1
|
Liu C, Kong N, Liu H, Zhang Y, Qin W, Zhao W, Yang X, Wang Y, Cao X, Liu T, Liu Y, Sun H, Tong W, Yu H, Zheng H, Lan D, Xie S, Tong G, Shan T. FSTL1 and TLR4 interact with PEDV structural proteins to promote virus adsorption to host cells. J Virol 2024:e0183724. [PMID: 39670742 DOI: 10.1128/jvi.01837-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Infection with porcine epidemic diarrhea virus (PEDV) results in enormous economic damage to the global swine industry. PEDV starts its life cycle by binding to the receptors of host cells and adsorbing onto the cellular surfaces. However, it is still unknown how PEDV adsorbs onto the surface of host cells and the mechanism beneath the interplay of host cell transmembrane protein with PEDV proteins. FSTL1, which is a secreted glycoprotein, participates in diverse pathological and physiological processes, including immune modulation and cell proliferation and differentiation. The transmembrane protein, TLR4, serves as a pattern recognition receptor recognizing a broad spectrum of pathogens, which exerts a crucial effect on the host immune system. In this study, we identified that FSTL1 promoted PEDV infection. Further studies demonstrated the interactive relationship between FSTL1 and PEDV structural proteins (N and S2). In addition, we also confirmed that TLR4 interacted with FSTL1 and PEDV N, S1, and S2 proteins on the cell surface. Moreover, FSTL1 promoted the interaction of TLR4 and PEDV and induced viral adsorption to host cells. This study offers explicit evidence that FSTL1 and TLR4 act as mediators for host cell adsorption of PEDV by interacting with PEDV N/S proteins.IMPORTANCEAs a highly infectious porcine epidemic diarrhea virus (PEDV)-induced intestinal condition of swine, porcine epidemic diarrhea (PED) results in a 100% death rate among suckling piglets and poses a serious economic burden to global swine farming. Therefore, it is essential to investigate the mechanism of virus infection, replication, and proliferation. Virus begins its life cycle by binding to the receptor of host cells and adsorbing onto the cellular surfaces. However, it remains unclear how PEDV adsorbs onto the host cell surfaces. This study revealed that host protein FSTL1 interacted with the PEDV N and S2 proteins, while TLR4 interacted with the FSTL1 and PEDV proteins (N, S1, and S2). Moreover, we thoroughly and methodically demonstrated that FSTL1 was engaged in the PEDV internalization and attachment processes by promoting the recognition of PEDV N\S proteins by TLR4 and induced the viral adsorption to host cells.
Collapse
Affiliation(s)
- Chunyun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- Department of Preventive Dentistry, College of Stomatology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenli Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yahe Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinyu Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tian Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuchang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - He Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Daoliang Lan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Gil Y, Ryu J, Yang H, Ma Y, Nam KH, Jang SW, Shim S. Molecular Characterization of Subdomain Specification of Cochlear Duct Based on Foxg1 and Gata3. Int J Mol Sci 2024; 25:12700. [PMID: 39684410 DOI: 10.3390/ijms252312700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct. Herein, based on the dynamic expression pattern of FOXG1 in the apical and basal regions of the E13.5 cochlear duct, we identified detailed expression regions through an open-source analysis of single-cell RNA analysis data and demonstrated a clinical correlation with hearing loss. The distinct expression patterns of FOXG1 and GATA3 during the patterning process of the cochlear duct provide important clues to understanding how the fates of the apical and basal regions are divided. These results are expected to be extremely important not only for understanding the molecular mechanisms involved in the early development of the cochlear duct, but also for identifying potential genes that cause hearing loss.
