1
|
Duan X, Li J, Cui J, Li H, Hasan B, Xin X. Chemical component and in vitro protective effects of Matricaria chamomilla (L.) against lipopolysaccharide insult. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115471. [PMID: 35716917 DOI: 10.1016/j.jep.2022.115471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamomile (Matricaria chamomilla L.) is a popular herbal tea for the treatment of hepatitis and cholecystitis in traditional Uygur medicines. AIM OF THE STUDY To investigate the anti-inflammatory activity and chemical composition of M. chamomilla, and clarify its molecular mechanism. MATERIALS AND METHODS M. chamomilla was extracted with 75% ethanol and then extracted with different solvents to obtain five fractions, namely petroleum ether fraction (EOPE), dichloromethane fraction (EOD), ethyl acetate fraction (EOEA), n-butanol fraction (EOB), and water fraction (EOW). Cytotoxicity and the effect on the nitric oxide (NO) production of RAW264.7 cells induced by LPS of the five fractions were screened, and the most active one (EOD) was selected for further investigations. The components of EOD were identified by LC-MS/MS analysis in combination with comparison of retention time and UV absorption with authentic compounds by HPLC. In addition, five most abundant compounds of EOD were isolation by column chromatography and semi-preparative HPLC and their structures were further confirmed by HRMS and NMR data analysis and comparison with data in literatures. Then the underlying anti-inflammatory mechanism of EOD were predicted through Network pharmacology using the identified compounds from EOD, and further verified by Western Blot and ELISA experiments. RESULTS EOD showed the most significant inhibition ratio against NO in RAW264.7 cells without toxicity among the tested five fractions. Thirty-seven compounds including flavonoid-O-glycoside, flavonoid aglycone, methylated flavonoid aglycone, phenolic acid, coumarin, sesquiterpene, and triterpene were identified from EOD by LC-MS/MS and comparison with authentic compounds. The five most abundant compounds in EOD were isolated and determined to be axillarin (26), tricin (30), chrysoeriol (31), centaureidin (33) and chrysosplenetin (35). IL-6, NF-κB, ERK1 and ERK2 cascade, TNF were the most important anti-inflammatory targets of EOD predicted by Network pharmacology. Western Blot and ELISA experiments revealed that EOD significantly decreased the protein expression levels of inflammatory factors (PGE2, MCP-1, IL-6, TNF-α), iNOS, COX-2, NF-κB (p-P65 and p-IκBα), MAPKs (p-p38, p-ERK and p-JNK), and increased the protein expression levels of Nrf2, HO-1 and CYP2E1. In addition, EOD blocked the p65 protein into the nucleus and promoted the nuclear translocation of Nrf2 in RAW264.7 cells induced by LPS. CONCLUSION M. chamomilla exerted anti-inflammatory effect via NF-κB, MAPK and Nrf2/HO-1 pathways. It could be further applied as a safe anti-inflammatory agent from natural source.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongliang Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilal Hasan
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Department of Cardiology, Laboratory of Pulmonary Hypertension, 116 Huanghe Rd, Urumqi, Xinjiang, China.
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Elucidation of the Underlying Mechanism of Gujian Oral Liquid Acting on Osteoarthritis through Network Pharmacology, Molecular Docking, and Experiment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9230784. [PMID: 35937393 PMCID: PMC9352474 DOI: 10.1155/2022/9230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Gujian oral liquid (GJ), a traditional herbal formula in China, has been widely used to treat patients with osteoarthritis (OA). Nevertheless, the active component and potential mechanism of GJ are not fully elucidated. Thus, we investigate the effect of GJ and explore its underlying mechanism on OA through network pharmacology and experimental validation. First, a total of 175 bioactive compounds were identified, and 134 overlapping targets were acquired after comparing the targets of the GJ with those of OA. 8 hub targets, including IL6 and AKT1, were obtained in PPI network analysis. Then, we built up GJ-target-OA network and protein-protein interaction (PPI) network, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results underlined inflammatory tumor necrosis factor (TNF) as a promising signaling pathway of GJ for OA treatment. Moreover, molecular docking also verified the top two active compounds had direct bindings with the top three target genes. Finally, we verified the effect of GJ on OA in vivo and in vitro. In vivo experiments validated that GJ not only significantly attenuated OA phenotypes including articular cartilage degeneration and subchondral bone sclerosis but also reduced the expressions of tumor necrosis factor-α (TNF-α) and p-p65 in articular chondrocytes. Besides, GJ serum also had a protective effect on chondrocytes against inflammation caused by TNF-α in vitro. Hence, our study predicted and verified that GJ could exert anti-inflammation and anticatabolism effects partially via regulating TNF-α/NF-kappa B (NF-κB) signaling.
