1
|
Zhang H, Jiang J, Chen X, Zhu F, Fu F, Chen A, Fu L, Mao D. Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats. Cancer Biol Ther 2024; 25:2432098. [PMID: 39587385 PMCID: PMC11601056 DOI: 10.1080/15384047.2024.2432098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Jingwen Jiang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Xuewu Chen
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fengting Zhu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fangfang Fu
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Aiying Chen
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Lei Fu
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Dan Mao
- Department of Integrated Traditional Chinese and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zhang Z, He Y, Liu H, Liu Y, Wu T, Li R, Wang Y, Ma W. NLRP3 regulates ferroptosis via the JAK2/STAT3 pathway in asthma inflammation: Insights from in vivo and in vitro studies. Int Immunopharmacol 2024; 143:113416. [PMID: 39426227 DOI: 10.1016/j.intimp.2024.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ferroptosis, an iron-dependent form of cell death, plays a pivotal role in the pathologic progression of asthma. Electroacupuncture (EA) has demonstrated considerable efficacy in mitigating asthma airway inflammation, although its underlying mechanisms remain partially elucidated. METHODS We investigated the regulatory effect of NLRP3 on ferroptosis using a lipopolysaccharide (LPS)-induced inflammation model in BEAS-2B cells, where NLRP3 expression was modulated with si-RNA and overexpression plasmids. The levels of inflammatory cytokines TNF-α, IL-1β, and IL-6 were quantified. We also assessed NLRP3 and JAK2/STAT3 pathway-related proteins, and evaluated lipid peroxidation, mitochondrial membrane potential (ΔΨm), and antioxidant system functionality. In vivo, we examined the impact of EA on ferroptosis and airway inflammation by modulating NLRP3 activation. Asthma inflammation severity was evaluated using H&E, Masson, and PAS staining, alongside ELISA. NLRP3 and JAK2/STAT3 pathway-related proteins, as well as ferroptosis indicators, were also analyzed. The mechanism by which NLRP3 activates ferroptosis was investigated through in vitro assays. RESULTS LPS exposure resulted in increased intracellular inflammatory cytokines, and activation of the NLRP3 and JAK2/STAT3 pathways, leading to enhanced lipid peroxidation, decreased ΔΨm, and disruption of antioxidant system balance, ultimately inducing ferroptosis. Si-NLRP3 countered the effects of LPS, whereas oe-NLRP3 exacerbated symptoms. In vivo studies revealed that EA reduced airway inflammation, inhibited NLRP3 activation, and decreased phosphorylation of JAK2/STAT3, effectively lowering ferroptosis-related indicators. Utilizing JAK2/STAT3 activators and inhibitors, we confirmed that NLRP3 mediates ferroptosis via the JAK2/STAT3 pathway. CONCLUSIONS EA alleviates HDM-induced asthma, primarily through the inhibition of NLRP3 activation, which modulates the JAK2/STAT3 pathway and mediates ferroptosis.
Collapse
Affiliation(s)
- Zhengze Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewen He
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hao Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yurui Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Tong Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Ruogen Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
3
|
Xiao X, Yang J, Bai Q, Wang Z, Chen Y, Si Y, Xu Y, Li Z, Bu H. Involvement of spinal NADPH oxidase 4 and endoplasmic reticulum stress in morphine-tolerant rats. J Neurochem 2024; 168:3745-3759. [PMID: 38069511 DOI: 10.1111/jnc.16026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 10/25/2024]
Abstract
Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.
Collapse
Affiliation(s)
- Xuyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhitao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilian Bu
- Department of Pain Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Chen LP, Gui XD, Tian WD, Kan HM, Huang JZ, Ji FH. Botulinum toxin type A-targeted SPP1 contributes to neuropathic pain by the activation of microglia pyroptosis. World J Psychiatry 2024; 14:1254-1266. [PMID: 39165552 PMCID: PMC11331382 DOI: 10.5498/wjp.v14.i8.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is the primary symptom of various neurological conditions. Patients with NP often experience mood disorders, particularly depression and anxiety, that can severely affect their normal lives. Microglial cells are associated with NP. Excessive inflammatory responses, especially the secretion of large amounts of pro-inflammatory cytokines, ultimately lead to neuroinflammation. Microglial pyroptosis is a newly discovered form of inflammatory cell death associated with immune responses and inflammation-related diseases of the central nervous system. AIM To investigate the effects of botulinum toxin type A (BTX-A) on microglial pyroptosis in terms of NP and associated mechanisms. METHODS Two models, an in vitro lipopolysaccharide (LPS)-stimulated microglial cell model and a selective nerve injury model using BTX-A and SPP1 knockdown treatments, were used. Key proteins in the pyroptosis signaling pathway, NLRP3-GSDMD, were assessed using western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence. Inflammatory factors [interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α] were assessed using enzyme-linked immunosorbent assay. We also evaluated microglial cell proliferation and apoptosis. Furthermore, we measured pain sensation by assessing the delayed hind paw withdrawal latency using thermal stimulation. RESULTS The expression levels of ACS and GSDMD-N and the mRNA expression of TNF-α, IL-6, and IL-1β were enhanced in LPS-treated microglia. Furthermore, SPP1 expression was also induced in LPS-treated microglia. Notably, BTX-A inhibited SPP1 mRNA and protein expression in the LPS-treated microglia. Additionally, depletion of SPP1 or BTX-A inhibited cell viability and induced apoptosis in LPS-treated microglia, whereas co-treatment with BTX-A enhanced the effect of SPP1 short hairpin (sh)RNA in LPS-treated microglia. Finally, SPP1 depletion or BTX-A treatment reduced the levels of GSDMD-N, NLPRP3, and ASC and suppressed the production of inflammatory factors. CONCLUSION Notably, BTX-A therapy and SPP1 shRNA enhance microglial proliferation and apoptosis and inhibit microglial death. It improves pain perception and inhibits microglial activation in rats with selective nerve pain.
Collapse
Affiliation(s)
- Li-Ping Chen
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xiao-Die Gui
- Department of Pain, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wen-Di Tian
- Department of Pain, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Hou-Ming Kan
- Faculty of Medicine, Macao University of Science and Technology, Macau 999078, China
| | - Jin-Zhao Huang
- Department of Pain, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
5
|
Wang D, Liu X, Hong W, Xiao T, Xu Y, Fang X, Tang H, Zheng Q, Meng X. Muscone abrogates breast cancer progression through tumor angiogenic suppression via VEGF/PI3K/Akt/MAPK signaling pathways. Cancer Cell Int 2024; 24:214. [PMID: 38898449 PMCID: PMC11188526 DOI: 10.1186/s12935-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Angiogenesis strongly reflects poor breast cancer outcome and an important contributor to breast cancer (BC) metastasis; therefore, anti-angiogenic intervention is a potential tool for cancer treatment. However, currently used antibodies against vascular endothelial growth factor A (VEGFA) or inhibitors that target the VEGFA receptor are not effective due to weak penetration and low efficiency. Herein, we assessed the anti-BC angiogenic role of muscone, a natural bioactive musk constituent, and explored possible anti-cancer mechanisms of this compound. METHODS CCK-8, EdU, scratch and Transwell assessments were employed to detect the muscone-mediated regulation of breast cancer (BC) and human umbilical vein endothelial cells (HUVECs) proliferation and migration. Tube formation, matrigel plug assay and zebrafish assay were employed for assessment of regulation of tumor angiogenesis by muscone. In vivo xenograft mouse model was constructed to compare microvessel density (MVD), vascular leakage, vascular maturation and function in muscone-treated or untreated mice. RNA sequencing was performed for gene screening, and Western blot verified the effect of the VEGFA-VEGFR2 pathway on BC angiogenic inhibition by muscone. RESULTS Based on our findings, muscone suppressed BC progression via tumor angiogenic inhibition in cellular and animal models. Functionally, muscone inhibited BC cell proliferation and migration as well as tumor cell-conditioned medium-based endothelial cell proliferation and migration. Muscone exhibited a strong suppressive influence on tumor vasculature in cellular and animal models. It abrogated tumor cell growth in a xenograft BC mouse model and minimized tumor microvessel density and hypoxia, and increased vascular wall cell coverage and perfusion. Regarding the mechanism of action, we found that muscone suppressed phosphorylation of members of the VEGF/PI3K/Akt/MAPK axis, and it worked synergistically with a VEGFR2 inhibitor, an Akt inhibitor, and a MAPK inhibitor to further inhibit tube formation. CONCLUSION Overall, our results demonstrate that muscone may proficiently suppress tumor angiogenesis via modulation of the VEGF/PI3K/Akt/MAPK axis, facilitating its candidacy as a natural small molecule drug for BC treatment.
