1
|
Zheng ZL, Ma JW, Luo Y, Liang GJ, Lei SJ, Yan KJ, Meng HB, Liu XJ. Mechanism of dexmedetomidine protection against cisplatin induced acute kidney injury in rats. Ren Fail 2024; 46:2337287. [PMID: 38627212 PMCID: PMC11022910 DOI: 10.1080/0886022x.2024.2337287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 μg/kg, and CP + Dex 25 μg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Zeng-lu Zheng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Jun-wei Ma
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Yi Luo
- Department of Respiratory, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Gui-jin Liang
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Shi-jie Lei
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Ke-jin Yan
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Hai-bing Meng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Xiu-juan Liu
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| |
Collapse
|
2
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Lu F, Wang R, Cheng Y, Li X. Preconditioning with β-hydroxybutyrate attenuates lung ischemia-reperfusion injury by suppressing alveolar macrophage pyroptosis through the SIRT1-FOXO3 signaling pathway. FASEB J 2024; 38:e70027. [PMID: 39221615 DOI: 10.1096/fj.202401188r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The complex pathogenesis of lung ischemia-reperfusion injury (LIRI) was examined in a murine model, focusing on the role of pyroptosis and its exacerbation of lung injury. We specifically examined the levels and cellular localization of pyroptosis within the lung, which revealed alveolar macrophages as the primary site. The inhibition of pyroptosis by VX-765 reduced the severity of lung injury, underscoring its significant role in LIRI. Furthermore, the therapeutic potential of β-hydroxybutyrate (β-OHB) in ameliorating LIRI was examined. Modulation of β-OHB levels was evaluated by ketone ester supplementation and 3-hydroxybutyrate dehydrogenase 1 (BDH-1) gene knockout, along with the manipulation of the SIRT1-FOXO3 signaling pathway using EX-527 and pCMV-SIRT1 plasmid transfection. This revealed that β-OHB exerts lung-protective and anti-pyroptotic effects, which were mediated through the upregulation of SIRT1 and the enhancement of FOXO3 deacetylation, leading to decreased pyroptosis markers and lung injury. In addition, β-OHB treatment of MH-S cells in vitro showed a concentration-dependent improvement in pyroptosis, linking its therapeutic benefits to specific cell mechanisms. Overall, this study highlights the significance of alveolar macrophage pyroptosis in the exacerbation of LIRI and indicates the potential of β-OHB in mitigating injury by modulating the SIRT1-FOXO3 signaling pathway.
Collapse
Affiliation(s)
- Fan Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Rurong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - XueHan Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07579-9. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Sun Q, Kamath P, Sun Y, Liang M, Wu L, Chang E, Chen Q, Alam A, Liu Y, Zhao H, Ma D. Dexmedetomidine attenuates lipopolysaccharide-induced renal cell fibrotic phenotypic changes by inhibiting necroinflammation via activating α 2-adrenoceptor: A combined randomised animal and in vitro study. Biomed Pharmacother 2024; 174:116462. [PMID: 38513598 DOI: 10.1016/j.biopha.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) was reported to be one of the initiators of chronic kidney disease (CKD) development. Necroinflammation may contribute to the progression from AKI to CKD. Dexmedetomidine (Dex), a highly selective α2-adrenoreceptor (AR) agonist, has cytoprotective and "anti-" inflammation effects. This study was designed to investigate the anti-fibrotic properties of Dex in sepsis models. METHODS C57BL/6 mice were randomly treated with an i.p. injection of lipopolysaccharides (LPS) (10 mg/kg) alone, LPS with Dex (25 μg/kg), or LPS, Dex and Atipamezole (Atip, an α2-adrenoreceptor antagonist) (500 μg/kg) (n=5/group). Human proximal tubular epithelial cells (HK2) were also cultured and then exposed to LPS (1 μg/ml) alone, LPS and Dex (1 μM), transforming growth factor-beta 1 (TGF-β1) (5 ng/ml) alone, TGF-β1 and Dex, with or without Atip (100 μM) in culture media. Epithelial-mesenchymal transition (EMT), cell necrosis, necroptosis and pyroptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were then determined. RESULTS Dex treatment significantly alleviated LPS-induced AKI, myofibroblast activation, NLRP3 inflammasome activation, and necroptosis in mice. Atip counteracted its protective effects. Dex attenuated LPS or TGF-β1 induced EMT and also prevented necrosis, necroptosis, and pyroptosis in response to LPS stimulation in the HK2 cells. The anti-EMT effects of Dex were associated with JNK phosphorylation. CONCLUSIONS Dex reduced EMT following LPS stimulation whilst simultaneously inhibiting pyroptosis and necroptosis via α2-AR activation in the renal tubular cells. The "anti-fibrotic" and cytoprotective properties and its clinical use of Dex need to be further studied.
