1
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025; 13:896-912. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Xiao K, Liu J, Sun Y, Chen S, Ma J, Cao M, Yang Y, Pan Z, Li P, Du Z. Anti-inflammatory and antioxidant activity of high concentrations of hydrogen in the lung diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1444958. [PMID: 39211045 PMCID: PMC11357939 DOI: 10.3389/fimmu.2024.1444958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
As a small molecule, hydrogen is colorless, odorless and lightest. Many studies conducted that hydrogen can protect almost every organ, including the brain, heart muscle, liver, small intestine, and lungs. To verify whether high concentrations of hydrogen (HCH) has anti-inflammatory and antioxidant activities on respiratory system, we product a systematic review and meta-analysis. We investigated MEDLINE-PubMed, Cochrane Library, ScienceDirect, Wiley and SpringerLink database and selected in vivo studies related to the anti-inflammatory or antioxidant effects of HCH in the lung diseases which were published until September 2023. We firstly identified 437 studies and only 12 met the inclusion criteria. They all conducted in rodents. The results showed that HCH had a positive effect on the reduction of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-4, IL-8, malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS); but there is no effect on IL-6, we speculated that may contribute to the test results for different body fluids and at different points in time. This meta-analysis discovered the protective effects on inflammation and oxidative stress, but whether there exists more effects on reduction of inflammatory and oxidant mediators needs to be further elucidated.
Collapse
Affiliation(s)
- Kang Xiao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jianwei Liu
- Public Health Monitoring and Evaluation Institute of Shandong Provincial Center for Disease Control and Prevention, Ji’nan, Shandong, China
| | - Yuxin Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Shangya Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Jiazi Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Mao Cao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yong Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Peng Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
3
|
Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, Zhao C. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther 2024; 18:1399-1414. [PMID: 38707612 PMCID: PMC11068043 DOI: 10.2147/dddt.s463177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.
Collapse
Affiliation(s)
- Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Yingxiao Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Hao Zhang
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Haoyue Chen
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Cui Chao
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Chuanliang Zhao
- Department of Orthopedics, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| |
Collapse
|
4
|
Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, Ahmad QUA, Abusalah MAHA, ALjaraedah TY, Alraei WY, Rabaan AA, Singh KKB, Abusalah MAHA. Hydrogen Therapy and Its Future Prospects for Ameliorating COVID-19: Clinical Applications, Efficacy, and Modality. Biomedicines 2023; 11:1892. [PMID: 37509530 PMCID: PMC10377251 DOI: 10.3390/biomedicines11071892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.
Collapse
Affiliation(s)
- Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Bakhtawar Bukhari
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Mahwish Najeeb
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Sumbal Nazir
- School of Zoology, Minhaj University Lahore, Lahore 54770, Pakistan
| | - Tallat Anwar Faridi
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Farooq
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Qurat-Ul-Ain Ahmad
- Division of Science and Technology, University of Education, Township Lahore, Lahore 54770, Pakistan
| | - Manal Abdel Haleem A Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Thana' Y ALjaraedah
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Wesal Yousef Alraei
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mai Abdel Haleem A Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| |
Collapse
|
5
|
Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z, Lu S, Ma X. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Pharmaceuticals (Basel) 2023; 16:885. [PMID: 37375833 DOI: 10.3390/ph16060885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and anti-inflammatory effects, has been shown to promote M2 polarization in injury and disease. However, more in vivo time series studies of the role of M1-to-M2 polarization in wound healing are needed. In the current study, we performed time series experiments on a dorsal full-thickness skin defect mouse model in the inflammatory stage to examine the effects of H2 inhalation. Our results revealed that H2 could promote very early M1-to-M2 polarization (on days 2-3 post wounding, 2-3 days earlier than in conventional wound healing), without disturbing the functions of the M1 phenotype. Time series analysis of the transcriptome, blood cell counts, and multiple cytokines further indicated that peripheral blood monocytes were a source of H2-induced M2 macrophages and that the functions of H2 in macrophage polarization were not only dependent on its antioxidant effects. Therefore, we believe that H2 could reduce inflammation in wound care by shifting early macrophage polarization in clinical settings.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Shidong Lu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| |
Collapse
|
6
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
7
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
8
|
Zhu W, Gu Q, Liu B, Si Y, Sun H, Zhong J, Lu Y, Wang D, Xue J, Qin S. Accurate in vivo real-time determination of the hydrogen concentration in different tissues of mice after hydrogen inhalation. Heliyon 2022; 8:e10778. [PMID: 36203896 PMCID: PMC9530838 DOI: 10.1016/j.heliyon.2022.e10778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
As an antioxidant, anti-inflammatory and anti-apoptotic agent, hydrogen (H2) shows a promising potential in basic and clinical research against various diseases owing to its safety and efficacy. However, knowledge involving its underlying mechanisms of action, dosage effects, and dose duration remains limited. Previously, the dynamics of H2 concentrations in different tissues of rats after exogenous H2 inhalation had been detected by our team. Here, sequential changes of H2 concentrations in different tissues of another most commonly used experimental rodent mice were monitored in real time with an electrochemical H2 gas sensor during continuous different concentrations of H2 inhalation targeting on five tissues including brain, liver, spleen, kidney, and gastrocnemius. The results showed that the H2 saturation concentrations varied among tissues significantly regardless of the concentration of H2 inhaled, and they were detected the highest in the kidney but the lowest in the gastrocnemius. Meantime, it required a significant longer time to saturate in the thigh muscle. By comparing the H2 saturation concentrations of mice and rats, we found that there were no differences detected in most tissues except the kidney and spleen. Both gas diffusion and bloodstream transport could help the H2 reach to most organs. The results provide data reference for dosage selection, dose duration determination to ensure optimal therapeutic effects of H2 for mice experiments.
Collapse
|
9
|
Amelioration of Ovalbumin-Induced Allergic Asthma by Juglans regia via Downregulation of Inflammatory Cytokines and Upregulation of Aquaporin-1 and Aquaporin-5 in Mice. J Trop Med 2022; 2022:6530095. [PMID: 35401757 PMCID: PMC8986429 DOI: 10.1155/2022/6530095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Juglans regia (J. regia) has been used traditionally to treat cough and asthma. The present study evaluates the immunomodulatory and anti-inflammatory potential of J. regia against ovalbumin (OVA)-induced allergic asthma. Intraperitoneal sensitization proceeded by intranasal challenge with OVA was used to induce allergic asthma. BALB/c mice were treated with methanol, n-hexane, and ethyl acetate extracts of J. regia and methylprednisolone one week after 2nd sensitization with OVA and continued for 7 days. mRNA expression levels of IL-4, IL-5, IL-13, AQP-1, AQP-5 TNF-α, TGF-β, and NF-kB were determined using reverse transcription polymerase chain reaction. Hematoxylin and eosin, and periodic acidic-Schiff stains were used for histopathological studies of lung tissues. The data presented all three extracts of J. regia significantly ameliorated airway inflammation by reducing expression levels of IL-4, IL-5, and IL-13 and TNF-α in OVA-treated mice. The suppression of goblet cells hyperplasia and inflammatory cells infiltration by J. regia involved low TGF-β and NF-kB levels. Pretreatment with J. regia also increased the AQP-1 and AQP-5 expression levels in mice treated with OVA. This study supported the traditional use of J. regia and proposed that J. regia ameliorated allergic asthma by suppression of proinflammatory cytokines and elevation of AQP-1 and AQP-5 expression levels.