Collapse
Affiliation(s)
- Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhen Liu
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Weimin Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Tianzheng Xiao
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Yadan Xu
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiang Fang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
- College of Clinical Medicine, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongchao Tang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Qinghui Zheng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| | - Xuli Meng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Cai P, Wang J, Xu J, Zhang M, Yin X, He S, Zhuang J. V-set and immunoglobulin domain containing 4 inhibits oxidative stress, mitochondrial dysfunction, and inflammation to attenuate Parkinson's disease progression by activating the JAK2/STAT3 pathway. J Neuroimmunol 2024; 391:578345. [PMID: 38759519 DOI: 10.1016/j.jneuroim.2024.578345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE V-set and immunoglobulin domain containing 4 (VSIG4) inhibits neurological dysfunction, microglial M1 polarization, and inflammation to participate in the progression of neurological disorders, but evidence regarding Parkinson's disease (PD) is scarce. The present study intended to investigate the engagement of VSIG4 in PD progression, and the potential mechanism. METHODS BV-2 cells were treated with 1-Methyl-4-phenylpyridinium (MPP+) to establish PD model. MPP+ treated BV-2 cells were infected with VSIG4 overexpression adenovirus-associated virus (AAV) (oeVSIG4) and negative control AAV (oeNC), and AZD1480 (JAK2 inhibitor) was added to these cells. RESULTS MPP+ reduced VSIG4 mRNA (P < 0.05) and protein (P < 0.05) in BV-2 cells. Interestingly, VSIG4 reduced malondialdehyde (P < 0.01), reactive oxygen species (P < 0.01), NOD-like receptor family pyrin domain containing 3 (P < 0.05), cleaved-caspase1 (P < 0.05), tumor necrosis factor-α (P < 0.05), and interleukin-1β (P < 0.05), but increased glutathione (P < 0.05), mitochondrial membrane potential (P < 0.05), phosphorylation (p)-JAK2 (P < 0.05), and p-STAT3 (P < 0.01) in MPP+ treated BV-2 cells, which indicated that VSIG4 inhibited oxidative stress, mitochondrial dysfunction, and inflammation, as well as activated the JAK2/STAT3 pathway in PD model. Moreover, AZD1480 inhibited the JAK2/STAT3 pathway and aggravated oxidative stress, mitochondrial dysfunction, and inflammation in PD model (all P < 0.05). Importantly, AZD1480 attenuated the influence of VSIG4 on oxidative stress, mitochondrial dysfunction, inflammation, and the JAK2/STAT3 pathway in PD model (all P < 0.05). CONCLUSION VSIG4 suppresses oxidative stress, mitochondrial dysfunction, and inflammation by activating the JAK2/STAT3 pathway, which may be helpful in attenuating PD progression.
Collapse
Affiliation(s)
- Pingping Cai
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China
| | - Junmei Wang
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Jiangtao Xu
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China
| | - Min Zhang
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China
| | - Xinxin Yin
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China
| | - Shengquan He
- Department of Neurology, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361016, Fujian, China
| | - Jingcong Zhuang
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China.
| |
Collapse
|
7
|
Guo W, Zhang J, Feng Y. Treatment of neuropathic pain by traditional Chinese medicine: An updated review on their effect and putative mechanisms of action. Phytother Res 2024; 38:2962-2992. [PMID: 38600617 DOI: 10.1002/ptr.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuropathic pain (NP) is a common chronic pain with heterogeneous clinical features, and consequent lowering of quality of life. Currently, although conventional chemical drugs can effectively manage NP symptoms in the short term, their long-term efficacy is limited, and they come with significant side effects. In this regard, traditional Chinese medicine (TCM) provides a promising avenue for treating NP. Numerous pharmacological and clinical studies have substantiated the effectiveness of TCM with multiple targets and mechanisms. We aimed to outline the characteristics of TCM, including compound prescriptions, single Chinese herbs, active ingredients, and TCM physical therapy, for NP treatment and discussed their efficacy by analyzing the pathogenesis of NP. Various databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang database, were searched. We focused on recent research progress in NP treatment by TCM. Finally, we proposed the future challenges and emerging trends in the treatment of NP. TCM demonstrates significant clinical efficacy in NP treatment, employing multi-mechanisms. Drawing from the theory of syndrome differentiation, four types of dialectical treatments for NP by compound TCM prescriptions were introduced: promoting blood circulation and removing blood stasis; promoting blood circulation and promote Qi flow; warming Yang and benefiting Qi; soothing the liver and regulating Qi. Meanwhile, 33 single Chinese herbs and 25 active ingredients were included. In addition, TCM physical therapy (e.g., acupuncture, massage, acupoint injection, and fumigation) also showed good efficacy in NP treatment. TCM, particularly through the use of compound prescriptions and acupuncture, holds bright prospects in treating NP owing to its diverse holistic effects. Nonetheless, the multi-targets of TCM may result in possible disadvantages to NP treatment, and the pharmacological mechanisms of TCM need further evaluation. Here, we provide an overview of NP treatment via TCM, based on the pathogenesis and the potential therapeutic mechanisms, thus providing a reference for further studies.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Wu W, Yang D, Sui D, Zhu M, Luo G, Yang Z, Wang Y, Luo H, Ling L, Zhang Z, Wu Y, Feng G, Li H. Efficacy and safety of Pien Tze Huang capsules in patients with herpes zoster: A multicenter, randomized, double-blinded, and placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155453. [PMID: 38452692 DOI: 10.1016/j.phymed.2024.155453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Herpes zoster (HZ) is a common medical condition accompanied by several distressing symptoms, including acute pain. Pien Tze Huang (PZH) is a well-known traditional Chinese medicine (TCM) with numerous pharmacological effects, including antiviral properties, neuroprotection, and immunity regulation. PURPOSE To investigate the efficacy and safety of PZH capsules in patients with HZ. STUDY DESIGN A multicenter, double-blinded, randomized, and placebo-controlled trial from 8 hospitals in 5 cities of China. METHODS Eligible participants were randomly assigned to the PZH capsule and placebo group at a 1:1 ratio. Treatment was conducted for 14 days with a window period of no more than 2 days. For the first 7 days, participants received antiviral drugs combined with PZH capsules (0.6 g/time, 3 times a day) or placebos. For the remaining 7 days, they were only treated with PZH capsules (0.6 g/time, 3 times a day) or placebos. RESULTS We included 222 patients in the full analysis set (FAS), and 187 patients in the per protocol set (PPS). The change of numeric rating scale pain scores from baseline to the seventh day (±1 day) after treatment in the PZH capsule group was statistically superior to the placebo group (FAS: 2.33 vs. 1.71, 97.5%CI: 0.03 ∼ 1.19; PPS: 2.29 vs. 1.51, 97.5%CI: 0.18 ∼ 1.38). In the PPS, there was a significant difference in the time (days) of pain relief between the placebo group and the PZH capsule group (Mean (SD): 5.71 (3.76) vs. 4.69 (3.57), p = 0.046). On the seventh day (±1 day) after treatment, the level of CD8+ cells in the PZH capsule group were higher than those of the placebo group (FAS: Mean (SD): 24.08 (6.81) vs. 21.93 (8.19), p = 0.007; PPS: Mean (SD): 24.26 (6.93) vs. 22.15 (8.51), p = 0.012). The level of cytotoxic lymphocyte cells found similar results on the seventh day (±1 day) (FAS: Mean (SD): 12.17 (4.65) vs. 10.55 (4.15), p = 0.018; PPS: Mean (SD): 12.25 (4.65) vs. 10.11 (3.93), p = 0.002). No serious adverse events were noted and PZH capsules were well tolerated. CONCLUSION PZH capsules confer therapeutic effects on HZ with the TCM symptom of stagnated heat of liver channel by substantially reducing the pain intensity, shortening the time of pain relief as well as regulating the immune function. On the basis of the efficacy and safety profiles, PZH capsules may be a promising complementary therapy for the treatment of HZ.
