1
|
Zhao J, Qin X, Yang L, Guo H, Chen S, Tian K, Guo Q, Zhao W, Zhang P, Jia Z, Yang Z, Kong D, Zhang W. Application of TCM network pharmacology and experimental verification to explore the mechanism of kaempferol against epilepsy. Brain Res Bull 2025; 220:111150. [PMID: 39608614 DOI: 10.1016/j.brainresbull.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Kaempferol (KF), the main active ingredient in identifying the authenticity of safflower, has a variety of pharmacological activities and neuroprotective effects. However, the mechanism of KF in the treatment of epilepsy remains unclear. This study aimed to investigate the protective effects of KF on epilepsy and its related mechanisms. METHODS Network pharmacology was used to explore the targets and mechanisms of safflower antiepileptic action. The protective effect of KF on epilepsy was assessed in the behavior and tissues of epileptic mice. Additionally, the impact of KF on the excitability and calcium transients of rat cortical neurons and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) were investigated using patch clamp and calcium imaging techniques. RESULTS Network pharmacology indicated safflower could be involved in calcium signaling pathways and calcium channel inhibitor activity. Experimental validation demonstrated that KF delayed seizure onset and mitigated neuronal damage in the prefrontal cortex of mice. It also reduced neuronal excitability, as indicated by action potential parameters, and suppressed Glutamate (Glu)-induced calcium transients. In tsA201 cells, KF inhibited AMPAR-mediated currents, suggesting a role in regulating [Ca2+]i homeostasis. CONCLUSION These results indicate that KF's anticonvulsant properties may arise from its neuroprotection against cell injury, edema, and necrosis, its reduction of neuronal hyperexcitability, and its prevention of calcium-induced cytotoxicity, potentially involving AMPAR modulation. This study positions KF as a promising candidate for epilepsy therapy, offering a scientific foundation for its clinical investigation.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Lei Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Han Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Siruan Chen
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Keying Tian
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Qinghui Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wenya Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, China.
| |
Collapse
|
2
|
Zhang C, Zhou J, Zhuo L, Zhang W, Lv L, Zhu L, Zhang J, Feng F, Liu W, Han L, Liao W. The TLR4/NF-κB/NLRP3 and Nrf2/HO-1 pathways mediate the neuroprotective effects of alkaloids extracted from Uncaria rhynchophylla in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118391. [PMID: 38797377 DOI: 10.1016/j.jep.2024.118391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second most common neurodegenerative disorder with limited therapeutic options available. Neuroinflammation plays an important role in the occurrence and development of PD. Alkaloids extracted from Uncaria rhynchophylla (URA), have emerged as a potential neuroprotective agent because of its anti-inflammatory and anti-oxidant properties. Nevertheless, the underlying mechanism by which URA exerts neuroprotective effects in PD remains obscure. AIM OF THE STUDY The main aim of this study was to investigate the neuroprotective effects and underlying mechanism of URA in the treatment of PD through in vivo and in vitro models, focusing on the neuroinflammation and oxidative stress pathways. MATERIALS AND METHODS The protective effects of URA against PD were evaluated by neurobehavioral tests, immunohistochemistry, serum biochemical assays, and real-time quantitative polymerase chain reaction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. The role of the TLR4/NF-κB/NLRP3 pathway and the Nrf2/HO-1 pathway in URA-mediated effects was examined in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a microglia-neuron coculture system. RESULTS URA significantly alleviated motor deficits and dopaminergic neurotoxicity, and reversed the abnormal secretion of inflammatory and oxidative stress factors in the serum of MPTP-induced mice. URA suppressed the gene expression of Toll-like receptor 4 (TLR4), NOD-like receptor protein 3, and cyclooxygenase 2 (COX2) in the striatum of PD mice. Further studies indicated that URA inhibited activation of the TLR4/NF-κB/NLRP3 pathway and enhanced activation of the Nrf2/HO-1 pathway, reduced reactive oxygen species (ROS) production, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglial cells, thereby alleviating neuroinflammatory damage to SH-SY5Y neuronal cells. CONCLUSION URA exerted neuroprotective effects against PD mainly by the inhibition of the TLR4/NF-κB/NLRP3 pathway and activation of the Nrf2/HO-1 antioxidant pathway, highlighting URA as a promising candidate for PD treatment.