Collapse
|
10
|
Abstract
Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
11
|
Hydrogen Gas Inhalation Prevents Erythrocyte Aggregation and Promotes Leukocyte Phagocytosis Together with Increases in Serum Antioxidant Activity. HYDROGEN 2022. [DOI: 10.3390/hydrogen3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogen gas inhalation has not yet been elucidated to improve blood behaviors or antioxidant activity in blood. In the present study, the PEM (proton-exchange-membrane)-/platinum-plated electrode-equipped electrolyzer was examined as a hydrogen gas inhaler, which was estimated to supply 3% hydrogen as rapidly as post-operating 10–15 min, together with continuous 30 min retention of 20.8% oxygen being nearly equal to atmospheric oxygen contents. The 40 min inhalation of 3% hydrogen gas and thereafter 60 min rest were shown to enhance the antioxidant ability in human serum, as evaluated by ORAC (oxygen radical absorbing capacity)-based fluorometry, although scarcely enhanced for air dummy inhalation. Unexpectedly, antioxidant ability was 2.50-fold more enhanced for post-inhalational 0–60 min rest than during 40 min inhalation. Oxidative stress-suffering erythrocytes formed a rosary-chain-like aggregation composed of 3–6 cells, together with loss of a single hollow/biconcave-discoid structure in the cell central-part being necessary for erythrocyte passing through capillary vessels, both of which were prevented by 3% hydrogen gas inhalation. Hydrogen gas inhalation increased the intracellular foreign bodies, being distinguished from vacuole/cyst, in leucocytes, suggesting the hydrogen-activated leukocyte phagocytosis-associated events. Thus, 3%-hydrogen gas inhalation is suggested to potentially improve both the erythrocyte rheological/morphologic behaviors and the leucocyte phagocytosis-associated activity, concurrently with the enhanced antioxidant ability in blood.
Collapse
|
12
|
Tian Y, Zhang Y, Wang Y, Chen Y, Fan W, Zhou J, Qiao J, Wei Y. Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front Physiol 2022; 12:789507. [PMID: 34987419 PMCID: PMC8721893 DOI: 10.3389/fphys.2021.789507] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.
Collapse
Affiliation(s)
- Yan Tian
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Yafang Zhang
- Department of Pediatrics, Taian City Central Hospital, Taian, China
| | - Yu Wang
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China.,Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yunxi Chen
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Jing Qiao
- Department of Pediatrics, Tongji University Affiliated East Hospital, Shanghai, China
| | - Youzhen Wei
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| |
Collapse
|
13
|
Li Y, Wang Z, Lian N, Wang Y, Zheng W, Xie K. Molecular Hydrogen: A Promising Adjunctive Strategy for the Treatment of the COVID-19. Front Med (Lausanne) 2021; 8:671215. [PMID: 34746162 PMCID: PMC8569706 DOI: 10.3389/fmed.2021.671215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has no specific and effective treatment. The pathophysiological process of the COVID-19 is an excessive inflammatory response after an organism infects with a virus. Inflammatory storms play an important role in the development of the COVID-19. A large number of studies have confirmed that hydrogen has a therapeutic effect on many diseases via inhibiting excessive inflammatory cells and factors. Recently, a study led by the Academician Zhong Nanshan in China on the treatment of the patients with the COVID-19 by inhalation of a mixed gas composed of hydrogen and oxygen has attracted widespread international attention and hydrogen therapy has also been included in a new treatment plan for the COVID-19 in China. This study mainly describes the mechanism of occurrence of the COVID-19, summarizes the therapeutic effects and underlying mechanisms of hydrogen on the critical disease, and analyzes the feasibility and potential therapeutic targets of hydrogen for the treatment of the COVID-19.