Collapse
Affiliation(s)
- Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Li F, Qian W, Wang J, Gao M. FSTL1 Can Be a Promising Target in TMJ Osteoarthritis via Regulating Chondrocyte Mitophagy and Apoptosis. J Craniofac Surg 2024:00001665-990000000-02191. [PMID: 39585352 DOI: 10.1097/scs.0000000000010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Previous studies have shown that follistatin-like protein 1 (FSTL1) is elevated in the synovial fluid of osteoarthritis and whether it is associated with disease development progress in cartilage degeneration is still unclear. The experiment was performed to explore the effect and mechanism of FSTL1 on chondrocyte degeneration and its further impaction in osteoarthritis as well as its treatment method. METHODS The patients who were diagnosed with temporomandibular joint (TMJ) disc displacement and osteoarthritis (OA) group was divided into 2 groups, anterior disc displacement (ADD) without bone resorption and ADD with bone resorption group according to the radiologic examination. The ELISA kit was used to determine the expression level of FSTL1 in patients TMJ environment. The function of FSTL1 in promoting chondrocyte degeneration was tested by quantitative reverse transcription polymerase chain reaction (Rt-qPCR) and western blot. The chondrocyte apoptosis and mitophagy were further test by flow cytometry and mitosox staining by upregulating and downregulating of FSTL1. In the end, the effectiveness of regulating FSTL1 in OA procedure was further validated by hematoxylin-eosin (HE), safranin O, and immunohistochemical (IHC) staining in vivo. RESULTS There were 56 samples collected from the patients were included into this study. According to the ELISA results, FSTL1 expression levels of ADD without bone resorption groups were significantly lower than that in ADD with bone resorption group. Furthermore, the rate of cell apoptosis cells and the mitophagy procedure were highly activated when FSTL1 was upregulated. The morphology analysis of mitochondria showed significant changes when FSTL1 was highly upregulated in vitro. The in vivo and in vitro experiments showed that suppressing FSTL1 could alleviate the cartilage degeneration in TMJ OA progression. CONCLUSIONS To sum up, upregulated expression level of FSTL1 in synovial fluid promoted the progression of TMJ OA by upregulating accelerating the chondrocyte apoptosis and mitophagy, and suppressing the FSTL1 in TMJ can rescue the OA progression. Therefore, it may be a promising result to consider the FSTL1 as a therapeutic target in the future.
Collapse
Affiliation(s)
- Fangjie Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Huzhou Normal University, Huzhou, China
| | | | | | | |
Collapse
|
4
|
Jiang W, Yu W, Hu S, Shi Y, Lin L, Yang R, Tang J, Gu Y, Gong Y, Jin M, Lu E. Differential expression of FSTL1 and its correlation with the pathological process of periodontitis. J Periodontal Res 2024; 59:1005-1016. [PMID: 38807492 DOI: 10.1111/jre.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024]
Abstract
AIMS This study aimed to elucidate the alterations in Follistatin-like protein 1 (FSTL1) and its association with the pathological process of periodontitis. METHODS This study included 48 patients with periodontitis and 42 healthy controls. The expression level of FSTL1 in the gingiva was determined by RT-qPCR, validated using the dataset GSE16134, and subsequently examined by western blotting. Bioinformatics analysis revealed a single-cell distribution of FSTL1, characteristic of angiogenesis and immune cell infiltration. The expression and distribution of FSTL1, vascular endothelial marker protein CD31 and myeloperoxidase (MPO), the indicator of neutrophil activity, were determined by immunohistochemistry (IHC). A series of correlation analyses was performed to determine the associations between FSTL1 and clinical parameters, including probing depth (PD) and clinical attachment loss (CAL), and their potential role in angiogenesis (CD31) and neutrophil infiltration (MPO). RESULTS FSTL1 was significantly upregulated in the gingiva of patients with periodontitis compared to their healthy counterparts. In addition, FSTL1 was positively correlated with the clinical parameters PD (r = .5971, p = .0005) and CAL (r = .6078, p = .0004). Bioinformatic analysis and IHC indicated that high FSTL1 expression was significantly correlated with angiogenesis and neutrophil infiltration in periodontitis. Moreover, receiver operating characteristic (ROC) analysis demonstrated that FSTL1 could serve as an independent indicator for evaluating the severity of periodontitis (area under the curve [AUC] = 0.9011, p < .0001). CONCLUSION This study demonstrated FSTL1 upregulation in periodontitis and its potential contribution to the disease via angiogenesis and neutrophil infiltration.