Collapse
Affiliation(s)
- Chunxia Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jiayu Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingxin Zhuo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Wenxin Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingrui Lv
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingmeng Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jiayi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Feng Feng
- Nanjing Medical University, Nanjing, 211166, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Zhejiang Center for safety study of drug substances (Industrial Technology Innovation Platform), Hangzhou, 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China.
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
3
|
Xia L, Chen J, Huang J, Lin X, Jiang J, Liu T, Huang N, Luo Y. The role of AMPKα subunit in Alzheimer's disease: In-depth analysis and future prospects. Heliyon 2024; 10:e34254. [PMID: 39071620 PMCID: PMC11279802 DOI: 10.1016/j.heliyon.2024.e34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The AMP-activated protein kinase α (AMPKα) subunit is the catalytic subunit in the AMPK complex, playing a crucial role in AMPK activation. It has two isoforms: AMPKα1 and AMPKα2. Emerging evidence suggests that the AMPKα subunit exhibits subtype-specific effects in Alzheimer's disease (AD). This review discusses the role of the AMPKα subunit in the pathogenesis of AD, including its impact on β-amyloid (Aβ) pathology, Tau pathology, metabolic disorders, inflammation, mitochondrial dysfunction, inflammasome and pyroptosis. Additionally, it reviews the distinct roles of its isoforms, AMPKα1 and AMPKα2, in AD, which may provide more precise targets for future drug development in AD.
Collapse
Affiliation(s)
- Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jianhua Chen
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingyu Jiang
- Department of Gastroenterology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Tingting Liu
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
4
|
Ding J, Tie F, Dong Q, Hu N, Wang H. Kaempferol Derivatives from Hippophae rhamnoides Linn. Ameliorate H 2O 2-Induced Oxidative Stress in SH-SY5Y Cells by Upregulating Nrf2. Chem Biodivers 2024; 21:e202400145. [PMID: 38738490 DOI: 10.1002/cbdv.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
As a medicinal and edible resource, Hippophae rhamnoides Linn. subsp. sinensis Rousi is rich in bioactive secondary metabolites, including flavonoids and their derivatives, which offer protective effects against oxidative damage. This study reported the isolation of three new kaempferol derivatives from the seed residue of H. rhamnoides - Hippophandine A, B, and C (compounds 1-3). Their structures were elucidated by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), and chemical analyses. The compounds were evaluated for their ability to mitigate hydrogen peroxide (H2O2)-induced cell death in SH-SY5Y cells. The results elucidated that Hippophandine A-C at concentrations of 1, 5, and 10 μM reduced the levels of malondialdehyde (MDA) and increased the activity of antioxidative enzymes, such as superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, they significantly altered the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1), which is an indicator of redox detection in H2O2-induced SH-SY5Y.
Collapse
Affiliation(s)
- Jin Ding
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Fangfang Tie
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
5
|
Albalawi FE, Alsharif I, Moawadh MS, Alkhoshaiban A, Falah Alshehri F, Albalawi AE, Althobaiti NA, Alharbi ZM, Almohaimeed HM. Immunomodulatory effects of Kaempferol on microglial and Macrophage cells during the progression of diabetic retinopathy. Int Immunopharmacol 2024; 133:112021. [PMID: 38626549 DOI: 10.1016/j.intimp.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.
Collapse
Affiliation(s)
- Fahad Eid Albalawi
- Regional laboratory, blood bank and poisons centre, Sakaka 72346, Saudi Arabia; Medical College, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia.