Collapse
Affiliation(s)
- Yingning Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Zhen Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yuzun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Weiqiang Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China.,Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.,College of Anesthesiology, Translational Research Institute of Intensive Care Medicine, College of Anesthesiology, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Aokage T, Seya M, Hirayama T, Nojima T, Iketani M, Ishikawa M, Terasaki Y, Taniguchi A, Miyahara N, Nakao A, Ohsawa I, Naito H. The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury. BMC Pulm Med 2021; 21:339. [PMID: 34719405 PMCID: PMC8559370 DOI: 10.1186/s12890-021-01712-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury. Methods To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined. Results Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH2O, 95% CI 0.047–0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH2O, 95% CI 0.031–0.053, p = 0.02) and lower static elastance (BH 18.8 cmH2O/mL, [95% CI 15.4–22.2] vs. BA 26.7 cmH2O/mL [95% CI 19.6–33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6–4.5%] vs. 1.1% [95% CI 0.3–1.8%], p = 0.008). Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01712-2.
Collapse
Affiliation(s)
- Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Takahiro Hirayama
- Department of Disaster Medicine and Management, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuyoshi Nojima
- Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masumi Iketani
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Michiko Ishikawa
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ikuroh Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| |
Collapse
|
15
|
Li S, Lei Y, Lei J, Li H. All‑trans retinoic acid promotes macrophage phagocytosis and decreases inflammation via inhibiting CD14/TLR4 in acute lung injury. Mol Med Rep 2021; 24:868. [PMID: 34676874 PMCID: PMC8554390 DOI: 10.3892/mmr.2021.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) is a common clinical emergency and all-trans retinoic acid (ATRA) can alleviate organ injury. Therefore, the present study investigated the role of ATRA in ALI. Lipopolysaccharide (LPS)-induced ALI rats were treated with ATRA and the arterial partial pressure of oxygen (PaO2), lung wet/dry weight (W/D) ratio and protein content in the bronchial alveolar lavage fluid (BALF) were measured to evaluate the effect of ATRA on ALI rats. Alveolar macrophages were isolated from the BALF. The phagocytic function of macrophages was detected using the chicken erythrocyte phagocytosis method and flow cytometry. The viability of macrophages was measured using a Cell Counting Kit-8 assay, and apoptosis was analyzed using a TUNEL assay and flow cytometry. The expression levels of Toll-like receptor 4 (TLR4) and cluster of differentiation (CD)14 on the macrophage membrane were detected by immunofluorescence staining. The protein levels of TLR4, CD14, phosphorylated (p)-65, p65, p-IκBα and IκBα were analyzed using western blotting. The concentrations of IL-6, IL-1β and macrophage inflammatory protein-2 in the plasma of rats were detected by ELISA. Macrophages were treated with IAXO-102 (TLR4 inhibitor) to verify the involvement of CD14/TLR4 in the effect of ATRA on ALI. ATRA provided protection against LPS-induced ALI, as evidenced by the increased PaO2 and reduced lung W/D ratio and protein content in the BALF. ATRA enhanced macrophage phagocytosis and viability and reduced apoptosis and inflammation in ALI rats. Mechanically, ATRA inhibited CD14 and TLR4 expression and NF-κB pathway activation. ATRA enhanced macrophage phagocytosis and reduced inflammation by inhibiting the CD14/TLR4-NF-κB pathway in LPS-induced ALI. In summary, ATRA inactivated the NF-κB pathway by inhibiting the expression of CD14/TLR4 receptor in the alveolar macrophages of rats, thus enhancing the phagocytic function of macrophages in ALI rats, improving the activity of macrophages, inhibiting apoptosis, reducing the levels of inflammatory factors, and consequently playing a protective role in ALI model rats. This study may offer novel insights for the clinical management of ALI.