Collapse
Affiliation(s)
- Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, PR China
| | - Dingquan Yang
- Department of Dermatology, CHINA-JAPAN Friendship Hospital, Beijing, PR China
| | - Daoshun Sui
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China
| | - Minghua Zhu
- Department of Dermatology, The Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, PR China
| | - Guangpu Luo
- Department of Dermatology, The Dermatology Hospital of Southern Medical University, Guangzhou, PR China
| | - Zhonghui Yang
- Department of Dermatology, The Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, PR China
| | - Yongfeng Wang
- Department of Dermatology, The Affiliated Hospital of Shanxi University of Chinese Medicine, Xianyang, PR China
| | - Hong Luo
- Department of Dermatology, The First Hospital of Changsha, Changsha, PR China; Department of Dermatology, The Third People's Hospital of Shenzhen, Shenzhen, PR China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanmei Wu
- Guangzhou Evidence-Based Medicine Tech Co. Ltd, Guangzhou, PR China
| | - Guoming Feng
- Guangzhou Evidence-Based Medicine Tech Co. Ltd, Guangzhou, PR China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, PR China.
| |
Collapse
|
9
|
Dai XY, Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Liu DQ, Zhou YQ, Mei W. Targeting the JAK2/STAT3 signaling pathway for chronic pain. Aging Dis 2024; 15:186-200. [PMID: 37307838 PMCID: PMC10796104 DOI: 10.14336/ad.2023.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
Chronic pain is a notable health concern because of its prevalence, persistence, and associated mental stress. Drugs targeting chronic pain with potent abirritation, and minimal side effects remain unidentified. Substantial evidence indicates that the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a distinct and critical role in different stages of chronic pain. Aberrant activation of the JAK2/STAT3 signaling pathway is evident in multiple chronic pain models. Moreover, an increasing number of studies have demonstrated that the downregulation of JAK2/STAT3 can attenuate chronic pain in different animal models. In this review, we investigated the mechanism and role of the JAK2/STAT3 signaling pathway in modulating chronic pain. The aberrant activation of JAK2/STAT3 can trigger chronic pain by interacting with microglia and astrocytes, releasing proinflammatory cytokines, inhibiting anti-inflammatory cytokines, and regulating synaptic plasticity. We also retrospectively reviewed current reports on JAK2/STAT3 pharmacological inhibitors that demonstrated their significant therapeutic potential in different types of chronic pain. In summary, our results provide strong evidence that the JAK2/STAT3 signaling pathway is a promising therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Xin-Yi Dai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Lin Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| |
Collapse
|
10
|
Shen G, Zhou Z, Guo Y, Li L, Zeng J, Wang J, Zhao J. Cholinergic signaling of muscarinic receptors directly involves in the neuroprotection of muscone by inducing Ca 2+ antagonism and maintaining mitochondrial function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117192. [PMID: 37734472 DOI: 10.1016/j.jep.2023.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk, a traditional Chinese medicine, is broadly used in inducing resuscitation and refreshing the mind, activating blood and alleviating pain. It is commonly used for the treatment of ischemic stroke, and muscone is its core medicinal component. AIM OF THE STUDY The aim of this study was to explore whether muscone ameliorates neuronal damage through cholinergic signaling of muscarinic receptors. MATERIALS AND METHODS The effects of muscone were tested in a rat model of middle cerebral artery occlusion (MCAO) as well as injured neurons induced by oxygen-glucose deprivation (OGD) in PC12 cells. Cell counting kit 8 (CCK8) assay was used to measure the cell viability, and the production of lactate dehydrogenase (LDH) and adenosine-triphosphate (ATP) were examined by kit. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), tetramethylrhodamine ethyl ester (TMRE) and Fluo-4 acetoxymethyl ester (Fluo-4 AM) staining were used to demonstrate effect of muscone on the reactive oxygen species (ROS) level, mitochondria membrane potential (MMP) and intracellular Ca2+ measurement in cells respectively, in which all of those staining was visualized by laser confocal microscope. For in vivo experiments, rats' cerebral blood flow was measured using laser Doppler blood flowmetry to evaluate the MCAO model, and a modified neurological severity score (mNSS) was used to assess the recovery of neurological function. Calculate infarct rate was measured by 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining. Except DCFH-DA and Fluo-4 AM staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolylcarbocyanine iodide (JC-1) staining was used to observe intracellular Ca2+ measurement in brain cells. Protein levels in cells and tissues were detected by Western blot. RESULTS Pretreatment with muscone significantly improved the cell viability, lactic acid production, mitochondrial membrane potential collapse and function, Ca2+ overload, ROS generation, and cell apoptosis in OGD PC12 cells. Muscone also regulated PI3K, ERK and AKT signal pathways by activating cholinergic signaling of muscarinic receptors in PC12 cells induced with OGD. More importantly, the blocking of cholinergic signaling of muscarinic receptors by atropine significantly reduces the neuroprotective effects of muscone, including the cell viability, Ca2+ efflux, and mitochondrial repair. Furthermore, muscone was found to effectively alleviate mitochondrial dysfunction and elevated levels of ROS induced by the MCAO in the brain tissue. Notably, this beneficial effect of muscone was attenuated by atropine but not by (+)-Sparteine. CONCLUSIONS Our study indicates that muscone exerts its neuroprotective effects by activating muscarinic receptors of cholinergic signaling, thus providing a promising therapeutic target for the treatment of OGD-induced nerve injury in stroke. The findings suggest that these treatments may hold potential benefits for stroke patients.
Collapse
Affiliation(s)
- Gang Shen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jianbo Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| |
Collapse
|
11
|
Cheng DW, Xu Y, Chen T, Zhen SQ, Meng W, Zhu HL, Liu L, Xie M, Zhen F. Emodin inhibits HDAC6 mediated NLRP3 signaling and relieves chronic inflammatory pain in mice. Exp Ther Med 2024; 27:44. [PMID: 38144917 PMCID: PMC10739165 DOI: 10.3892/etm.2023.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic pain reduces the quality of life and ability to function of individuals suffering from it, making it a common public health problem. Neuroinflammation which is mediated by the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the spinal cord participates and modulates chronic pain. A chronic inflammatory pain mouse model was created in the current study by intraplantar injection of complete Freund's adjuvant (CFA) into C57BL/6J left foot of mice. Following CFA injection, the mice had enhanced pain sensitivities, decreased motor function, increased spinal inflammation and activated spinal astrocytes. Emodin (10 mg/kg) was administered intraperitoneally into the mice for 3 days. As a result, there were fewer spontaneous flinches, higher mechanical threshold values and greater latency to fall. Additionally, in the spinal cord, emodin administration reduced leukocyte infiltration level, downregulated protein level of IL-1β, lowered histone deacetylase (HDAC)6 and NLRP3 inflammasome activity and suppressed astrocytic activation. Emodin also binds to HDAC6 via four electrovalent bonds. In summary, emodin treatment blocked the HDAC6/NLRP3 inflammasome signaling, suppresses spinal inflammation and alleviates chronic inflammatory pain.