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Ad Dawadimi-17464, Shaqra University, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia
| | - Zeyad M Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
6
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
7
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Chen Z, Wang X, Du S, Liu Q, Xu Z, Guo Y, Lin X. A review on traditional Chinese medicine natural products and acupuncture intervention for Alzheimer's disease based on the neuroinflammatory. Chin Med 2024; 19:35. [PMID: 38419106 PMCID: PMC10900670 DOI: 10.1186/s13020-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset and progressive development. It is clinically characterized by cognitive impairment, memory impairment and behavioral change. Chinese herbal medicine and acupuncture are important components of traditional Chinese medicine (TCM), and are commonly used in clinical treatment of AD. This paper systematically summarizes the research progress of traditional Chinese medicine natural products and acupuncture treatment of AD, which combined with existing clinical and preclinical evidence, based on a comprehensive review of neuroinflammation, and discusses the efficacy and potential mechanisms of traditional Chinese medicine natural products and acupuncture treatment of AD. Resveratrol, curcumin, kaempferol and other Chinese herbal medicine components can significantly inhibit the neuroinflammation of AD in vivo and in vitro, and are candidates for the treatment of AD. Acupuncture can alleviate the memory and cognitive impairment of AD by improving neuroinflammation, synaptic plasticity, nerve cell apoptosis and reducing the production and aggregation of amyloid β protein (Aβ) in the brain. It has the characteristics of early, safe, effective and benign bidirectional adjustment. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of AD.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinrui Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Simin Du
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhifang Xu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
9
|
Lee C, Yoon S, Moon JO. Kaempferol Suppresses Carbon Tetrachloride-Induced Liver Damage in Rats via the MAPKs/NF-κB and AMPK/Nrf2 Signaling Pathways. Int J Mol Sci 2023; 24:ijms24086900. [PMID: 37108064 PMCID: PMC10138912 DOI: 10.3390/ijms24086900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress plays a critical role in the development of liver disease, making antioxidants a promising therapeutic approach for the prevention and management of liver injuries. The aim of this study was to investigate the hepatoprotective effects of kaempferol, an antioxidant flavonoid found in various edible vegetables, and its underlying mechanism in male Sprague-Dawley rats with carbon tetrachloride (CCl4)-induced acute liver damage. Oral administration of kaempferol at doses of 5 and 10 mg/kg body weight resulted in the amelioration of CCl4-induced abnormalities in hepatic histology and serum parameters. Additionally, kaempferol decreased the levels of pro-inflammatory mediators, TNF-α and IL-1β, as well as COX-2 and iNOS. Furthermore, kaempferol suppressed nuclear factor-kappa B (NF-κB) p65 activation, as well as the phosphorylation of Akt and mitogen-activated protein kinase members (MAPKs), including extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 in CCl4-intoxicated rats. In addition, kaempferol improved the imbalanced oxidative status, as evidenced by the reduction in reactive oxygen species levels and lipid peroxidation, along with increased glutathione content in the CCl4-treated rat liver. Administering kaempferol also enhanced the activation of nuclear factor-E2-related factor (Nrf2) and heme oxygenase-1 protein, as well as the phosphorylation of AMP-activated protein kinase (AMPK). Overall, these findings suggest that kaempferol exhibits antioxidative, anti-inflammatory, and hepatoprotective effects through inhibiting the MAPK/NF-κB signaling pathway and activating the AMPK/Nrf2 signaling pathway in CCl4-intoxicated rats.
Collapse
Affiliation(s)
- Changyong Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeon-Ok Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Luan Y, Luo Y, Deng M. New advances in Nrf2-mediated analgesic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154598. [PMID: 36603339 DOI: 10.1016/j.phymed.2022.154598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.
Collapse
Affiliation(s)