Collapse
Affiliation(s)
- Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Priyanka Kamath
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yibing Sun
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Min Liang
- Department of Anaesthesiology, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yi Liu
- Department of Anaesthesiology, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University), Shanxi Province, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, National Clinical Research Center for Child Health, Children's hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Liu XY, Zhang LY, Wang XY, Li SC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M. STAT4-Mediated Klotho Up-Regulation Contributes to the Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning via Inhibiting Neuronal Pyroptosis. Mol Neurobiol 2024; 61:2336-2356. [PMID: 37875707 DOI: 10.1007/s12035-023-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt - 881 and - 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Yu Wang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Shi-Chao Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China.
| |
Collapse
|
8
|
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024; 51:473. [PMID: 38553658 PMCID: PMC10980643 DOI: 10.1007/s11033-024-09261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| |
Collapse
|
9
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
10
|
Dai YN, Wang LT, Zhang YS, Xue L, He PC, Tan N, Liu YH. Ticagrelor alleviates pyroptosis of myocardial ischemia reperfusion-induced acute lung injury in rats: a preliminary study. PeerJ 2024; 12:e16613. [PMID: 38188139 PMCID: PMC10771767 DOI: 10.7717/peerj.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary infection is highly prevalent in patients with acute myocardial infarction undergoing percutaneous coronary intervention. However, the potential mechanism is not well characterized. Myocardial ischemia-reperfusion injury (MIRI) induces acute lung injury (ALI) related to pulmonary infection and inflammation. Recent studies have shown that pyroptosis mediates ALI in several human respiratory diseases. It is not known whether MIRI induces pyroptosis in the lungs. Furthermore, ticagrelor is a clinically approved anti-platelet drug that reduces ALI and inhibits the expression levels of several pyroptosis-associated proteins, but the effects of ticagrelor on MIRI-induced ALI have not been reported. Therefore, we investigated whether ticagrelor alleviated ALI in the rat MIRI model, and its effects on pyroptosis in the lungs. Sprague-Dawley rats were randomly divided into four groups: control, MIRI, MIRI plus low ticagrelor (30 mg/kg), and MIRI plus high ticagrelor (100 mg/kg). Hematoxylin and Eosin (HE) staining was performed on the lung sections, and the HE scores were calculated to determine the extent of lung pathology. The wet-to-dry ratio of the lung tissues were also determined. The expression levels of pyroptosis-related proteins such as NLRP3, ASC, and Cleaved caspase-1 were estimated in the lung tissues using the western blot. ELISA was used to estimate the IL-1β levels in the lungs. Immunohistochemistry was performed to determine the levels of MPO-positive neutrophils as well as the total NLRP3-positive and Cleaved caspase-1-positive areas in the lung tissues. The lung tissues from the MIRI group rats showed significantly higher HE score, wet-to-dry ratio, and the MPO-positive area compared to the control group, but these effects were attenuated by pre-treatment with ticagrelor. Furthermore, lung tissues of the MIRI group rats showed significantly higher expression levels of pyroptosis-associated proteins, including NLRP3 (2.1-fold, P < 0.05), ASC (3.0-fold, P < 0.01), and Cleaved caspase-1 (9.0-fold, P < 0.01). Pre-treatment with the high-dose of ticagrelor suppressed MIRI-induced upregulation of NLRP3 (0.46-fold, P < 0.05), ASC (0.64-fold, P < 0.01), and Cleaved caspase-1 (0.80-fold, P < 0.01). Immunohistochemistry results also confirmed that pre-treatment with ticagrelor suppressed MIRI-induced upregulation of pyroptosis in the lungs. In summary, our data demonstrated that MIRI induced ALI and upregulated pyroptosis in the rat lung tissues. Pre-treatment with ticagrelor attenuated these effects.