Collapse
Affiliation(s)
- Shuangxue Li
- Department of Respiratory and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Yuansheng Lei
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jieyun Lei
- Department of Cardiology, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Hui Li
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
16
|
Song J, Yao L, Shi J, Li J, Xu C. Protective effects of N-acetylcysteine on a chemical-induced murine model of asthma. J Asthma 2021; 58:1208-1215. [PMID: 32546031 DOI: 10.1080/02770903.2020.1781166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Oxidative stress is involved in the pathophysiology of inflammatory airway diseases, including asthma. In this study, we elucidated the possible protective effects of the antioxidant N-acetylcysteine (NAC) on a toluene diisocyanate (TDI)-induced murine asthma model. METHODS Male BALB/c mice were sensitized and challenged with TDI to generate a chemical-induced asthma model. NAC was given intraperitoneally to mice immediately after each TDI challenge. Airway reactivity to methacholine and bronchoalveolar lavage fluid was analyzed. Lungs were examined by histology. RESULTS NAC treatment dramatically reduced the increased airway hyperresponsiveness, inflammatory infiltration, and goblet cell metaplasia in TDI-exposed mice. Numbers of total cells, neutrophils, and eosinophils in the bronchoalveolar lavage fluid of TDI-challenged mice were significantly higher than vehicle control, but the administration of NAC decreased these inflammatory cell counts. TDI exposure led to significantly increased levels of interleukin 4 (IL-4) and IL-5, which were also suppressed by NAC. In addition, diminished lung reduced oxidized glutathione ratio and superoxide dismutase activity were observed after TDI challenge, and these changes were attenuated by NAC. CONCLUSION NAC treatment has beneficial effects in TDI-induced asthma.
Collapse
Affiliation(s)
- Jiafu Song
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Lihong Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Shi
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Jiashu Li
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Caiyun Xu
- Department of Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| |
Collapse
|
17
|
Su JC, Zhang Y, Cheng C, Zhu YN, Ye YM, Sun YK, Xiang SY, Wang Y, Liu ZB, Zhang XF. Hydrogen regulates the M1/M2 polarization of alveolar macrophages in a rat model of chronic obstructive pulmonary disease. Exp Lung Res 2021; 47:301-310. [PMID: 34282696 DOI: 10.1080/01902148.2021.1919788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a respiratory disease with high morbidity and mortality worldwide, so far there is no ideal treatment method. Previous studies have shown that hydrogen (H2) is involved in the treatment of COPD as an antioxidant. In this study, the effect of H2 on M1/M2 polarization of alveolar macrophages in COPD rats was observed, and its anti-inflammatory mechanism was further elucidated. Methods: Twenty-four Sprague-Dawley rats were randomly divided into three groups including the control, COPD and H2 group. A rat model of COPD was established by cigarette exposure combined with lipopolysaccharide (LPS) induction. H2 therapy was administered 2 hours per day for 14 days. Lung function and pathology were assessed. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and IL-10 in bronchoalveolar lavage fluid (BALF) and lung tissue were measured by enzyme-linked immunosorbent assay. The mRNA, protein expression and immunoreactivity of inducible nitric oxide synthase (iNOS) and arginase (Arg)-1 in lung were observed by quantitative real-time PCR, western blot and immunohistochemistry. Results: Compared with the control rats, there were a significant decline in lung function, a marked inflammatory infiltration and pulmonary parenchymal remodeling and the increases of IL-6, TNF-α and TGF-β1 levels in BALF and lung tissue, but a lower expression of IL-10 in COPD rats. The iNOS mRNA and protein expression, as well as its optical density (OD), were increased significantly in lung tissue, while those of Arg-1 decreased significantly. H2 treatment improved the lung function and the parenchymal inflammation, reversed the increased levels of IL-6, TNF-α and TGF-β1, and the lower IL-10. Meanwhile, H2 also down-regulated the expression of iNOS, but up-regulated expression of Arg-1 in lung tissue. Conclusion: H2 reduces inflammation in the lung of COPD, which may be related to its inhibition of M1 type polarization and activation of M2 type polarization of alveolar macrophage.