- Yifan Luan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yaping Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Liu G, Li M, Qian S, Yu L, Qian L, Feng X. Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation. Transl Pediatr 2022; 11:651-662. [PMID: 35685068 PMCID: PMC9173876 DOI: 10.21037/tp-22-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated. METHODS A total of 96 7-day-old Sprague Dawley rats were randomly divided into three groups: sham group, HIE group, and IL-35 group. After left common carotid occlusion and 2.5 h hypoxia (HI injury), IL-35 (20 µg/g) was intraperitoneally (i.p.) administered to the pups. In vitro, BV2 cells were treated with or without IL-35 6 h before oxygen-glucose deprivation (OGD) insult and the microglia culture medium (MCM) was co-cultured with b.End3 cerebral vascular endothelial cells. Microglial polarization and activation were assessed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). Endothelial cell dysfunction was measured by cell counting kit-8 and Western blot assays. RESULTS Administration of IL-35 alleviated neurological deficiencies, decreased brain edema, ameliorated cerebral infarction, and limited M1 microglial polarization in HI-injured pups. Meanwhile, IL-35 decreased pro-inflammatory cytokines, tumor necrosis factor-α, IL-1β, and reactive oxygen species generation in OGD-induced bEnd.3 cells. Furthermore, IL-35 treatment could reverse the vascular endothelial cell injury induced by microglial polarization. Finally, IL-35 markedly suppressed the activation of hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. CONCLUSIONS IL-35 relieved hypoxic-ischemic-induced brain injury and inhibited the inflammatory response by suppressing microglial polarization and activation. These results suggest that IL-35 might have potential applications for the treatment of HIE.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Binhai County People's Hospital, Bianhai, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Shuang Qian
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Yu
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Lei Qian
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Yang CC, Hsiao LD, Wang CY, Lin WN, Shih YF, Chen YW, Cho RL, Tseng HC, Yang CM. HO-1 Upregulation by Kaempferol via ROS-Dependent Nrf2-ARE Cascade Attenuates Lipopolysaccharide-Mediated Intercellular Cell Adhesion Molecule-1 Expression in Human Pulmonary Alveolar Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11040782. [PMID: 35453467 PMCID: PMC9028455 DOI: 10.3390/antiox11040782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lung inflammation is a pivotal event in the pathogenesis of acute lung injury. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme that could be induced by kaempferol (KPR) and exerts anti-inflammatory effects. However, the molecular mechanisms of KPR-mediated HO-1 expression and its effects on inflammatory responses remain unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). This study aimed to verify the relationship between HO-1 expression and KPR treatment in both in vitro and in vivo models. HO-1 expression was determined by real time-PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated by using pharmacological inhibitors or specific siRNAs. Chromatin immunoprecipitation (ChIP) assay was performed to investigate the interaction between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of HO-1 promoter. The effect of KPR on monocytes (THP-1) binding to HPAEpiCs challenged with lipopolysaccharides (LPS) was determined by adhesion assay. We found that KPR-induced HO-1 level attenuated the LPS-induced intercellular cell adhesion protein 1 (ICAM-1) expression in HPAEpiCs. KPR-induced HO-1 mRNA and protein expression also attenuated ICAM-1 expression in mice. Tin protoporphyrin (SnPP)IX reversed the inhibitory effects of KPR in HPAEpiCs. In addition, in HPAEpiCs, KPR-induced HO-1 expression was abolished by both pretreating with the inhibitor of NADPH oxidase (NOX, apocynin (APO)), reactive oxygen species (ROS) (N-acetyl-L-cysteine (NAC)), Src (Src kinase inhibitor II (Srci II)), Pyk2 (PF431396), protein kinase C (PKC)α (Gö6976), p38 mitogen-activated protein kinase (MAPK) inhibitor (p38i) VIII, or c-Jun N-terminal kinases (JNK)1/2 (SP600125) and transfection with their respective siRNAs. The transcription of the homx1 gene was enhanced by Nrf2 activated by JNK1/2 and p38α MAPK. The binding activity between Nrf2 and HO-1 promoter was attenuated by APO, NAC, Srci II, PF431396, or Gö6983. KPR-mediated NOX/ROS/c-Src/Pyk2/PKCα/p38α MAPK and JNK1/2 activate Nrf2 to bind with ARE on the HO-1 promoter and induce HO-1 expression, which further suppresses the LPS-mediated inflammation in HPAEpiCs. Thus, KPR exerts a potential strategy to protect against pulmonary inflammation via upregulation of the HO-1.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chen-Yu Wang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Yi-Wen Chen
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Rou-Ling Cho
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-220-53366 (ext. 2229)
| |
Collapse
|
15
|
Huang L, Gong L, Huo X, Lei L, Zhang Q, Hu Y, Kuang Q, Gui Y, Dai Y, Gu Y, Deng Y, Wang D, Guo D. N-acetyldopamine dimer inhibits neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 pathways. Acta Biochim Biophys Sin (Shanghai) 2022; 55:23-33. [PMID: 36017888 PMCID: PMC10157536 DOI: 10.3724/abbs.2022116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leiqiang Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueyan Huo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lirong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunjie Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qixuan Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yifei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire RG426EY, UK