Collapse
Affiliation(s)
- Wenxin Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjie Shi
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Gong
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Yan X, Ding JY, Zhang RJ, Zhang HQ, Kang L, Jia CY, Liu XY, Shen CL. FSTL1 Accelerates Nucleus Pulposus Cell Senescence and Intervertebral Disc Degeneration Through TLR4/NF-κB Pathway. Inflammation 2024; 47:1229-1247. [PMID: 38316670 DOI: 10.1007/s10753-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), and inflammatory factors play crucial roles in its pathogenesis. Follistatin-like 1 (FSTL1) has been reported to induce an inflammatory response in chondrocytes, microglia and preadipocytes, but its role in the pathogenesis of nucleus pulposus cell (NPC) degeneration remains unclear. In this study, we mainly utilized an acidosis-induced NPC degeneration model and a rabbit puncture IVDD model to investigate the role of FSTL1 in IVDD both in vitro and in vivo. We confirmed that FSTL1 expression significantly increased in nucleus pulposus (NP) tissues from IVDD patients and rabbit puncture IVDD models. The expression levels of FSTL1 were significantly increased in all three models of NPC degeneration under harsh microenvironments. In addition, recombinant human FSTL1 (rh-FSTL1) was found to upregulate the expression of p16 and p21, increase the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells, induce senescence-related secretory phenotypes (SASP), and downregulate extracellular matrix (ECM) protein expressions, leading to an imbalance in ECM metabolism destructions. Conversely, silencing of FSTL1 by small interfering RNA (siRNA) ameliorated senescence of NPCs associated with inflammation in IVDD. Furthermore, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway plays a crucial role in regulating NPC senescence through FSTL1 regulation. Inhibition of TLR4 expression partly reversed the effects of rh-FSTL1 on NPC senescence-associated inflammation. Finally, rabbit IVDD model experiments demonstrated that the specific FSTL1 siRNA markedly repressed the development of IVDD. These findings may offer a therapeutic approach for mitigating inflammation-induced senescence associated with IVDD.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jing-Yu Ding
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiao-Ying Liu
- School of Life Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Du R, Li K, Guo K, Chen Z, Han L, Bian H. FSTL1: A double-edged sword in cancer development. Gene 2024; 906:148263. [PMID: 38346455 DOI: 10.1016/j.gene.2024.148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-β/BMP/Smad signaling, AKT, NF-κB, and Wnt-β-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| |
Collapse
|
7
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Tarabeih N, Kalinkovich A, Shalata A, Higla O, Livshits G. Pro-Inflammatory Biomarkers Combined with Body Composition Display a Strong Association with Knee Osteoarthritis in a Community-Based Study. Biomolecules 2023; 13:1315. [PMID: 37759715 PMCID: PMC10527309 DOI: 10.3390/biom13091315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common progressive, age-dependent chronic degenerative joint diseases. KOA often develops as a result of a gradual articular cartilage loss caused by its wear and tear. Numerous studies suggest that the degradation of the knee joint involves inflammatory components. This process is also associated with body composition, particularly being overweight and muscle mass loss. The present study aimed to search for novel circulating KOA inflammatory biomarkers, taking into account body composition characteristics. To this aim, we recruited 98 patients diagnosed and radiologically confirmed with KOA and 519 healthy controls from the Arab community in Israel. A panel of soluble molecules, related to inflammatory, metabolic, and musculoskeletal disorders, was measured by ELISA in plasma samples, while several body composition parameters were assessed with bioimpedance analysis. Statistical analysis, including multivariable logistic regression, revealed a number of the factors significantly associated with KOA, independently of age and sex. The most significant independent associations [OR (95% CI)] were fat body mass/body weight index-1.56 (1.20-2.02), systemic immune-inflammation index-4.03 (2.23-7.27), circulating vaspin levels-1.39 (1.15-1.68), follistatin/FSTL1 ratio-1.32 (1.02-1.70), and activin A/FSTL1 ratio-1.33 (1.01-1.75). Further clinical studies are warranted to confirm the relevance of these KOA-associated biological factors. Hereafter, they could serve as reliable biomarkers for KOA in the general human population.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 32000, Israel;