Collapse
|
3
|
Heimfarth L, Rezende MM, Pereira EWM, Passos FRS, Monteiro BS, Santos TKB, Lima NT, Souza ICL, de Albuquerque Junior RLC, de Souza Siqueira Lima P, de Souza Araújo AA, Quintans Júnior LJ, Kim B, Coutinho HDM, de Souza Siqueira Quintans J. Pharmacological effects of a complex α-bisabolol/β-cyclodextrin in a mice arthritis model with involvement of IL-1β, IL-6 and MAPK. Biomed Pharmacother 2022; 151:113142. [PMID: 35623175 DOI: 10.1016/j.biopha.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
Inflammatory arthritis is the most prevalent chronic inflammatory disease worldwide. The pathology of the disease is characterized by increased inflammation and oxidative stress, which leads to chronic pain and functional loss in the joints. Conventional anti-arthritic drugs used to relieve pain and other arthritic symptoms often cause severe side effects. α-bisabolol (BIS) is a sesquiterpene that exhibits high anti-inflammatory potential and a significant antinociceptive effect. This study evaluates the anti-arthritic, anti-inflammatory and antihyperalgesic effects of BIS alone and in a β-cyclodextrin (βCD/BIS) inclusion complex in a CFA-induced arthritis model. Following the intra-articular administration of CFA, male mice were treated with vehicle, BIS and βCD/BIS (50 mg/kg, p.o.) or a positive control and pain-related behaviors, knee edema and inflammatory and oxidative parameters were evaluated on days 4, 11, 18 and/or 25. Ours findings shows that the oral administration of BIS and βCD/BIS significantly attenuated spontaneous pain-like behaviors, mechanical hyperalgesia, grip strength deficit and knee edema induced by repeated injections of CFA, reducing the joint pain and functional disability associated with arthritis. BIS and βCD/BIS also inhibited the generation of inflammatory and oxidative markers in the knee and blocked MAPK in the spinal cord. In addition, ours results also showed that the incorporation of BIS in cyclodextrin as a drug delivery system improved the pharmacological profile of this substance. Therefore, these results contribute to the pharmacological knowledge of BIS and demonstrated that this terpene appears to be able to mitigate deleterious symptoms of arthritis.
Collapse
Affiliation(s)
- Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marília Matos Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Erik Willyame Menezes Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Tiffany Karoline Barroso Santos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Natália Teles Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Isana Carla Leal Souza
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Tiradentes University (UNIT), Aracaju, SE, Brazil
| | | | - Pollyana de Souza Siqueira Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, Brazil.
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
4
|
Li G, Wu H, Sun L, Cheng K, Lv Z, Chen K, Qian F, Li Y. (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules 2022; 27:molecules27133985. [PMID: 35807237 PMCID: PMC9268635 DOI: 10.3390/molecules27133985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
(-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L., which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In IgE-mediated BMMCs, the levels of β-hexosaminidase (β-hex), histamine, and tumor necrosis factor (TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases (Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic dermatitis and other mast-cell-related diseases.
Collapse
Affiliation(s)
- Guangxia Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Huayan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Liqin Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Correspondence: (F.Q.); (Y.L.)
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Correspondence: (F.Q.); (Y.L.)
| |
Collapse
|
5
|
α-Bisabolol Mitigates Colon Inflammation by Stimulating Colon PPAR-γ Transcription Factor: In Vivo and In Vitro Study. PPAR Res 2022; 2022:5498115. [PMID: 35465355 PMCID: PMC9020997 DOI: 10.1155/2022/5498115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD, Crohn’s disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1β, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and β/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and β/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.