Collapse
Affiliation(s)
- Jing-Chao Su
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yi Zhang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China.,College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Cheng
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China.,College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yi-Nan Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yu-Meng Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yong-Kang Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shui-Ying Xiang
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zi-Bing Liu
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xin-Fang Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
18
|
Schisandrin B Attenuates Airway Inflammation by Regulating the NF- κB/Nrf2 Signaling Pathway in Mouse Models of Asthma. J Immunol Res 2021; 2021:8029963. [PMID: 34258300 PMCID: PMC8261176 DOI: 10.1155/2021/8029963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Asthma is a complex inflammatory disorder that plagues a large number of people. Schisandrin B is an active ingredient of the traditional Chinese herbal medicine Schisandra with various proven physiological activities such as anti-inflammatory and antioxidant activities. In this study, we explored the anti-inflammatory and antioxidant effects and provided the mechanistic insights into the activity of schisandrin B in a mouse model of ovalbumin- (OVA-) induced allergic asthma. Methods Male BALB/c mice were sensitized and challenged with OVA to induce asthma and treated with various doses (15 mg/kg, 30 mg/kg, and 60 mg/kg) of SCH to alleviate the features of allergic asthma, airway hyperresponsiveness, inflammatory response, OVA-specific immunoglobulin (Ig)E level, and pathological injury. Results Schisandrin B significantly attenuated the airway hyperresponsiveness induced by OVA. Moreover, schisandrin B administration suppressed inflammatory responses, reduced the level of IgE, and attenuated pathological injury. Mechanistically, schisandrin B treatment promoted the activation of nuclear erythroid 2-related factor 2 (Nrf2), but suppressed the stimulation of the NF-κB pathway caused by OVA. Conclusion Taken together, our study suggests that schisandrin B attenuates the features of asthmatic lungs by inhibiting the NF-κB pathway and activating the Nrf2 signaling pathway.
Collapse
|
19
|
Chen KD, Lin WC, Kuo HC. Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and COVID-19. Chem Res Toxicol 2021; 34:952-958. [PMID: 33719401 DOI: 10.1021/acs.chemrestox.0c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kawasaki disease (KD) is a systemic vasculitis and is the most commonly acquired heart disease among children in many countries, which was first reported 50 years ago in Japan. The 2019 coronavirus disease (COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has been a pandemic in most of the world since 2020, and since late 2019 in China. Kawasaki-like disease caused by COVID-19 shares some symptoms with KD, referred to as multisystem inflammatory syndrome in children, and has been reported in the United States, Italy, France, England, and other areas of Europe, with an almost 6-10 times or more increase compared with previous years of KD prevalence. Hydrogen gas is a stable and efficient antioxidant, which has a positive effect on oxidative damage, inflammation, cell apoptosis, and abnormal blood vessel inflammation. This review reports the chemical and biochemical aspects of hydrogen gas inhalation in treating KD and COVID-19.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Wen-Chang Lin
- EPOCH Energy Technology Corporation, Kaohsiung, Taiwan 33302.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| |
Collapse
|
20
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
21
|
Wang ST, Bao C, He Y, Tian X, Yang Y, Zhang T, Xu KF. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients. QJM 2020; 113:870-875. [PMID: 32407476 PMCID: PMC7785302 DOI: 10.1093/qjmed/hcaa164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hydrogen was proven to have anti-oxidative and anti-inflammation effects to various diseases. AIM We wish to investigate the acute effects of inhaled hydrogen on airway inflammation in patients with asthma and chronic obstructive pulmonary disease (COPD). DESIGN Prospective study. METHODS In total, 2.4% hydrogen containing steam mixed gas (XEN) was inhaled once for 45 min in 10 patients with asthma and 10 patients with COPD. The levels of granulocyte-macrophage colony stimulating factor, interferon-γ, interleukin-1β (IL-1β), IL-2, IL-4, IL-6 and so on in peripheral blood and exhaled breath condensate (EBC) before and after 'XEN' inhalation were measured. RESULTS 45 minutes 'XEN' inhalation once decreased monocyte chemotactic protein 1 level in both COPD (564.70-451.51 pg/mL, P = 0.019) and asthma (386.39-332.76 pg/mL, P = 0.033) group, while decreased IL-8 level only in asthma group (5.25-4.49 pg/mL, P = 0.023). The level of EBC soluble cluster of differentiation-40 ligand in COPD group increased after inhalation (1.07-1.16 pg/mL, P = 0.031), while IL-4 and IL-6 levels in EBC were significantly lower after inhalation in the COPD (0.80-0.64 pg/mL, P = 0.025) and asthma (0.06-0.05 pg/mL, P = 0.007) group, respectively. CONCLUSIONS A single inhalation of hydrogen for 45 min attenuated inflammatory status in airways in patients with asthma and COPD.