Collapse
Affiliation(s)
- Ding-Wen Cheng
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yiwen Xu
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tao Chen
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shu-Qing Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| | - Wei Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hai-Li Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Fangshou Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
12
|
Liu YJ, Xu JJ, Yang C, Li YL, Chen MW, Liu SX, Zheng XH, Luo P, Li R, Xiao D, Shan ZG. Muscone inhibits angiotensin II-induced cardiac hypertrophy through the STAT3, MAPK and TGF-β/SMAD signaling pathways. Mol Biol Rep 2023; 51:39. [PMID: 38158445 PMCID: PMC10756871 DOI: 10.1007/s11033-023-08916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Muscone is a chemical monomer derived from musk. Although many studies have confirmed the cardioprotective effects of muscone, the effects of muscone on cardiac hypertrophy and its potential mechanisms are unclear.The aim of the present study was to investigate the effect of muscone on angiotensin (Ang) II-induced cardiac hypertrophy. METHODS AND RESULTS In the present study, we found for the first time that muscone exerted inhibitory effects on Ang II-induced cardiac hypertrophy and cardiac injury in mice. Cardiac function was analyzed by echocardiography measurement, and the degree of cardiac fibrosis was determined by the quantitative real-time polymerase chain reaction (qRT-PCR), Masson trichrome staining and western blot assay. Secondly, qRT-PCR experiment showed that muscone attenuated cardiac injury by reducing the secretion of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Moreover, western blot analysis found that muscone exerted cardio-protective effects by inhibiting phosphorylation of key proteins in the STAT3, MAPK and TGF-β/SMAD pathways. In addition, CCK-8 and determination of serum biochemical indexes showed that no significant toxicity or side effects of muscone on normal cells and organs. CONCLUSIONS Muscone could attenuate Ang II-induced cardiac hypertrophy, in part, by inhibiting the STAT3, MAPK, and TGF-β/SMAD signaling pathways.
Collapse
Affiliation(s)
- Yi-Jiang Liu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Jia-Jia Xu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Cui Yang
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Yan-Lin Li
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Min-Wei Chen
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Shi-Xiao Liu
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Xiang-Hui Zheng
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
- The Third Clinical Medical College, Fujian Medical University, Fujian, China
| | - Ping Luo
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Rui Li
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Di Xiao
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Zhong-Gui Shan
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
13
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
14
|
Li Y, Jiang T, Du M, He S, Huang N, Cheng B, Yan C, Tang W, Gao W, Guo H, Li Q, Wang Q. Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med 2023; 55:2417-2432. [PMID: 37907746 PMCID: PMC10689812 DOI: 10.1038/s12276-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.
Collapse
Affiliation(s)
- Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Ning Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Wang Z, Wan Q, Xie B, Zhu Z, Xu X, Fu P, Liu R. Integrated network pharmacology and fecal metabolomic analysis of the combinational mechanisms of Shexiang Baoxin Pill against atherosclerosis. Mol Omics 2023; 19:653-667. [PMID: 37357557 DOI: 10.1039/d3mo00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Shexiang Baoxin Pill (SBP) has an excellent therapeutic effect on atherosclerosis (AS), but the combinational mechanisms of SBP against AS remain unclear. This study aimed to investigate the combinational mechanisms of SBP against AS by comprehensive network pharmacology and fecal metabolomic analysis. Bufonis venenum, one of the adjuvant medicines in SBP, is an animal medicine with a narrow therapeutic window. Considering animal protection, we evaluated the anti-AS effect of SBP without BV (SBP-BV) using ApoE-/- mouse models, culture cells, and metabolomic methods. Our data suggested that SBP showed remarkable anti-atherosclerotic effects through multiple targets and multiple pathways, while each component in SBP played different roles in their synergistic effect. Notably, SBP-BV showed comparable effects with SBP in the treatment of AS. Both SBP and SBP-BV could reduce cholesterol uptake in RAW264.7 cells and prevent the occurrence and development of AS in WD-induced ApoE-/- mice by attenuating the atherosclerotic plaque area, and reducing inflammatory cytokines and cholesterol levels in vivo. Our finding might provide new insights into the research and development of new anti-atherosclerosis drugs.
Collapse
Affiliation(s)
- Zhicong Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qianqian Wan
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China.
| | - Bin Xie
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zifan Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Peng Fu
- Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
16
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
17
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
18
|
Chen C, Smith MT. The NLRP3 inflammasome: role in the pathobiology of chronic pain. Inflammopharmacology 2023:10.1007/s10787-023-01235-8. [PMID: 37106238 DOI: 10.1007/s10787-023-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuropathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 an enzyme that cleaves the inactive IL-1β and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-1β and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Science, School of Chemistry and Molecular Biosciences and School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Chen Q, Dai J, Nan F, Xu J, Chen S. P66shc in the spinal cord is an important contributor in complete Freund's adjuvant induced inflammatory pain in mice. Biochem Biophys Res Commun 2023; 656:63-69. [PMID: 36958256 DOI: 10.1016/j.bbrc.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE The aim of this study is to investigate whether p66shc is involved in inflammatory pain and the potential molecular mechanisms of p66shc in inflammatory pain. METHODS Inflammatory pain model was established by complete Freund's adjuvant (CFA) injection. Paw withdrawal latency (PWL) and paw withdrawal frequency (PWF) was recorded. The expression of spinal p66shc were determined by immunohistochemical staining, immunofluorescence staining. P66shc knockdown was performed by an adeno-associated virus (AAV) vector infusion. NLRP3 inflammasome complexes were determined by Western blot. DHE staining was used to evaluate reactive oxygen species (ROS) generation. RESULTS P66Shc expression was progressively elevated in spinal cord of inflammatory pain mice, and p66Shc knockdown in vivo significantly attenuated CFA injection triggers hyperalgesia. Furthermore, knockdown of p66Shc significantly inhibited ROS production and NOD-like receptor protein 3 (NLRP3) inflammasome activation, which were reversed by a ROS donor (t-BOOH). However, post-treatment with nigericin, a agonist of NLRP3, reversed AAV-shP66shc analgesic effect. CONCLUSION Spinal p66shc may facilitate the development of inflammatory pain by promoting the activation of NLRP3 inflammasome through ROS.
Collapse
Affiliation(s)
- Qianqian Chen
- Reproductive Medicine Center, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fubei Nan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuangdong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Liu F, Cao L, Hu S, Ye H, Wu Q, Wu L. Muscone promotes functional recovery by facilitating microglia polarization into M2 phenotype through PPAR-γ pathway after ischemic stroke. Cell Immunol 2023; 386:104704. [PMID: 36921554 DOI: 10.1016/j.cellimm.2023.104704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Exploring regimens to facilitate microglia transformation from M1 to M2 phenotype is a feasible strategy to suppress neuroinflammation, therefore reinforcing functional recovery after ischemic stroke. Muscone easily crosses the blood brain barrier (BBB) and distributes throughout the brain. Here, the results illustrated the administration of 8 mg/kg muscone promoted functional recovery through reducing the infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) staining after ischemic stroke in mice. Then, the expression of pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), was significantly decreased, whereas the level of anti-inflammatory agents including C-X-C Motif Chemokine Ligand 1 (CXCL1), transforming growth factor-β (TGF-β) and interleukin-10 (IL-10) was obviously elevated in penumbra with the treatment of 8 mg/kg muscone using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), western blot and enzyme-linked immunosorbent assay (ELISA) tests. Subsequently, the results showed the application of muscone upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) to facilitate microglia transformation into M2 phenotype using RT-qPCR, western blot and immunofluorescence analysis. Collectively, the present study provides evidence for our hypothesis that muscone intensifies microglia transformation into M2 phenotype via activating PPAR-γ signaling pathway in penumbra after ischemic stroke. These findings demonstrate muscone is a promising candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Liwei Cao
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Shejing Hu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Hongxiang Ye
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Qiang Wu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Le Wu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China.
| |
Collapse
|
21
|
Chen Z, Gu X. Effects of NLRP3 on implants placement. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:126-133. [PMID: 37283126 DOI: 10.3724/zdxbyxb-2022-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bone stability is precisely controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. When the balance is broken, the integrity of the bone structure will be destroyed. Inflammasomes are important protein complexes in response to pathogen-related molecular models or injury-related molecular models, which can promote the activation and secretion of proinflammatory cytokines and activate a local inflammatory response. NOD-like receptor thermal protein domain associated protein (NLRP) 3 inflammasome can promote bone resorption through the activation of the proinflammatory cytokines interleukin (IL)-1β, IL-18 and the induction of caspase-1-mediated pyroptosis. Inhibiting the production of NLRP3 inflammasome may be beneficial to improve comfort and bone stability. The presence of metal particles and microorganisms around implants can activate NLRP3 and promote bone absorption. NLRP3 inflammasome plays an important role in the maintenance of bone stability around implants, however, most studies focus on orthopedic implants and periodontitis. This article reviews the effects of NLRP3 inflammasome on bone formation, resorption and pain induced by implants, and the possibility of NLRP3 as a target for preventing peri-implantitis is discussed.