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
16
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
17
|
Chang CY, Wu CC, Wang JD, Li JR, Wang YY, Lin SY, Chen WY, Liao SL, Chen CJ. DHA attenuated Japanese Encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat Neuron/glia. Brain Behav Immun 2021; 93:194-205. [PMID: 33486004 DOI: 10.1016/j.bbi.2021.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Japanese Encephalitis Virus (JEV) is a neurotropic virus and its Central Nervous System (CNS) infection causes fatal encephalitis with high mortality and morbidity. Microglial activation and consequences of bystander damage appear to be the dominant mechanisms for Japanese Encephalitis and complications. Docosahexaenoic acid (DHA), an essential fatty acid and a major component of brain cell membranes, possesses additional biological activities, including anti-apoptosis, anti-inflammation, and neuroprotection. Through this study, we have provided experimental evidence showing the anti-inflammatory, neuroprotective, and anti-viral effects of DHA against JEV infection in rat Neuron/glia cultures. By Neuron/glia and Neuron cultures, DHA protected against neuronal cell death upon JEV infection and reduced JEV amplification. In Neuron/glia and Microglia cultures, the effects of DHA were accompanied by the downregulation of pro-inflammatory M1 microglia, upregulation of anti-inflammatory M2 microglia, and reduction of neurotoxic cytokine expression, which could be attributed to its interference in the Toll-Like Receptor (TLR), Mitogen-Activated Protein Kinase (MAPK), and Interferon/Janus Kinase/Signal Transducers and Activators of Transcription (Stat), along with the NF-κB, AP-1, and c-AMP Response Element Binding Protein (CREB) controlled transcriptional programs. Parallel anti-inflammatory effects against JEV infection were duplicated by G Protein-Coupled Receptor (GPR120) and GPR40 agonists and a reversal of DHA-mediated anti-inflammation was seen in the presence of GPR120 antagonist, while the GPR40 was less effectiveness. Since increasing evidence indicates its neuroprotection against neurodegenerative diseases, DHA is a proposed anti-inflammatory and neuroprotective candidate for the treatment of neuroinflammation-accompanied viral pathogenesis such as Japanese Encephalitis.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Financial Engineering, Providence University, Taichung City, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Nursing, HungKuang University, Taichung City, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan; Institute of Clinical Medicine, National Yang Ming University, Taipei City, Taiwan
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City, Taiwan; Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung-Hsing University, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung-Hsing University, Taichung City, Taiwan.
| |
Collapse
|
18
|
Silva Dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front Pharmacol 2021; 11:565700. [PMID: 33519431 PMCID: PMC7838523 DOI: 10.3389/fphar.2020.565700] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
Kaempferol (KPF) is a flavonoid antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary KPF in reducing the risk of chronic diseases, especially cancer. Nevertheless, little is known about the cellular and molecular mechanisms underlying KPF actions in the central nervous system (CNS). Also, the relationship between KPF structural properties and their glycosylation and the biological benefits of these compounds is unclear. The aim of this study was to review studies published in the PubMed database during the last 10 years (2010–2020), considering only experimental articles that addressed the isolated cell effect of KPF (C15H10O6) and its derivatives in neurological diseases such as Alzheimer's disease, Parkinson, ischemia stroke, epilepsy, major depressive disorder, anxiety disorders, neuropathic pain, and glioblastoma. 27 publications were included in the present review, which presented recent advances in the effects of KPF on the nervous system. KPF has presented a multipotential neuroprotective action through the modulation of several proinflammatory signaling pathways such as the nuclear factor kappa B (NF-kB), p38 mitogen-activated protein kinases (p38MAPK), serine/threonine kinase (AKT), and β-catenin cascade. In addition, there are different biological benefits and pharmacokinetic behaviors between KPF aglycone and its glycosides. The antioxidant nature of KPF was observed in all neurological diseases through MMP2, MMP3, and MMP9 metalloproteinase inhibition; reactive oxygen species generation inhibition; endogenous antioxidants modulation as superoxide dismutase and glutathione; formation and aggregation of beta-amyloid (β-A) protein inhibition; and brain protective action through the modulation of brain-derived neurotrophic factor (BDNF), important for neural plasticity. In conclusion, we suggest that KPF and some glycosylated derivatives (KPF-3-O-rhamnoside, KPF-3-O-glucoside, KPF-7-O-rutinoside, and KPF-4′-methyl ether) have a multipotential neuroprotective action in CNS diseases, and further studies may make the KPF effect mechanisms in those pathologies clearer. Future in vivo studies are needed to clarify the mechanism of KPF action in CNS diseases as well as the impact of glycosylation on KPF bioactivity.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - João Pedro Gonçalves Cirino