| | - Orabi Higla
- Orthopedics Clinic, Clalit, Migdal HaMeah, Tel-Aviv 6203854, Israel;
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
10
|
Liu B, Wang C, Weng Z, Yang Y, Zhao H, Zhang Y, Fei Q, Shi Y, Zhang C. Glycolytic enzyme PKM2 regulates cell senescence but not inflammation in the process of osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1425-1433. [PMID: 37525533 PMCID: PMC10520488 DOI: 10.3724/abbs.2023062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
Chondrocyte senescence is an important mechanism underlying osteoarthritis in the senile population and is characterized by reduced expressions of the extracellular matrix proteins. The involvement of glycolysis and the tricarboxylic acid cycle in the development of osteoarthritis is inclusive. The present study aims to investigate the role of the glycolytic enzyme M2 isoform of pyruvate kinase (PKM2) in chondrocytes in senescence and inflammation. Primary chondrocytes are isolated from the knee joints of neonatal mice. Small interfering RNAs (siRNAs) against PKM2 are transfected using lipofectamine. RNA sequencing is conducted in primary chondrocytes with the PKM2 gene deleted. Cell apoptosis, autophagy, reactive oxygen species measurement, and senescent conditions are examined. The glycolytic rate in cells is measured by Seahorse examination. Interleukin 1-β (IL-1β) increases the protein expressions of matrix metallopeptidases (MMP)13 and PKM2 and reduces the protein expression of collagen type II (COL2A1) in primary chondrocytes. Silencing of PKM2 alters the protein expressions of MMP13, PKM2, and COL2A1 in the same pattern in quiescent and stimulated chondrocytes. RNA sequencing analysis reveals that PKM2 silencing reduces senescent biomarker p16 INK4a expression. Compared with low-passage chondrocytes, high-passage chondrocytes exhibit increased expression of p16 INK4a and reduced expression of COL2A1. Silencing of PKM2 reduces SA-β-Gal signals and increases COL2A1 expression in high-passage chondrocytes. Seahorse assay reveals that PKM2 deletion favors the tricarboxylic acid cycle in mitochondria in low- but not in high-passage chondrocytes. In summary, the glycolytic enzyme PMK2 modulates chondrocyte senescence but does not participate in the regulation of inflammation.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenzhong Wang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyu Weng
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Yang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hong Zhao
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yueqi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qinming Fei
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Shi
- Biomedical Research CentreZhongshan HospitalFudan UniversityShanghai200032China
| | - Chi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
11
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
12
|
Kim DK, Kang SH, Kim JS, Kim YG, Lee YH, Lee DY, Ahn SY, Moon JY, Lee SH, Jeong KH, Hwang HS. Clinical implications of circulating follistatin-like protein-1 in hemodialysis patients. Sci Rep 2023; 13:6637. [PMID: 37095121 PMCID: PMC10126138 DOI: 10.1038/s41598-023-33545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
Follistatin-like protein-1 (FSTL-1) is secreted glycoprotein, which regulates cardiovascular, immune and skeletal system. However, the clinical significance of circulating FSTL-1 levels remains unclear in hemodialysis patients. A total 376 hemodialysis patients were enrolled from June 2016 to March 2020. Plasma FSTL-1 level, inflammatory biomarkers, physical performance, and echocardiographic findings at baseline were examined. Plasma FSTL-1 levels were positively correlated with TNF-α and MCP-1. Handgrip strength showed weak positive correlation in male patients only, and gait speed showed no correlation with FSTL-1 levels. In multivariate linear regression analysis, FSTL-1 level was negatively associated with left ventricular ejection fraction (β = - 0.36; p = 0.011). The cumulative event rate of the composite of CV event and death, and cumulative event rate of CV events was significantly greater in FSTL-1 tertile 3. In multivariate Cox-regression analysis, FSTL-1 tertile 3 was associated with a 1.80-fold risk for the composite of CV events and death(95% confidence interval (CI) 1.06-3.08), and a 2.28-fold risk for CV events (95% CI 1.15-4.51) after adjustment for multiple variables. In conclusion, high circulating FSTL-1 levels independently predict the composite of CV events and death, and FSTL-1 level was independently associated with left ventricular systolic dysfunction.