Collapse
|
6
|
The Nephroprotective Effects of α-Bisabolol in Cisplatin-Induced Acute Kidney Injury in Mice. Biomedicines 2022; 10:biomedicines10040842. [PMID: 35453592 PMCID: PMC9032774 DOI: 10.3390/biomedicines10040842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/24/2023] Open
Abstract
Cisplatin (CP) treatment has been long associated with the development of acute kidney injury (AKI) through mechanisms involving inflammation and oxidative stress. α-Bisabolol (BIS), a sesquiterpene alcohol isolated from the essential oil of various plants, including chamomile, has garnered popularity lately due to its antioxidant, anti-inflammatory, and anticancer properties. Therefore, we investigated the nephroprotective effects of BIS in the murine model of CP-induced AKI and the underlying mechanism of action. BALB/c mice were given BIS orally at 25 mg/kg for 7 days. On day 7, they were given a single dose of CP at 20 mg/kg intraperitoneally. BIS treatment continued for 3 more days. The animals were sacrificed at the end of the experiment (day 11). Kidneys, plasma, and urine were collected, and subsequently, various physiological, biochemical, and histological parameters were assessed. BIS has significantly normalized the alterations of water intake, urine volume, relative kidney weight, and the concentrations of urea and creatinine, as well as the creatinine clearance induced by CP treatment. BIS significantly mitigated the effects of CP-induced kidney injury by reducing kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, adiponectin, and cystatin C. Likewise, the renal concentrations of proinflammatory cytokines, tumor necrosis factor α, interleukin (IL)-6 and IL-1β that were elevated in CP group were significantly reduced in mice treated with BIS and CP. A similar significant reduction was also observed in the CP-induced augmented levels of markers of oxidative stress, as well as the metabolite pteridine. Moreover, BIS significantly reduced the CP–induced renal DNA damage, and markedly lessened the acute tubular necrosis observed in kidney histology. Additionally, BIS significantly reduced the CP-induced increase in the phosphorylated nuclear factor κB (NFκB) in the kidney. These data strongly suggest that BIS exerts a protective action against CP-induced nephrotoxicity by mitigating inflammation and oxidative stress through the inhibition of NFκB activation. No overt adverse effects were noted with BIS treatment. Additional investigations should be done to consider BIS as an efficacious nephroprotective agent against CP.
Collapse
|
7
|
Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022; 14:nu14071370. [PMID: 35405982 PMCID: PMC9002489 DOI: 10.3390/nu14071370] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
α-Bisabolol is one of the important monocyclic sesquiterpenes, derived naturally from essential oils of many edible and ornamental plants. It was first obtained from Matricaria chamomilla, commonly known as chamomile or German chamomile. The available literature indicates that this plant along with other α-Bisabolol containing plants is popularly used in traditional medicine for potential health benefits and general wellbeing. Nutritional studies are indicative of the health benefits of α-Bisabolol. Numerous experimental studies demonstrated pharmacological properties of α-Bisabolol including anticancer, antinociceptive, neuroprotective, cardioprotective, and antimicrobial. This review aims to collectively present different pharmacological activities based on both in vitro and in vivo studies. In the present review using synoptic tables and figures, we comprehensively present that α-Bisabolol possesses therapeutic and protective activities, therefore, it can be used for potential health benefits based on pharmacological effects, underlying molecular mechanism, and favorable pharmaceutical properties. Based on the studies mostly performed on cell lines or animal models, it is evident that α-Bisabolol may be a promising nutraceutical and phytomedicine to target aberrant biological mechanisms which result in altered physiological processes and various ailments. Given the polypharmacological effects and pleiotropic properties, along with favorable pharmacokinetics, and dietary availability and safety, α-Bisabolol can be used as a dietary agent, nutraceutical or phytopharmaceutical agent or as an adjuvant with currently available modern medicines. The regulatory approval of this molecule for use as food additives, and in cosmetics and fragrance industry is also supportive of its human usage. Moreover, further studies are necessary to address pharmaceutical, pharmacological, and toxicological aspects before clinical or nutritional usage in humans. The biological actions and health benefits open opportunities for pharmaceutical development with pharmacological basis of its use in future therapeutics.
Collapse
|
8
|
Research Progress on the Antiosteoarthritic Mechanism of Action of Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7714533. [PMID: 34630617 PMCID: PMC8497106 DOI: 10.1155/2021/7714533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Background Osteoarthritis (OA) is a clinical joint degenerative disease, the pathogenic factors of which include age, obesity, and mechanical injury. Its main pathological features include cartilage loss, narrowing of joint space, and osteophyte formation. At present, there are a variety of treatment methods for OA. Natural products, which are gradually being applied in the treatment of OA, are advantageous as they present with low toxicity and low costs and act on multiple targets. Methods The terms “natural products,” “osteoarthritis,” and “chondrocytes” were searched in PubMed to screen the related literature in the recent 10 years. Results We comprehensively introduced 62 published papers on 48 natural products involving 6, 3, 5, 12, 4, and 5 kinds of terpenoids, polysaccharides, polyphenols, flavonoids, alkaloids, and saponins, respectively (and others). Conclusion The mechanisms of their anti-OA action mainly involve reducing the production of inflammatory factors, reducing oxidative stress, regulating the metabolism of chondrocytes, promoting the proliferation of chondrocytes, or inhibiting chondrocyte apoptosis. This article summarizes the anti-OA activity of natural products in the last 10 years and provides candidate monomers for further study for use in OA treatment.