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| |
Collapse
|
19
|
Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis. Antioxidants (Basel) 2020; 9:E1105. [PMID: 33182802 PMCID: PMC7697279 DOI: 10.3390/antiox9111105] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated the ongoing coronavirus disease-2019 (COVID-19) pandemic, still with an uncertain outcome. Besides pneumonia and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), other features became evident in the context of COVID-19. These includes endothelial and coagulation dysfunction with disseminated intravascular coagulation (DIC), and multiple organ dysfunction syndrome (MODS), along with the occurrence of neurological alterations. The multi-system nature of such viral infection is a witness to the exploitation and impairment of ubiquitous subcellular and metabolic pathways for the sake of its life-cycle, ranging from host cell invasion, replication, transmission, up to a cytopathic effect and overt systemic inflammation. In this frame, alterations in cell-clearing systems of the host are emerging as a hallmark in the pathogenesis of various respiratory viruses, including SARS-CoV-2. Indeed, exploitation of the autophagy and proteasome pathways might contribute not only to the replication of the virus at the site of infection but also to the spreading of either mature virions or inflammatory mediators at both cellular and multisystem levels. In this frame, besides a pharmacological therapy, many researchers are wondering if some non-pharmacological substances might counteract or positively modulate the course of the infection. The pharmacological properties of natural compounds have gained increasing attention in the field of alternative and adjunct therapeutic approaches to several diseases. In particular, several naturally-occurring herbal compounds (mostly polyphenols) are reported to produce widespread antiviral, anti-inflammatory, and anti-oxidant effects while acting as autophagy and (immuno)-proteasome modulators. This article attempts to bridge the perturbation of autophagy and proteasome pathways with the potentially beneficial effects of specific phytochemicals and flavonoids in viral infections, with a focus on the multisystem SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Carla Letizia Busceti
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Maurizio Forte
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Sebastiano Sciarretta
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Giacomo Frati
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| |
Collapse
|
20
|
Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm Res 2020; 69:1201-1213. [PMID: 32944799 DOI: 10.1007/s00011-020-01402-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Microglia stimulated by oxygen glucose deprivation (OGD) were treated with quercetin to investigate the effect on oxidative stress and the inflammatory response and to explore whether toll-like receptor 4 (TLR4) signaling was involved. In addition, the effect of quercetin on the neurological functions of neonatal mice with hypoxic-ischemic brain injury (HIBI) was examined. MATERIALS AND SUBJECTS Mouse BV2 microglial cells and postnatal day 7 neonatal mice were used. TREATMENT A predetermined concentration of quercetin was used in cell experiments. Quercetin was injected i.p. (50 mg/kg) at three time points after HI insult: 0, 24, and 48 h. METHODS Cell viability assay, Western blotting, qRT-RCR, ELISA, HIBI model construction and behavioral tests. RESULTS This study first showed that quercetin protected BV2 cells from OGD-induced damage and reversed the changes in microglial oxidative stress-related molecules. Second, quercetin inhibited OGD-induced expression of inflammatory factors in BV2 cells and suppressed TLR4/MyD88/NF-κB signaling. Finally, quercetin was disclosed to be effective in mitigating cerebral infarct volume and cognitive and motor function deficits in HIBI mice. CONCLUSION These results suggest that the neuroprotective effect of quercetin in HIBI mice is partially due to the inhibition of oxidative stress and TLR4-mediated inflammatory responses in activated microglia.
Collapse
|
21
|
Liu Z, Li Y, Yu L, Chang Y, Yu J. Penehyclidine hydrochloride inhibits renal ischemia/reperfusion-induced acute lung injury by activating the Nrf2 pathway. Aging (Albany NY) 2020; 12:13400-13421. [PMID: 32652517 PMCID: PMC7377887 DOI: 10.18632/aging.103444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