Collapse
Affiliation(s)
- Ziyun Chen
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinhua Gu
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
22
|
Wu X, Yu J, Tan B, Chen Z. Research progress on mechanism of Chinese Kaiqiao herbs in management of neuropathic pain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:523-533. [PMID: 36581573 PMCID: PMC10264986 DOI: 10.3724/zdxbyxb-2022-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
The Chinese herbal medicine for Kaiqiao, such as borneol, musk, grassleaf sweetflag rhizome, storax and camphor, have been prescribed in traditional Chinese medicine for thousands of years and now are widely used for neuropathic pain, the main components of which are annular compounds. Studies have shown that their analgesic mechanisms include regulating the expression of γ-aminobutyric acid, N-methyl- D-aspartic acid and other receptors; regulating ion channel function; inhibiting inflammatory response, oxidative stress and apoptosis; regulating neurotransmission and neuronal excitability; and participating in neuroprotection and neurological repair. It is suggested that the mechanisms of action of Kaiqiao herbs in central nervous system analgesia should be further explored; high-quality rapid screening of drug targets may be used, and the targeted agents using the characteristics of Kaiqiao herbs would be developed. This article reviews the research progress on the effect mechanism of traditional Kaiqiao herbs in the treatment of neuropathic pain to provide further research directions.
Collapse
|
23
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Role of NADPH Oxidases in Blood-Brain Barrier Disruption and Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11101966. [PMID: 36290688 PMCID: PMC9598888 DOI: 10.3390/antiox11101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
NADPH oxidases (Nox) are one of the main sources of reactive oxygen species (ROS) in the central nervous system (CNS). While these enzymes have been shown to be involved in physiological regulation of cerebral vascular tone, excessive ROS produced by Nox1-5 play a critical role in blood–brain barrier (BBB) dysfunction in numerous neuropathologies. Nox-derived ROS have been implicated in mediating matrix metalloprotease (MMP) activation, downregulation of junctional complexes between adjacent brain endothelial cells and brain endothelial cell apoptosis, leading to brain microvascular endothelial barrier dysfunction and consequently, increases in BBB permeability. In this review, we will highlight recent findings on the role played by these enzymes in BBB disruption induced by ischemic stroke.
Collapse
|
25
|
Park J, Kim Y, Lee C, Kim YT. 3,5-Dicaffeoylquinic acid attenuates microglial activation-mediated inflammatory pain by enhancing autophagy through the suppression of MCP3/JAK2/STAT3 signaling. Biomed Pharmacother 2022; 153:113549. [DOI: 10.1016/j.biopha.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022] Open
|
26
|
Li RF, Gui F, Yu C, Luo YM, Guo L. Protective role of muscones on astrocytes under a mechanical-chemical damage model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:927. [PMID: 36172099 PMCID: PMC9511184 DOI: 10.21037/atm-22-3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Background Traumatic spinal cord injury (SCI) is a major clinical concern and a life-changing neurological condition with substantial socioeconomic implications. The initial mechanical force applied to the spinal cord at the time of injury is known as the primary injury. After the primary injury, ischemia and hypoxia induce cell death and autolysis, which are associated with the release of a group of inflammatory factors and biologically active substances, such as superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and tumor necrosis factor-α (TNF-α). These processes are called the secondary injury, and may lead to an excess of extracellular glutamate (Glu), which in turn promotes the neuronal injuries. Muscone has been shown to have anti-inflammatory effects in the treatment of brain diseases and other diseases. However, to date, no study has examined the effects of muscone in the treatment of SCI. Methods Astrocytes were separated and purified by the method of short-term exposure combining with differential sticking wall. Astrocyte was identified by glial fibers acidic protein (GFAP) selecting cell immunochemical staining. A mechanical-chemical damage (MCD) model was established via the primary spinal astrocytes of rats, and treatment was administered with different concentrations of muscone. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was detected at 6, 12, 24, 48 and 72 h. SOD, MDA, LDH, TNF-alpha and intracellular calcium was detected at 3, 6 and 12 h. Glu in supernatant was detected respectively at 3, 6 and 12 h by enzyme-linked immunosorbent assay (ELISA) method. Intracellular calcium was detected respectively at 3, 6 and 12 h by flow cytometry method. MRNA expression of excitatory amino acid transporters (EAATs) and GFAP were detected by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and protein expression of those by western blot at 6 h. Results Muscone reduced the levels of LDH, TNF-α, and MDA after injury, and upregulated the level of SOD. Muscone also reduced the density of extracellular Glu and suppressed the intracellular calcium level. Additionally, it decreased the expression levels of EAATs and GFAPs. Conclusions Muscone has a protective effect on astrocytes in a MCD and inhibits astrocytes’ proliferation.
Collapse
Affiliation(s)
- Rui-Fu Li
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Gui
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Meng Luo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Guo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Sergi CM. NLRP-3 Inflammasome: A Key Target, but Mostly Overlooked following SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1307. [PMID: 36016195 PMCID: PMC9413552 DOI: 10.3390/vaccines10081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
The last two years have shown many political and scientific debates during the current Coronavirus Disease 2019 (COVID-19) pandemic [...].