Collapse
Affiliation(s)
- S -T Wang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - C Bao
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Y He
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - X Tian
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Y Yang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - T Zhang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - K -F Xu
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Asthma is a chronic inflammatory disease in which changes in macrophage polarization have been shown to contribute to the pathogenesis. The present review discusses the contribution of changes in macrophage function to asthma related to polarization changes and elaborates on possible therapeutic strategies targeting macrophage function and polarization. RECENT FINDINGS Macrophage function alterations were shown to contribute to asthma pathology in several ways. One is by impaired phagocytosis and efferocytosis. Another is by changing inflammation, by altered (anti)inflammatory cytokine production and induction of the inflammasome. Finally, macrophages can contribute to remodeling in asthma, although little evidence is present in humans yet.Novel therapeutic strategies targeting macrophages include dampening inflammation by changing polarization or by inhibiting the NLRP3 inflammasome, and by targeting efferocytosis. However, many of these studies were performed in animal models leaving their translation to the clinic for future research. SUMMARY The present review emphasizes the contribution of altered macrophage function to asthma, gives insight in possible new therapeutic strategies targeting macrophages, and indicates which knowledge gaps remain open.
Collapse
Affiliation(s)
- T. Anienke van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen
| | - Linsey E.S. de Groot
- Department of Respiratory Medicine
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbro N. Melgert
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen
| |
Collapse
|
23
|
Shen M, Zheng Y, Zhu K, Cai Z, Liu W, Sun X, Liu J, Zhu D. Hydrogen gas protects against delayed encephalopathy after acute carbon monoxide poisoning in a rat model. Neurol Res 2019; 42:22-30. [PMID: 31679470 DOI: 10.1080/01616412.2019.1685064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: The protective effects of 2%-4% hydrogen gas in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) have been previously reported. This study aimed to assess the neuroprotective effects of high concentration hydrogen (HCH) on DEACMP.Methods: A total of 36 male Sprague-Dawley rats were divided into 3 groups. In the DEACMP group, rats were exposed to CO to induce CO poisoning; in the HCH group, the animals were exposed to 67% H2 and 33% O2 at 3,000 mL/min for 90 min immediately after CO poisoning. Neurological function was evaluated at 1 and 9 days after poisoning. Then, the contents of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine, as well as superoxide dismutase activity in the serum, cortex and hippocampus were detected by ELISA. Additionally, the mRNA and protein expression levels of Nrf2 and downstream genes were detected by RT-PCR and Western blotting, respectively.Results: Our results showed that CO poisoning significantly impaired neurological function which was improved over time, and HCH markedly attenuated neurological impairment following CO poisoning. In addition, CO poisoning resulted in increased levels of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine and markedly reduced superoxide dismutase activity at 1 and 9 days, which were significantly inhibited by HCH at 9 days. Finally, CO poisoning increased the mRNA and protein levels of Nrf2 and downstream genes, and HCH further induced the anti-oxidative capability.Conclusion: These findings indicate the neuroprotective effects of HCH on DEACMP, which are related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Meihua Shen
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.,Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Yijun Zheng
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Kaimin Zhu
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Zhonghai Cai
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Wenwu Liu
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Xuejun Sun
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Duming Zhu
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|