The nuclear factor (NF)-κB and NOD-like receptor protein 3 (NLRP3) pathways promote inflammatory signaling that injures the kidneys, whereas the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway promotes anti-inflammatory signaling that inhibits oxidative damage. Penehyclidine hydrochloride (PHC) inhibits NF-κB and activates Nrf2 signaling. We investigated whether PHC induces communication between the Nrf2 and NF-κB/NLRP3 pathways, thereby protecting against renal ischemia/reperfusion (rI/R)-induced lung inflammation. Rat alveolar macrophages (NR8383 cells) were stimulated for 24 h with PHC with or without brusatol (a Nrf2 antagonist), after which they were treated for 4 h with tert-butyl hydroperoxide (10 mM). PHC Nrf2-dependently alleviated tert-butyl hydroperoxide-induced reactive oxygen species production in alveolar macrophages. Additionally, wild-type and Nrf2-/- rats were each divided into four groups: (1) sham, (2) PHC (1 mg/kg), (3) rI/R and (4) rI/R + PHC (1 mg/kg). PHC markedly induced the Nrf2 and adenosine monophosphate-activated protein kinase pathways and suppressed rI/R-induced NF-κB and NLRP3 activation in the lungs. Nrf2 deficiency diminished the ability of PHC to ameliorate rI/R-induced histopathological alterations and reactive oxygen species release in the lungs; however, PHC inhibited NLRP3 signaling Nrf2-dependently, while it inhibited NF-κB signaling Nrf2-independently. Our findings demonstrate the beneficial effects of PHC on rI/R-induced lung inflammation.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yulin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Kuan YH, Liao SL, Chen CJ. Effects of β-Adrenergic Blockade on Metabolic and Inflammatory Responses in a Rat Model of Ischemic Stroke. Cells 2020; 9:1373. [PMID: 32492962 PMCID: PMC7349353 DOI: 10.3390/cells9061373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke provokes an inflammatory response concurrent with both sympathetic nervous system activation and hyperglycemia. Currently, their crosstalk and consequences in stroke outcomes are of clinical attraction. We have provided experimental evidence showing the suppressive effects of the nonselective β-adrenoreceptor antagonist propranolol on hyperglycemia, inflammation, and brain injury in a rat model experiencing cerebral ischemia. Pretreatment with propranolol protected against postischemic brain infarction, edema, and apoptosis. The neuroprotection caused by propranolol was accompanied by a reduction in fasting glucose, fasting insulin, glucose tolerance impairment, plasma C-reactive protein, plasma free fatty acids, plasma corticosterone, brain oxidative stress, and brain inflammation. Pretreatment with insulin alleviated-while glucose augmented-postischemic brain injury and inflammation. Additionally, the impairment of insulin signaling in the gastrocnemius muscles was noted in rats with cerebral ischemia, with propranolol improving the impairment by reducing oxidative stress and tumor necrosis factor-α signaling. The anti-inflammatory effects of propranolol were further demonstrated in isoproterenol-stimulated BV2 and RAW264.7 cells through its ability to decrease cytokine production. Despite their potential benefits, stroke-associated hyperglycemia and inflammation are commonly linked with harmful consequences. Our findings provide new insight into the anti-inflammatory, neuroprotective, and hypoglycemic mechanisms of propranolol in combating neurodegenerative diseases, such as stroke.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
23
|
Cheng WN, Jeong CH, Kim DH, Han SG. Short communication: Effects of moringa extract on adhesion and invasion of Escherichia coli O55 in bovine mammary epithelial cells. J Dairy Sci 2020; 103:7416-7424. [PMID: 32475678 DOI: 10.3168/jds.2019-17774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
The objective of this study was to evaluate the antibacterial activities of extract derived from moringa leaves. In particular, the effect of moringa extract (Mor) on adhesion and invasion of Escherichia coli O55, Enterococcus faecalis, Staphylococcus simulans, and Serratia liquefaciens was evaluated in bovine mammary epithelial cells (MAC-T). Broth microdilution method, minimum inhibitory concentration and minimum bactericidal concentration assays, adhesion and invasion assays, and real-time PCR were performed. The minimum inhibitory concentration and minimum bactericidal concentration of Mor ranged from 12.5 to 50 mg/mL on 18 out of 27 tested isolates. Treatment of E. coli O55 with Mor (100 and 200 μg/mL) inhibited the adhesion and invasion on MAC-T cells via downregulation of adhesion factors (i.e., papC, f17c-A, and eaeA). Also, when MAC-T cells were pretreated with Mor (200 μg/mL, 12 h) and incubated with E. coli O55, Enterococcus faecalis, Staphylococcus simulans, or Serratia liquefaciens, both E. coli O55 and Enterococcus faecalis showed a significant decrease in adhesion and invasion. Staphylococcus simulans exhibited decreased adhesion and increased invasion. Serratia liquefaciens showed increased adhesion and decreased invasion. In addition, Mor increased mRNA expression of antioxidant enzymes (e.g., heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase 1) in MAC-T cells. In conclusion, 12.5 to 50 mg/mL of Mor exhibited antibacterial activity against 18 out of 27 tested isolates. Also, pretreatment of 200 μg/mL of Mor to MAC-T cells modulated adhesion and invasion of E. coli O55 and other mastitis-associated pathogens. Furthermore, Mor increased antioxidant capacities in MAC-T cells, but further in vivo studies are needed.