Collapse
Affiliation(s)
- Yi-Ning Dai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Li-Tao Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ye-Shen Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ling Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Peng-Cheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yuan-Hui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangzhou, China
| |
Collapse
|
11
|
Jiao W, Hao J, Liu JM, Gao WN, Zhao JJ, Li YJ. Mesenchymal stem cells-derived extracellular vesicle-incorporated H19 attenuates cardiac remodeling in rats with heart failure. Kaohsiung J Med Sci 2024; 40:46-62. [PMID: 37885317 DOI: 10.1002/kjm2.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac remodeling is manifested by hypertrophy and apoptosis of cardiomyocytes, resulting in the progression of cardiovascular diseases. Long noncoding RNAs (lncRNAs) serve as modifiers of cardiac remodeling. In this study, we aimed to explore the molecular mechanism of H19 shuttled by mesenchymal stem cells (MSC)-derived extracellular vesicles (EV) in cardiac remodeling upon heart failure (HF). Using the GEO database, H19, microRNA (miR)-29b-3p, and CDC42 were screened out as differentially expressed biomolecules in HF. H19 and CDC42 were elevated, and miR-29b-3p was decreased after MSC-EV treatment in rats subjected to ligation of the coronary artery. MSC-EV alleviated myocardial injury in rats with HF. H19 downregulation exacerbated myocardial injury, while miR-29b-3p inhibitor alleviated myocardial injury. By contrast, CDC42 downregulation aggravated the myocardial injury again. PI3K/AKT pathway was activated by MSC-EV. These findings provide insights into how H19 shuttled by EV mitigates cardiac remodeling through a competitive endogenous RNA network regarding miR-29b-3p and CDC42.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jin-Ming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Wei-Nian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jia-Jia Zhao
- Graduate Academy of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yong-Jun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
12
|
Takahashi K, Yoshikawa Y, Kanda M, Hirata N, Yamakage M. Dexmedetomidine as a cardioprotective drug: a narrative review. J Anesth 2023; 37:961-970. [PMID: 37750978 DOI: 10.1007/s00540-023-03261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Dexmedetomidine (DEX), a highly selective alpha2-adrenoceptors agonist, is not only a sedative drug used during mechanical ventilation in the intensive care unit but also a cardio-protective drug against ischemia-reperfusion injury (IRI). Numerous preclinical in vivo and ex vivo studies, mostly evaluating the effect of DEX pretreatment in healthy rodents, have shown the efficacy of DEX in protecting the hearts from IRI. However, whether DEX can maintain its cardio-protective effect in hearts with comorbidities such as diabetes has not been fully elucidated. Multiple clinical trials have reported promising results, showing that pretreatment with DEX can attenuate cardiac damage in patients undergoing cardiac surgery. However, evidence of the post-treatment effects of DEX in clinical practice remains limited. In this narrative review, we summarize the previously reported evidence of DEX-induced cardio-protection against IRI and clarify the condition of the hearts and the timing of DEX administration that has not been tested. With further investigations evaluating these knowledge gaps, the use of DEX as a cardio-protective drug could be further facilitated in the management of patients undergoing cardiac surgery and might be considered in a broader area of clinical settings beyond cardiac surgery, including patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Kanako Takahashi
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yusuke Yoshikawa
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University, Kumamoto, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
13
|
Wang L, Liu J, Wang Z, Qian X, Zhao Y, Wang Q, Dai N, Xie Y, Zeng W, Yang W, Bai X, Yang Y, Qian J. Dexmedetomidine abates myocardial ischemia reperfusion injury through inhibition of pyroptosis via regulation of miR-665/MEF2D/Nrf2 axis. Biomed Pharmacother 2023; 165:115255. [PMID: 37549462 DOI: 10.1016/j.biopha.2023.115255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1β, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Dai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuhan Xie
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weijun Zeng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiangfeng Bai
- Department of Cardiac Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
14
|
An L, Zhong Y, Tan J, Liu Y, Li A, Yang T, Wang S, Liu Y, Gao H. Sevoflurane exerts protection against myocardial ischemia-reperfusion injury and pyroptosis through the circular RNA PAN3/microRNA-29b-3p/stromal cell-derived factor 4 axis. Int Immunopharmacol 2023; 120:110219. [PMID: 37270931 DOI: 10.1016/j.intimp.2023.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Sevoflurane is suggested to exert protective functions against myocardial ischemia-reperfusion injury (MIRI). However, the particular mechanism remains elusive. Therefore, this research explored the mechanism of sevoflurane in MIRI-induced damage and pyroptosis. METHODS Subsequent to gain-or loss-of-function assays or/and sevoflurane treatment, the MIRI model was developed in rats. Cardiac function and body and heart weight of rats were evaluated, followed by measurement of apoptosis and creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), and pyroptosis-related protein levels. After loss-of-function assays or/and sevoflurane treatment in human cardiomyocytes (HCMs), the hypoxia/reoxygenation (H/R) model was constructed. In HCMs, cell viability, apoptosis, and pyroptosis-related proteins were detected. Circular RNA PAN3 (circPAN3), microRNA (miR)-29b-3p, and stromal cell-derived factor 4 (SDF4) expression was determined in rat myocardial tissues and HCMs. Mechanistically, interactions among circPAN3, miR-29b-3p, and SDF4 were analyzed. RESULTS MIRI modeling increased miR-29b-3p expression and diminished circPAN3 and SDF4 expression in H/R-treated HCMs and MIRI rats, which was nullified by sevoflurane preconditioning. Mechanistically, circPAN3 negatively targeted miR-29b-3p to upregulate SDF4. Moreover, sevoflurane preconditioning reduced heart weight/body weight ratio, LDH, CK-MB, myocardial infarct size, left ventricular end-diastolic pressure, apoptosis, and pyroptosis, while elevating the increase and decrease of left ventricular pressure (±dp/dt max) and left ventricular systolic pressure in MIRI rats. In addition, sevoflurane preconditioning augmented viability while diminishing apoptosis and pyroptosis in H/R-treated HCMs. Moreover, circPAN3 silencing or miR-29b-3p overexpression abrogated alleviatory effects of sevoflurane on myocardial injury and pyroptosis in vitro. CONCLUSION Sevoflurane treatment ameliorated myocardial injury and pyroptosis in MIRI via circPAN3/miR-29b-3p/SDF4 axis.