Collapse
Affiliation(s)
- Dae Kyu Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Seok Hui Kang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Dong-Young Lee
- Division of Nephrology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Shin Young Ahn
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ju Young Moon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
Affiliation(s)
- Chuansha Gu
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Hua Xue
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| | - Xiaoli Yang
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Yu Nie
- School of Basic Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Xinlai Qian
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| |
Collapse
|
14
|
Zhang Q, Ye J, Yang G, Yang L, Chen Z, Yang K, Sun JT, Liu Y. Role of follistatin-like 1 levels and functions in calcific aortic stenosis. Front Cardiovasc Med 2023; 9:1050310. [PMID: 36684598 PMCID: PMC9852832 DOI: 10.3389/fcvm.2022.1050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Background Calcific aortic valve disease (CAVD) is a progressive disease resulting in severe calcific aortic stenosis (AS), and there is increasing interest in the discovery of novel biomarkers to identify patients with potential future calcific AS at an early stage. This study aimed to determine whether follistatin-like 1 (FSTL1) is associated with calcific AS events and its exact role in aortic valve calcification. Methods A prospective observational cohort study involving 656 patients was performed to investigate the relationship between serum FSTL1 and calcific AS incidence during a follow-up of 5 years. Furthermore, we detected FSTL1 levels in valvular interstitial cells (VICs) from calcified valves and explored the effects of FSTL1 on VIC osteogenic differentiation in vitro as well as the signaling pathways involved. Results During a median follow-up of 5 years, lower FSTL1 levels were associated with a significantly higher risk of calcific AS events (log rank test, P = 0.007). In addition, Cox multivariable regression analyses verified the predictive value of FSTL1 after adjusting for both demographic features and laboratory confounders. Consistent with our results for serum, a lower concentration of FSTL1 was observed in calcified human valves (n = 11) and mainly colocalized with VICs. Recombinant human FSTL1 (rhFSTL1) stimulation inhibited calcium deposition, alkaline phosphatase (ALP) activity, and osteogenic gene expression partly through the downregulation of the ERK1/2 pathway. Conclusion Taken together, this study provides a strong rationale to consider FSTL1 as a potential therapeutic target for calcific AS.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Ye
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gan Yang
- Department of Cardiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Ke Yang,
| | - Jia Teng Sun
- Department of Cardiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China,Jia Teng Sun,
| | - Yan Liu
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yan Liu,
| |
Collapse
|
15
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
16
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
17
|
Blocking FSTL1 boosts NK immunity in treatment of osteosarcoma. Cancer Lett 2022; 537:215690. [DOI: 10.1016/j.canlet.2022.215690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
|
18
|
Follistatin-Like 1 Induces the Activation of Type 2 Innate Lymphoid Cells to Promote Airway Inflammation in Asthma. Inflammation 2021; 45:904-918. [PMID: 34757553 DOI: 10.1007/s10753-021-01594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Asthma is a chronic disease closely related to airway inflammation. It has been proven that type 2 innate lymphoid cells (ILC2s) play an essential role in airway inflammation in asthma. Furthermore, there is growing evidence that Follistatin-like 1 (FSTL1) can participate in various inflammatory reactions mediated by the JAK/STAT signaling pathway, among others. Therefore, we put forward a new hypothesis: FSTL1 promotes asthmatic airway inflammation by activating ILC2. This study generated an ovalbumin-sensitized asthma model in C57BL/6 and Fstl1+/- mice. The results showed that the absolute number and the proportion of ILC2 in the ovalbumin-challenged Fstl1+/- group were lower than in the ovalbumin-challenged wild-type group. We also measured the levels of Th2-type cytokines in the serum and bronchoalveolar lavage fluid (BALF) of mice and found that the corresponding cytokines in the Fstl1+/- were lower than in the wild-type groups. Finally, we tested whether MEK-JAK-STAT-GATA3 is the specific pathway for FSTL1 to activate ILC2, and further tested our working hypothesis by adding various inhibitors of proteins from this pathway. Overall, these findings reveal that FSTL1 can activate ILC2 through MEK-JAK-STAT-GATA3 to promote airway inflammation and participate in the pathogenesis of asthma.