Collapse
Affiliation(s)
- Consolato M. Sergi
- AP Division/Pathology Laboratories, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; ; Tel.: +613-737-7600; Fax: 613-738-4837
- Department of Laboratory Medicine and Pathology, University of Alberta, Stollery Children’s Hospital, University Alberta Hospital, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
28
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
29
|
Li YC, Li Y, Zhang YN, Zhao Q, Zhang PL, Sun MR, Liu BL, Yang H, Li P. Muscone and (+)-Borneol Cooperatively Strengthen CREB Induction of Claudin 5 in IL-1 β-Induced Endothelium Injury. Antioxidants (Basel) 2022; 11:antiox11081455. [PMID: 35892657 PMCID: PMC9394259 DOI: 10.3390/antiox11081455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Claudin 5 is one of the major proteins of tight junctions and is responsible for cerebrovascular integrity and BBB function. Muscone and (+)-borneol is the major ingredient of moschus and borneolum, respectively, with antioxidative and anti-inflammatory activities. This study investigated whether muscone and (+)-borneol combination protected claudin 5 by targeting ROS-mediated IL-1β accumulation. Muscone and (+)-borneol reduced cerebral infarct volume and cerebrovascular leakage with claudin 5 protection in mice after stroke, largely due to inhibiting ROS accumulation and inflammatory infiltrate of microglia. Muscone reduced ROS and then blocked the CaN/Erk1/2 pathway to decrease IL-1β release, while (+)-borneol removed mitochondrial ROS and attenuated the SDH/Hif-1α pathway to inhibit IL-1β transcription, thereby jointly reducing IL-1β production. Accumulated IL-1β disrupted cAMP/CREB activation and attenuated transcriptional regulation of claudin 5. Muscone and (+)-borneol combination cooperatively protected BBB function by blocking IL-1β-mediated cAMP/CREB/claudin 5 cascades. Mutation of Ser133 site of CREB or knockdown of claudin 5 weakened the effects of muscone and (+)-borneol on upregulation of TEER value and downregulation of FITC-dextran permeability, suggesting that targeting CREB/claudin 5 was an important strategy to protect vascular integrity. This study provided ideas for the studies of synergistic protection against ischemic brain injury about the active ingredients of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
| | - Yi Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| | | | | | | | | | | | | | - Ping Li
- Correspondence: (Y.L.); (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| |
Collapse
|
30
|
Hua T, Yang M, Song H, Kong E, Deng M, Li Y, Li J, Liu Z, Fu H, Wang Y, Yuan H. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnology 2022; 20:324. [PMID: 35836229 PMCID: PMC9281091 DOI: 10.1186/s12951-022-01522-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Background Chronic inflammatory pain significantly reduces the quality of life and lacks effective interventions. In recent years, human umbilical cord mesenchymal stem cells (huc-MSCs)-derived exosomes have been used to relieve neuropathic pain and other inflammatory diseases as a promising cell-free therapeutic strategy. However, the therapeutic value of huc-MSCs-derived exosomes in complete Freund's adjuvant (CFA)-induced inflammatory pain remains to be confirmed. In this study, we investigated the therapeutic effect and related mechanisms of huc-MSCs-derived exosomes in a chronic inflammatory pain model. Methods C57BL/6J male mice were used to establish a CFA-induced inflammatory pain model, and huc-MSCs-derived exosomes were intrathecally injected for 4 consecutive days. BV2 microglia cells were stimulated with lipopolysaccharide (LPS) plus adenosine triphosphate (ATP) to investigate the effect of huc-MSCs-derived exosomes on pyroptosis and autophagy. Bioinformatic analysis and rescue experiments were used to demonstrate the role of miR-146a-5p/ TRAF6 in regulating pyroptosis and autophagy. Western blotting, RT-qPCR, small interfering RNA and Yo-Pro-1 dye staining were performed to investigate the related mechanisms. Results Huc-MSCs-derived exosomes alleviated mechanical allodynia and thermal hyperalgesia in CFA-induced inflammatory pain. Furthermore, huc-MSCs-derived exosomes attenuated neuroinflammation by increasing the expression of autophagy-related proteins (LC3-II and beclin1) and inhibiting the activation of NLRP3 inflammasomes in the spinal cord dorsal horn. In vitro, NLRP3 inflammasome components (NLRP3, caspase1-p20, ASC) and gasdermin D (GSDMD-F, GSDMD-N) were inhibited in BV2 cells pretreated with huc-MSCs-derived exosomes. Western blot and Yo-Pro-1 dye staining demonstrated that 3-MA, an autophagy inhibitor, weakened the protective effect of huc-MSCs-derived exosomes on BV2 cell pyroptosis. Importantly, huc-MSCs-derived exosomes transfected with miR-146a-5p mimic promoted autophagy and inhibited BV2 cell pyroptosis. TRAF6, as a target gene of miR-146a-5p, was knocked down via small-interfering RNA, which increased pyroptosis and inhibited autophagy. Conclusion Huc-MSCs-derived exosomes attenuated inflammatory pain via miR-146a-5p/TRAF6, which increased the level of autophagy and inhibited pyroptosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01522-6.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhixiao Liu
- Research Center of Developmental Biology, Department of Histology and Embryology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
31
|
Zhou Y, Guo S, Botchway BOA, Zhang Y, Jin T, Liu X. Muscone Can Improve Spinal Cord Injury by Activating the Angiogenin/Plexin-B2 Axis. Mol Neurobiol 2022; 59:5891-5901. [PMID: 35809154 DOI: 10.1007/s12035-022-02948-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that usually damages sensorimotor and autonomic functions. Signaling pathways can play a key role in the repair process of SCI. The plexin-B2 acts as a receptor for angiogenin and mediates ribosomal RNA transcription, influencing cell survival and proliferation. Protein kinase B serine/threonine kinase interacts with angiogenin to form a positive feedback effect. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor can induce angiogenin nuclear translocation. Moreover, the BDNF can promote the secretion of angiogenin. Interestingly, all of them can activate the angiogenin/plexin-B2 axis. Muscone has anti-inflammatory and proliferative features as it can inhibit nuclear transcription factor kappa-B (NF-κB) and activate the angiogenin/plexin-B2 axis, thus being significant agent in the SCI repair process. Herein, we review the potential mechanism of angiogenin/plexin-B2 axis activation and the role of muscone in SCI treatment. Muscone may attenuate inflammatory responses and promote neuronal regeneration after SCI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Shitian Guo
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China.
| |
Collapse
|
32
|
Yu C, Gui F, Huang Q, Luo Y, Zeng Z, Li R, Guo L. Protective effects of muscone on traumatic spinal cord injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:685. [PMID: 35845509 PMCID: PMC9279775 DOI: 10.21037/atm-22-2672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Background Traumatic spinal cord injury (SCI) is a major clinical concern, and it is a life-changing neurological condition with substantial socioeconomic implications. Muscone has been widely used in traditional Chinese medicinal formulations for its anti-inflammatory activity. However, its protective effects on traumatic SCI have not been explored. This study investigated whether muscone plays a protective role in SCI and compared its effects with those of methylprednisolone sodium succinate (MPSS). Methods Rats were divided into five groups: normal saline (NS; n=24), methylprednisolone (MP; w=24), and muscone 1 (MO1), muscone 2 (MO2), and muscone 3 (MO3) (n=24 in each group, collectively called the MOx groups). The SCI rat model was established by the modified Allen's method. The rats were administered muscone (MO1: 2.5 mg/kg, MO2: 5 mg/kg, and MO3: 10 mg/kg) or MP (30 mg/kg), or an equivalent volume of saline. The rats were kept under observation for 4 weeks. Malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels were detected using enzyme-linked immunosorbent assay (ELISA). The expression of glial fibrillary acidic protein (GFAP), B-cell lymphoma-2 (BCL-2), and caspase3 was detected by western blot analysis. Hematoxylin-eosin (HE), Nissl, and immunocytochemistry (ICC) staining was performed for pathological observation. Basso-Beattie-Bresnahan motor function scores were evaluated for assessment of neural functions after acute SCI. Results Muscone inhibited immune-inflammatory reactions, neuronal necrosis, and apoptosis. The lower limb function recovery was better in the MOx groups compared with NS and MP groups according to Basso-Beattie-Bresnahan scores. The changes were remarkable in the MO2 group compared with the other groups. Conclusions Muscone alleviates secondary injury after SCI by reducing immune-inflammatory reactions, neuronal necrosis, and apoptosis.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Gui
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Huang
- Department of Orthopedics, The 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanmeng Luo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zili Zeng
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ruifu Li
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Guo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Zhang G, Tian C, Liang T, Chi H, Wu A, Li J, Yao X, Wang Q, Zhu C, Lin N. The analgesic properties of Yu-Xue-Bi tablets in the inflammatory pain mice: By the inhibition of CCL3-mediated macrophage transmigration into the spinal cord. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115051. [PMID: 35101573 DOI: 10.1016/j.jep.2022.115051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Until now, inflammatory pain, especially ones with central sensitization in the spinal cord, is far from effectively treated. Yu-Xue-Bi Tablets (YXB) is a patented medicine, which has been widely applied for inflammatory pain. However, its therapeutic characteristics and mechanism remain unknown. AIM OF THE STUDY This study is designed to evaluate the analgesic characteristics and explore the underlying mechanism of YXB in the inflammatory pain model induced by Complete Freund's Adjuvant (CFA). MATERIALS AND METHODS The analgesic effects were measured by Von Frey test. The expression of calcitonin gene-related peptide (CGRP) was quantified by immunofluorescence. The expression of immune factors was analyzed via Luminex assay. The further quantifications of C-C Motif chemokine ligand 3 (CCL3) were verified by Enzyme-linked immunosorbent assay (ELISA). The transmigration of macrophage and activation of microglia were evaluated by immunofluorescence. Spinal injections of purified CCL3, CCR1 antagonist (J113863) and CCR5 antagonist (Maraviroc) were used to clarify roles of CCL3 assumed in the pharmacological mechanism of YXB. RESULTS In CFA mice, YXB ameliorated the mechanical allodynia in dose and time dependent way, suppressed the central sensitization in dose dependent way. In the L5 spinal cord, YXB downregulated the expression of macrophage M1 pro-inflammatory factors TNFRI and CCL3, inhibited the transmigration of circulating macrophage and the activation of microglia. Purified CCL3 led to the transmigration of macrophage, activation of microglia, central sensitization, and mechanical allodynia in the Sham mice. Inhibitors of CCR1 and CCR5 attenuated above symptoms in CFA mice. Purified CCL3 blocked YXB mediated down regulation of CCL3, inhibition of macrophage transmigration, but not activation of microglia. CONCLUSION YXB exerts the analgesic effects by inhibiting CCL3-mediated peripheral macrophage transmigrate into spinal cord. This study provided a novel approach for inflammatory pain treatment and new insight into the pharmacological action of YXB.