Collapse
Affiliation(s)
- W N Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - C H Jeong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - D H Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - S G Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Wu CC, Chang CY, Shih KC, Hung CJ, Wang YY, Lin SY, Chen WY, Kuan YH, Liao SL, Wang WY, Chen CJ. β-Funaltrexamine Displayed Anti-inflammatory and Neuroprotective Effects in Cells and Rat Model of Stroke. Int J Mol Sci 2020; 21:3866. [PMID: 32485857 PMCID: PMC7313048 DOI: 10.3390/ijms21113866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic treatment involving opioids exacerbates both the risk and severity of ischemic stroke. We have provided experimental evidence showing the anti-inflammatory and neuroprotective effects of the μ opioid receptor antagonist β-funaltrexamine for neurodegenerative diseases in rat neuron/glia cultures and a rat model of cerebral Ischemia/Reperfusion (I/R) injury. Independent of in vitro Lipopolysaccharide (LPS)/interferon (IFN-γ)-stimulated neuron/glia cultures and in vivo cerebral I/R injury in Sprague-Dawley rats, β-funaltrexamine downregulated neuroinflammation and ameliorated neuronal degeneration. Alterations in microglia polarization favoring the classical activation state occurred in LPS/IFN-γ-stimulated neuron/glia cultures and cerebral I/R-injured cortical brains. β-funaltrexamine shifted the polarization of microglia towards the anti-inflammatory phenotype, as evidenced by decreased nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2, along with increased CD163 and arginase 1. Mechanistic studies showed that the suppression of microglia pro-inflammatory polarization by β-funaltrexamine was accompanied by the reduction of NF-κB, AP-1, cyclic AMP response element-binding protein, along with signal transducers and activators of transcription transcriptional activities and associated upstream activators. The effects of β-funaltrexamine are closely linked with its action on neuroinflammation by switching microglia polarization from pro-inflammatory towards anti-inflammatory phenotypes. These findings provide new insights into the anti-inflammatory and neuroprotective mechanisms of β-funaltrexamine in combating neurodegenerative diseases, such as stroke.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Kuei-Chung Shih
- Department of Computer Science and Information Management, Providence University, Taichung City 433, Taiwan;
| | - Chih-Jen Hung
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
25
|
Methyl 3,4,5-trimethoxycinnamate suppresses inflammation in RAW264.7 macrophages and blocks macrophage-adipocyte interaction. Inflammopharmacology 2020; 28:1315-1326. [PMID: 32418005 PMCID: PMC7524821 DOI: 10.1007/s10787-020-00720-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/02/2020] [Indexed: 12/22/2022]
Abstract
Methyl 3,4,5-trimethoxycinnamate (MTC) is a bioactive natural phenylpropanoid. We evaluated anti-inflammatory effects of synthetic MTC in RAW264.7 macrophages and RAW264.7–3T3-L1 adipocytes co-culture. Levels of cytokines and chemokines, as well as NO and PGE2 in cell supernatants were analysed using ELISAs, Griess assay and enzyme immunoassays, respectively. In-cell cytoblot was used to assess levels of proteins; while DNA binding and reporter gene assays were used to measure transcription factor DNA binding and transcriptional activities, respectively. Glucose uptake in adipocytes was evaluated with 2‐deoxy‐2‐[(7‐nitro‐2, 1, 3‐benzoxadiazol‐4‐yl) amino]‐d‐glucose uptake. MTC (5–20 µM) suppressed LPS + IFNγ-induced release of TNFα, IL-6 and IL-1β, as well as NO/iNOS and PGE2/COX-2 levels in RAW264.7 cells. Furthermore, there was a reduction in phospho-IκB and phospho-p65 proteins, accompanied by a reduction in total IκB in RAW264.7 cells. Further studies showed that MTC also produced a reduction in NF-κB DNA binding and luciferase activity. Treatment of RAW264.7 cells with MTC (5–20 µM) resulted in enhanced DNA binding of Nrf2 and an increase in ARE-luciferase activity. In a macrophage–adipocyte co-culture, the compound reduced the release of TNFα, IL-6, IL-1β, MCP-1 and RANTES, while enhancing glucose uptake and activation of AMPKα. Our results suggest that MTC produced anti-inflammatory and antioxidant activities in macrophages. MTC also prevented inflammation in macrophage–adipocyte co-culture. The effect of MTC on glucose uptake in adipocytes is proposed to be linked to activation of AMPK.
Collapse
|