Collapse
|
9
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
10
|
Chircov C, Miclea II, Grumezescu V, Grumezescu AM. Essential Oils for Bone Repair and Regeneration-Mechanisms and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1867. [PMID: 33918697 PMCID: PMC8069393 DOI: 10.3390/ma14081867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Although bone possesses a remarkable capacity for self-remodeling and self-healing of small defects, the continuously increasing growth of bone diseases in the elderly population is becoming a significant burden, affecting individual life quality and society. Conventional treatment options involve surgical procedures for repair and reconstruction, local debridement, autografts or allografts, bone transport, Masquelet's two-stage reconstructions, and vascularized bone transplants. However, as such approaches often lead to disruptions of bone-regeneration processes and microbial contaminations and are often inefficient, researchers focus on developing bone-regenerative strategies and identifying novel therapeutic agents that could aid the bone-healing process. In this regard, plant-derived biocompounds, especially essential oils (EOs), have received great scientific attention in recent years, owing to their antioxidant, anti-inflammatory, and antimicrobial effects. Current studies focus on either the direct application of EOs on bone tissue or the introduction of EOs as bioactive compounds in bone scaffolds or as coatings for bone implants. Some of the EOs investigated involve St. John's wort, rosemary, thyme, ylang, white poplar, eucalyptus, lavender, and grape seed. In this context, the present paper aims to provide an overview of the main mechanisms involved in bone repair and regeneration and the potential of EOs to address and enhance these mechanisms.
Collapse
Affiliation(s)
- Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
| | - Ion Iulian Miclea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (C.C.); (I.I.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
11
|
Liu Y, Yang Y, Ding L, Jia Y, Ji Y. LncRNA MIR4435-2HG inhibits the progression of osteoarthritis through miR-510-3p sponging. Exp Ther Med 2020; 20:1693-1701. [PMID: 32742398 PMCID: PMC7388355 DOI: 10.3892/etm.2020.8841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a disorder of diarthrodial joints that can have multiple causes. Long non-coding RNAs (lncRNAs) participate in multiple diseases, including OA. It has recently been reported that the lncRNA microRNA 4435-2HG (MIR4435-2HG) is downregulated in OA tissues; however, the biological role of MIR4435-2HG during OA progression remains unclear. In the present study, interleukin (IL)-1β was used to establish an in vitro model of OA. Protein expressions of matrix metallopeptidase (MMP) 1, MMP13, collagen II, interleukin (IL)-17A, p65, phosphorylated (p)-p65, IκB and p-IκB in CHON-001 cells were detected by western blotting. Gene expressions of IL-17A, MIR4435-2HG and miR-510-3p in tissues or CHON-001 cells were measured by reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assay and immunofluorescence staining were used to investigate cell proliferation, and cell apoptosis was detected by flow cytometry. The association between MIR4435-2HG, miR-510-3p and IL-17A was investigated using the dual luciferase report assay. MIR4435-2HG and miR-510-3p overexpression were transfected into CHON-001 cells. The results demonstrated that miR4435-2HG overexpression significantly increased proliferation and inhibited apoptosis of CHON-001 cells. In addition, miR-510-3p was identified as the downstream target of MIR4435-2HG, and miR-510-3p directly targeted IL-17A. The results from the present study suggested that MIR4435-2HG could mediate the progression of OA by inactivating the NF-κB signaling pathway. In addition, miR4435-2HG overexpression inhibited OA progression, suggesting that miR4435-2HG may be considered as a potential therapeutic target in OA.
Collapse
Affiliation(s)
- Yingli Liu
- Rehabilitation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yun Yang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Liangjia Ding
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuqin Jia
- Department of ICU (Intensive Care Unit), The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuntao Ji
- Department of Education office, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| |
Collapse
|