Collapse
|
19
|
Wen L, Gao M, He Z, Guo P, Liu Z, Zhang P, Zhang F, Chen D, Zhou G, Zhou Z. Noggin, an inhibitor of bone morphogenetic protein signaling, antagonizes TGF-β1 in a mouse model of osteoarthritis. Biochem Biophys Res Commun 2021; 570:199-205. [PMID: 34298323 DOI: 10.1016/j.bbrc.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease worldwide; however, disease-modifying treatments are lacking because of the complicated pathological mechanisms. As a breakthrough, aberrant activation of transforming growth factor-β 1 (TGF-β1)in subchondral bone has been confirmed as an essential pathomechanism for OA progression, and has become a potential therapeutic target. In addition to R&D on neutralizing antibodies, small-molecule antagonists and chemical medicines, native antagonists of TGF-β1 could be exploited as another promising approach. Noggin (NOG) is an antagonist of bone morphogenetic proteins (BMPs) and was reported to effectively attenuate OA by protecting cartilage and preventing pathological subchondral bone remodeling. However, the underlying mechanisms have not been fully clarified. We first detected the distribution of NOG in knee joints of an OA mouse model, which showed upregulation at early stage of OA but downregulation later in the subchondral bone and no significant change in the articular cartilage. Furthermore, the interaction between NOG and TGF-β1 was verified, which in turn suppressed the downstream SMAD2/3 activity of TGF-β1. Moreover, the proliferation and chondrogenesis of mesenchymal stem cells (MSCs) were not significantly influenced by NOG. Taken together, the results showed that NOG antagonized TGF-β1 but did not repress MSC proliferation and chondrogenesis; thus, it seems promising for OA treatment.
Collapse
Affiliation(s)
- Liru Wen
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China.
| | - Manman Gao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China; Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhongyuan He
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Peng Guo
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhen Liu
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China.
| | - Penghui Zhang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Fu Zhang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, 100035, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China.
| | - Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|
21
|
Follistatin-Like 1 Attenuation Suppresses Intervertebral Disc Degeneration in Mice through Interacting with TNF- α and Smad Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6640751. [PMID: 33936382 PMCID: PMC8055391 DOI: 10.1155/2021/6640751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Background Inflammation plays an important role in intervertebral disc degeneration (IDD). The protein follistatin-like 1 (FSTL1) plays a proinflammatory role in a variety of inflammatory diseases. Objectives The purpose of this study was to investigate whether IDD could be delayed by inhibiting FSTL-1 expression. Methods We established a puncture-induced IDD model in wild-type and FSTL-1+/- mice and collected intervertebral discs (IVDs) from the mice. Safranin O staining was used to detect cartilage loss of IVD tissue, and HE staining was used to detect morphological changes of IVD tissue. We measured the expression of FSTL-1 and related inflammatory indicators in IVD tissues by immunohistochemical staining, real-time PCR, and Western blotting. Results In the age-induced model of IDD, the level of FSTL-1 increased with the exacerbation of degeneration. In the puncture-induced IDD model, FSTL-1-knockdown mice showed a reduced degree of degeneration compared with that of wild-type mice. Further experiments showed that FSTL-1 knockdown also significantly reduced the level of related inflammatory factors in IVD. In vitro experiments showed that FSTL-1 knockdown significantly reduced TNF-α-induced inflammation. Specifically, the expression levels of the inflammatory factors COX-2, iNOS, MMP-13, and ADAMTS-5 were reduced. Knockdown of FSTL-1 attenuated inflammation by inhibiting the expression of P-Smad1/5/8, P-Erk1/2, and P-P65. Conclusion Knockdown of FSTL-1 attenuated inflammation by inhibiting the TNF-α response and Smad pathway activity and ultimately delayed IDD.
