 CFU/mL S. agalactiae and S. iniae (1:1), respectively, and transcriptome analysis was conducted to the intestine samples of Nile tilapia (Oreochromis niloticus) at 6, 12, 24 h, and 7 days post-infection. A total of 6,185 genes that differentially expressed among groups were identified. Eight differentially expressed genes (DEGs) including E3 ubiquitin-protein ligase TRIM39-like, C-X-C motif chemokine 10-like(CXCL 10), C-C motif chemokine 19-like, interleukin-1 beta-like, IgM heavy chain VH region, partial, IgG Fc-binding protein, proteasome subunit beta type-8 (PSMB8), and ATP synthase F(0) complex subunit B1, mitochondrial that involved in the immune system were selected, and their expression levels in the coinfection group were significantly higher than those in either of the single infection groups. These genes were associated with four different KEGG pathways. Additionally, the differential expression of eight DEGs was validated by using the RT-qPCR approach, and their immunological importance was discussed. The results provided insights into the responses of tilapia against S. agalactiae and S. iniae at the transcriptome level, promoting our better understanding of immune responses for aquatic animal against Streptococcus.
Collapse
Affiliation(s)
- Miao Cui
- *Correspondence: Miao Cui, ; Delin Xu,
| | | | | | | | | | | | | | - Delin Xu
- *Correspondence: Miao Cui, ; Delin Xu,
| |
Collapse
|
10
|
Shiry N, Khoshnoodifar K, Alavinia SJ. Cutaneous mucosal immune-parameters and intestinal immune-relevant genes expression in streptococcal-infected rainbow trout (Oncorhynchus mykiss): A comparative study with the administration of florfenicol and olive leaf extract. FISH & SHELLFISH IMMUNOLOGY 2020; 107:403-410. [PMID: 33157200 DOI: 10.1016/j.fsi.2020.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated changes in cutaneous mucosal immunity (total protein (TP) and immunoglobulin (TIg), lysozyme, protease, esterase, and alkaline phosphatase (ALP)) and some immune-related genes expression (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8, hepcidin-like antimicrobial peptides (HAMP), and immunoglobulin M (IgM)) in the intestine of rainbow trout (Oncorhynchus mykiss) orally-administrated florfenicol (FFC) and/or olive leaf extract (OLE), experimentally infected with Streptococcus iniae. The juvenile fish (55 ± 7.6 g) were divided into different groups according to the use of added OLE (80 g kg-1 food), the presence/absence of FFC (15 mg kg-1 body weight for 10 consecutive days), and the streptococcal infectivity (2.87 × 107 CFU mL-1 as 30% of LD50-96h). The extract's chemical composition was analyzed using the high-performance liquid chromatography (HPLC) system. The skin mucus and intestine of fish were sampled after a 10-day therapeutic period for all groups, and their noted indices were measured. Our results signified that the oleuropein, quercetin, and trans-ferulic acid were the most obvious active components of OLE which were found by HPLC analysis. The combined use of OLE and FFC could lowered some skin mucus immunological indices (e.g., TP, TIg, and ALP), and the gene expression of inflammatory cytokines (e.g., TNF-α and IL-1β) of rainbow trout. Moreover, lysozyme and protease activities respectively were invigorated by the FFC and OLE treatment. Also, the use of OLE as a potential medicine induced the gene expression of HAMP. As the prevention approach, it would be recommended to find the best dose of OLE alone or in combination with the drug through therapeutics period before the farm involved in the streptococcal infection.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Khadije Khoshnoodifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Li P, Ye J, Zeng S, Yang C. Florfenicol alleviated lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella through inhibiting toll / NF-κB signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2019; 94:479-484. [PMID: 31472264 DOI: 10.1016/j.fsi.2019.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to evaluate the anti-inflammatory activity of florfenicol (FFC) against lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella in vivo and in vitro. Head-kidney (HK) macrophages were pre-treated with 10 μg/mL LPS and then exposed to different concentrations of FFC to determine its in vitro anti-inflammatory activity. Inhibitory effect of FFC on inflammatory mediators TNF-α, IL-6 and IL-1β, as well as LPS-induced nitric oxide (NO) and prostaglandin E 2 (PGE 2) production were assayed by ELISA. The expression level of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR. Expression level of TLR-related genes (TLR1, TLR2, TLR4, TLR7, TLR8) expression, tumor necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-b-activated kinase 1 (TAK1), Myeloid differentiation factor 88 (MyD88), nucleus p65, NF-κBα (IκBα) were measured by RT-PCR after grass carp were treated with 50, 100 and 200 mg FFC/kg body weight for 3 days. Results from in vitro tests demonstrated that FFC dose-dependently inhibited LPS-induced inflammatory cytokines TNF-α, IL-6 and IL-1β, inflammatory factors NO and PGE 2 production in macrophages. In addition, iNOS and COX-2 expression levels decreased significantly as compared with LPS treated group. In vivo test demonstrated that treatment with FFC prevented the LPS-induced upregulation of TNF-α, IL-6, IL-1β, NO and PGE 2. The expression level of iNOS, and COX-2 in FFC-treated grass carp were also downregulated as compared with LPS treated fish. Besides, FFC blocked the expression of Toll-like receptor 2 (TLR2) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of IκBα. Furthermore, administration of FFC inhibited the up-regulation of IRAK4, TRAF6 and TAK1 induced by LPS. These results suggest that the anti-inflammatory properties of FFC might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expressions through the down-regulation of Toll/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Pei Li
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China; Institute for Fisheries Sciences, Guangxi University, Nanning, 53000, China
| | - Jianzhi Ye
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China
| | - Shaodong Zeng
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China
| | - Chunliang Yang
- Center for Food Quality Supervision and Testing (Zhanjiang)Ministry of Agriculture and Rural Affairs PR China, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 52400, China.
| |
Collapse
|