Collapse
Affiliation(s)
- Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Congmin Tian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Tingjun Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongyu Chi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jiahao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xuemin Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
34
|
Serra MP, Boi M, Carta A, Murru E, Carta G, Banni S, Quartu M. Anti-Inflammatory Effect of Beta-Caryophyllene Mediated by the Involvement of TRPV1, BDNF and trkB in the Rat Cerebral Cortex after Hypoperfusion/Reperfusion. Int J Mol Sci 2022; 23:3633. [PMID: 35408995 PMCID: PMC8998979 DOI: 10.3390/ijms23073633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 μL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (M.P.S.); (M.B.); (A.C.); (E.M.); (G.C.); (S.B.)
| |
Collapse
|
35
|
Hua T, Wang H, Fan X, An N, Li J, Song H, Kong E, Li Y, Yuan H. BRD4 Inhibition Attenuates Inflammatory Pain by Ameliorating NLRP3 Inflammasome-Induced Pyroptosis. Front Immunol 2022; 13:837977. [PMID: 35154163 PMCID: PMC8826720 DOI: 10.3389/fimmu.2022.837977] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund’s adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ni An
- Chinese People's Liberation Army, Liao Yang, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
36
|
Lv S, Lei Z, Yan G, Shah SA, Ahmed S, Sun T. Chemical compositions and pharmacological activities of natural musk (Moschus) and artificial musk: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114799. [PMID: 34748869 DOI: 10.1016/j.jep.2021.114799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural musk (Moschus), derived naturally from male musk deer (Moschus berezovskii Flerov, Moschus sifanicus Przewalski, or Moschus moschiferus Linnaeus), has long been an important component of traditional Chinese medicine (TCM), and was used as resuscitation, blood circulation, and collateral drainage. detumescence and pain relief. Artificial musk was researched and applied into TCM as natural musk being as unsustainable resources. AIM OF THE STUDY We mainly summarized chemical compositions, pharmacological activities and mechanism of action of natural and artificial musk, and designed to serve as a foundation for further research into musk chemical compositions and pharmacological effect. MATERIALS AND METHODS Those mainstream scientific databases including Google Scholar, ScienceDirect, SpringerLink, CNKI, Wiley Online Library, web of science, were used for searching with below "Keywords", as well as literature-tracking. Literatures spanned 1962 to 2021, and involved into Chinese, English, Janpanese, Korean. RESULTS Natural musk contains some very desirable but scarce compounds, as well as their biological features, which led to the development of artificial musk. The chemical ingredients, pharmacological activities, and mechanisms of action of natural and artificial musk are summarized and compared in this paper. Polypeptide and protein, muscone, musclide, steroids, muscopyridine, and other chemical constituents of musk demonstrated important therapeutic properties against inflammation, immune system disorders, neurological disorders, cardiovascular system disorders, and so on. The mechanism of action contributed to effect on mediators, acceptors and relative signal pathways. CONCLUSIONS Natural and artificial musk were revealed having some activated compounds, and showed excellent pharmacological effect. Meantime, above two sides of natural and artificial musk ought to get further research.
Collapse
Affiliation(s)
- Shuquan Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan 430065, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhixin Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| | - Ge Yan
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan 430065, PR China
| | - Sayed Afzal Shah
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
37
|
Abstract
Inflammatory pain is the perception of noxious stimuli that occurs during inflammation or an immune response. Glial cells are widespread in the central and peripheral nervous systems, supporting and guiding the migration of neurons, participating in the immune response, forming the myelin sheath and blood-brain barrier, and maintaining the concentration of potassium ions outside nerve cells. Recent studies have shown that glial cells have a significant connection with the production and development of inflammatory pain. This article reviews the relationship, mechanisms, therapeutic targets between five types of glial cells and inflammatory pain, and the medicine composition that can effectively inhibit inflammatory pain. It expands the study on the mechanism of glial cells regulating pain and provides new ideas for the therapy of inflammatory pain.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, P.R. China
| |
Collapse
|
38
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Zhu H, Jian Z, Zhong Y, Ye Y, Zhang Y, Hu X, Pu B, Gu L, Xiong X. Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation Through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Front Immunol 2021; 12:714943. [PMID: 34367186 PMCID: PMC8339584 DOI: 10.3389/fimmu.2021.714943] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory responses play a multiphase role in the pathogenesis of cerebral ischemic stroke (IS). Ruxolitinib (Rux), a selective oral JAK 1/2 inhibitor, reduces inflammatory responses via the JAK2/STAT3 pathway. Based on its anti-inflammatory and immunosuppressive effects, we hypothesized that it may have a protective effect against stroke. The aim of this study was to investigate whether inhibition of JAK2 has a neuroprotective effect on ischemic stroke and to explore the potential molecular mechanisms. Methods Rux, MCC950 or vehicle was applied to middle cerebral artery occlusion (MCAO) mice in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. After 3 days of reperfusion, neurological deficit scores, infarct volume and brain water content were assessed. Immunofluorescence staining and western blots were used to measure the expression of NLRP3 inflammasome components. The infiltrating cells were investigated by flow cytometry. Proinflammatory cytokines were assessed by RT-qPCR. The expression of the JAK2/STAT3 pathway was measured by western blots. Local STAT3 deficiency in brain tissue was established with a lentiviral vector carrying STAT3 shRNA, and chromatin immunoprecipitation (ChIP) assays were used to investigate the interplay between NLRP3 and STAT3 signaling. Results Rux treatment improved neurological scores, decreased the infarct size and ameliorated cerebral edema 3 days after stroke. In addition, immunofluorescence staining and western blots showed that Rux application inhibited the expression of proteins related to the NLRP3 inflammasome and phosphorylated STAT3 (P-STAT3) in neurons and microglia/macrophages. Furthermore, Rux administration inhibited the expression of proinflammatory cytokines, including TNF-α, IFN-γ, HMGB1, IL-1β, IL-2, and IL-6, suggesting that Rux may alleviate IS injury by inhibiting proinflammatory reactions via JAK2/STAT3 signaling pathway regulation. Infiltrating macrophages, B, T, cells were also reduced by Rux. Local STAT3 deficiency in brain tissue decreased histone H3 and H4 acetylation on the NLRP3 promoter and NLRP3 inflammasome component expression, indicating that the NLRP3 inflammasome may be directly regulated by STAT3 signaling. Rux application suppressed lipopolysaccharide (LPS)-induced NLRP3 inflammasome secretion and JAK2/STAT3 pathway activation in the OGD/R model in vitro. Conclusion JAK2 inhibition by Rux in MCAO mice decreased STAT3 phosphorylation, thus inhibiting the expression of downstream proinflammatory cytokines and the acetylation of histones H3 and H4 on the NLRP3 promoter, resulting in the downregulation of NLRP3 inflammasome expression.