Collapse
|
22
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
23
|
Kumavat R, Kumar V, Malhotra R, Pandit H, Jones E, Ponchel F, Biswas S. Biomarkers of Joint Damage in Osteoarthritis: Current Status and Future Directions. Mediators Inflamm 2021; 2021:5574582. [PMID: 33776572 PMCID: PMC7969115 DOI: 10.1155/2021/5574582] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a disease of the whole joint organ, characterized by the loss of cartilage, and structural changes in bone including the formation of osteophytes, causing disability and loss of function. It is also associated with systemic mediators and low-grade inflammation. Currently, there is negligible/no availability of specific biomarkers that can be used to facilitate the diagnosis and treatment of OA. The most unmet clinical need is, however, related to the monitoring of disease progression over a short period that can be used in clinical trials. In this review, the value of biomarkers identified over the past decade has been highlighted. These biomarkers are associated with the synthesis and breakdown of cartilage, including collagenous and noncollagenous biomarkers, inflammatory and anti-inflammatory biomarkers, expressed in the biological fluid such as serum, synovial fluid, and urine. Broad validation of novel and clinically applicable biomarkers and their involvement in the pathways are particularly needed for early-stage diagnosis, monitoring disease progression, and severity and examining new drugs to mitigate the effects of this highly prevalent and debilitating condition.
Collapse
Affiliation(s)
- Rajkamal Kumavat
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rajesh Malhotra
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, The University of Leeds, Leeds, UK
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics & Integrative Biology, Mall Road, -110007, Delhi, India
| |
Collapse
|
24
|
Wang B, Li J, Tian F. Downregulation of lncRNA SNHG14 attenuates osteoarthritis by inhibiting FSTL-1 mediated NLRP3 and TLR4/NF-κB pathway through miR-124-3p. Life Sci 2021; 270:119143. [PMID: 33539913 DOI: 10.1016/j.lfs.2021.119143] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is the joint pain and dysfunction syndrome caused by severe joint degeneration. The overproduced inflammatory mediators contribute greatly to OA development. It is reported that long non-coding RNA (lncRNA) takes part in many inflammatory diseases. Here, we mainly explored the function of lncRNA SNHG14 in OA process and its specific mechanisms. An OA rat model was induced by destabilizing the medial meniscus (DMM) and IL-1β (5 ng/mL) was used to mediate an OA cell model in particular chondrocytes (AC). Gain- or loss-of functional assays of SNHG14 and miR-124-3p were carried out to explore their roles in OA development. The experimental statistics illustrated that lncRNA SNHG14 and IL-1β mRNA expression were both increased in OA tissues, while miR-124-3p was lowly-expressed. Linear regression analysis showed that SNHG14 and miR-124-3p had negative relationship in the OA tissues. In the in vitro experiments, downregulation of lncRNA SNHG14 promoted the proliferation of IL-1β-treated AC and inhibited cell apoptosis and COX-2, iNOS, TNF-α, IL-6 expression. Moreover, lncRNA SNHG14 inhibited miR-124-3p expression as a miRNA sponge. MiR-124-3p targeted the 3'non-translated region (3'UTR) of FSTL-1 and TLR4 and inhibited their expressions. Also, the in vivo experiments confirmed that knocking down SNHG14 relieved the progression of OA in rats via inhibiting inflammatory responses. In conclusion, this study confirmed that downregulation of lncRNA SNHG14 inhibits FSTL-1-mediated activation of NLRP3 and TLR4/NF-κB signalling pathway activation by targeting miR-124-3p, thus attenuating inflammatory reactions in OA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Jingyu Li
- Ultrasonic Department, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Feng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| |
Collapse
|
25
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed Pharmacother 2020; 130:110617. [DOI: 10.1016/j.biopha.2020.110617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
|