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Liu K, Xie L, Deng M, Zhang X, Luo J, Li X. Zoology, chemical composition, pharmacology, quality control and future perspective of Musk (Moschus): a review. Chin Med 2021; 16:46. [PMID: 34147113 PMCID: PMC8214773 DOI: 10.1186/s13020-021-00457-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Musk, the dried secretion from the musk sac gland which is located between the navel and genitals of mature male musk deer, is utilized as oriental medicine in east Asia. It has been utilized to treat conditions such as stroke, coma, neurasthenia, convulsions, and heart diseases in China since ancient times. This paper aims to provide a comprehensive overview of musk in zoology, chemical composition, pharmacology, clinical applications, and quality control according to the up-to-date literature. Studies found that musk mainly contains macrocyclic ketones, pyridine, steroids, fatty acids, amino acids, peptides, and proteins, whilst the main active ingredient is muscone. Modern pharmacological studies have proven that musk possesses potent anti-inflammatory effects, neuroprotective effects, anti-cancer effects, antioxidant effects, etc. Moreover, muscone, the main active ingredient, possesses anti-inflammatory, neuroprotective, antioxidant, and other pharmacological effects. In the quality control of musk, muscone is usually the main detection indicator, and the common analytical method is GC, and researchers have established novel and convenient methods such as HPLC-RI, RP-UPLC-ELSD, and Single-Sweep Polarography. In addition, quality evaluation methods based on steroids and the bioactivity of musk have been established. As for the identification of musk, due to various objective factors such as the availability of synthetic Muscone, it is not sufficient to rely on muscone alone as an identification index. To date, some novel technologies have also been introduced into the identification of musk, such as the electronic nose and DNA barcoding technology. In future research, more in vivo experiments and clinical studies are encouraged to fully explain the pharmacological effects and toxicity of musk, and more comprehensive methods are needed to evaluate and control the quality of musk.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
41
|
Up-regulating TIPE2 alleviates inflammatory pain by suppressing microglial activation-mediated inflammatory response via inhibiting Rac1/NF-κB pathway. Exp Cell Res 2021; 404:112631. [PMID: 33933441 DOI: 10.1016/j.yexcr.2021.112631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
TNF-α-inducible protein 8-like 2 (TIPE2) is a recently discovered regulator of inflammation that can maintain immune homeostasis, exerting a significant role in the development of inflammation-related diseases. Here, we aimed to explore the role and potential regulatory mechanism of TIPE2 in the progression of inflammatory pain. In the present study, a mouse BV2 microglia cell activation-mediated inflammatory model was developed with LPS induction, and a mouse inflammatory pain model was established with complete Freund's adjuvant (CFA) injection. In vitro, the TIPE2 expression was decreased in LPS-induced BV2 cells. Overexpression of TIPE2 mitigated LPS-medicated microglial activation via decreasing nitric oxide (NO) generation and the expression of microglia marker IBA-1. Notably, increasing TIPE2 expression alleviated microglial activation-triggered expression levels and releases of proinflammatory factors such as TNF-α, IL-1β, and IL-6. Mechanism analysis verified that overexpression of TIPE2 blunted Rac1-mediated activation of NF-κB pathway following LPS stimulation. More importantly, CFA injection reduced the expression of TIPE2 in a mouse inflammatory pain model and overexpression of TIPE2 alleviated CFA-mediated pain hypersensitivity and inflammatory response, and inactivated microglia cell in vivo. Furthermore, overexpression of TIPE2 decreased Rac1 expression and suppressed the activation of NF-κB pathway in spinal cord after CFA injection. In summary, the present study revealed that overexpression of TIPE2 mitigated inflammatory pain through suppressing microglial activation-induced inflammation by inactivating Rac1/NF-κB pathway. The study provides a novel theoretical foundation for the therapy of inflammatory pain.
Collapse
|
42
|
Chen R, Yin C, Fang J, Liu B. The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation 2021; 18:84. [PMID: 33785039 PMCID: PMC8008529 DOI: 10.1186/s12974-021-02131-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain affects the life quality of the suffering patients and posts heavy problems to the health care system. Conventional medications are usually insufficient for chronic pain management and oftentimes results in many adverse effects. The NLRP3 inflammasome controls the processing of proinflammatory cytokine interleukin 1β (IL-1β) and is implicated in a variety of disease conditions. Recently, growing number of evidence suggests that NLRP3 inflammasome is dysregulated under chronic pain condition and contributes to pathogenesis of chronic pain. This review provides an up-to-date summary of the recent findings of the involvement of NLRP3 inflammasome in chronic pain and discussed the expression and regulation of NLRP3 inflammasome-related signaling components in chronic pain conditions. This review also summarized the successful therapeutic approaches that target against NLRP3 inflammasome for chronic pain treatment.
Collapse
Affiliation(s)
- Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
43
|
Wang J, Xing H, Qin X, Ren Q, Yang J, Li L. Pharmacological effects and mechanisms of muscone. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113120. [PMID: 32668321 DOI: 10.1016/j.jep.2020.113120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Musk, the dried secretion from the preputial follicles of the male musk deer (genus Moschus), possesses various pharmacological activities and has been used extensively in traditional Chinese medicine for thousands of years. Muscone is the main active ingredient of musk and exerts pharmacological effects similar to those of musk. Although muscone was notably used to treat various disorders and diseases, such as neurological disorders, chronic inflammation and ischemia-reperfusion injury, most of the mechanisms of the pharmacological action of muscone remain unclear because of slow progress in research before the 21st century. In recent years, the pharmacological activities and mechanisms of muscone have been clarified. The present article summarizes the pharmacological and biological studies on cerebrovascular disease, cardiovascular disease, neurological effects, cancer and others and the associated mechanisms of the action of muscone to date.
Collapse
Affiliation(s)
- Jun Wang
- Health Management Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Hui Xing
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Xiaomin Qin
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Qun Ren
- Health Management Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Jiang Yang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China; Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
| | - Lin Li
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China.
| |
Collapse
|
44
|
Zhang W, Qi X, Zhao Y, Liu Y, Xu L, Song X, Xiao C, Yuan X, Zhang J, Hou M. Study of injectable Blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm 2020; 586:119543. [PMID: 32561307 DOI: 10.1016/j.ijpharm.2020.119543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Injectable hydrogels with high anti-inflammatory and wound-healing properties are highly desirable for clinical application. In the present study, injectable hydrogels were prepared based on carboxymethyl chitosan and oxidized hyaluronic acid. Blueberry anthocyanins (BA), which are known for their antioxidant and antiinflammatory properties, were successfully loaded into the hydrogels. The gelation kinetics and mechanical properties of the hydrogels were investigated. Oxidized hyaluronic acid with an oxidation degree of 38.1% conferred a suitable gelation time (~70 s) and mechanical properties (76.0 kPa compression stress at strain of 80%) of the hydrogel. The injectable BA-loaded hydrogel significantly accelerated the wound healing process in a full-thickness skin wound model in rats, promoted epithelial and tissue regeneration, exerted antiinflammatory effects, and promoted collagen deposition and angiogenesis. Besides, the hydrogel could upregulate the expression of VEGF and IL-10 proteins, downregulate the NF-κB level, and promote macrophage transformation from M1 phenotype to M2. The promotion of the BA-loaded hydrogel on wound healing were mainly realized by its biological effects, including antioxidant and anti-inflammatory effects, and regulation of various wound healing related factors. The results suggested that BA and the hydrogels exert synergistic effects in promoting wound healing. Injectable BA-loaded hydrogels appear to be promising candidates for wound healing application.
Collapse
Affiliation(s)
- Wenchang Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaomin Qi
- The People's Hospital of Liaoning Province, Shenyang 110016, PR China
| | - Yan Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Yunen Liu
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chenjuan Xiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaoxue Yuan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jinsong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Mingxiao Hou
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China
| |
Collapse
|