Collapse
Affiliation(s)
- Li An
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Translational Medicine Research Center of Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jian Tan
- Department of Anesthesiology, The Third Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 558004, PR China
| | - Yang Liu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Anliang Li
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tianyu Yang
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Shengzhao Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Yanqiu Liu
- Department of Anesthesiology, Guiyang Fourth People's Hospital, Guiyang, Guizhou 550007, PR China.
| | - Hong Gao
- Department of Anesthesiology, Guizhou Hospital of The 1st Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
15
|
Omorou M, Huang Y, Gao M, Mu C, Xu W, Han Y, Xu H. The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury. Cell Mol Life Sci 2023; 80:102. [PMID: 36939886 PMCID: PMC11072419 DOI: 10.1007/s00018-023-04755-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Forkhead box O3 is a protein encoded by the FOXO3 gene expressed throughout the body. FOXO3 could play a crucial role in longevity and many other pathologies, such as Alzheimer's disease, glioblastoma, and stroke. This study is a comprehensive review of the expression of FOXO3 under ischemia and reperfusion (IR) and the molecular mechanisms of its regulation and function. We found that the expression level of FOXO3 under ischemia and IR is tissue-specific. Specifically, the expression level of FOXO3 is increased in the lung and intestinal epithelial cells after IR. However, FOXO3 is downregulated in the kidney after IR and in the skeletal muscles following ischemia. Interestingly, both increased and decreased FOXO3 expression have been reported in the brain, liver, and heart following IR. Nevertheless, these contribute to stimulating ischemia and reperfusion injury via the induction of inflammatory response, apoptosis, autophagy, mitophagy, pyroptosis, and oxidative damage. These results suggest that FOXO3 could play protective effects in some organs and detrimental effects in others against IR injury. Most importantly, these findings indicate that controlling FOXO3 expression, genetically or pharmacologically, could contribute to preventing or treating ischemia and reperfusion damage.
Collapse
Affiliation(s)
- Moussa Omorou
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yiwei Huang
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Meng Gao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Chenxi Mu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Weijing Xu
- Department Epidemiology and Health Statistics, Jiamusi University School of Public Health, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yuchun Han
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Battaglini D, da Silva AL, Felix NS, Rodrigues G, Antunes MA, Rocha NN, Capelozzi VL, Morales MM, Cruz FF, Robba C, Silva PL, Pelosi P, Rocco PRM. Mild hypothermia combined with dexmedetomidine reduced brain, lung, and kidney damage in experimental acute focal ischemic stroke. Intensive Care Med Exp 2022; 10:53. [PMID: 36529842 PMCID: PMC9760586 DOI: 10.1186/s40635-022-00481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.
Collapse
Affiliation(s)
- Denise Battaglini
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, 08007 Barcelona, Spain ,grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adriana Lopes da Silva
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Nathane Santanna Felix
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Gisele Rodrigues
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Alves Antunes
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Nazareth Novaes Rocha
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil ,grid.411173.10000 0001 2184 6919Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, 24220-900 Brazil
| | - Vera Luiza Capelozzi
- grid.11899.380000 0004 1937 0722Department of Pathology, University of São Paolo, São Paolo, 05508-060 Brazil
| | - Marcelo Marcos Morales
- grid.8536.80000 0001 2294 473XLaboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901 Brazil
| | - Fernanda Ferreira Cruz
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Chiara Robba
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Paolo Pelosi
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil ,grid.452991.20000 0000 8484 4876Rio de Janeiro Network On Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Pöyhiä R, Nieminen T, Tuompo VWT, Parikka H. Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study. Pharmaceuticals (Basel) 2022; 15:1372. [PMID: 36355544 PMCID: PMC9692353 DOI: 10.3390/ph15111372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 10/01/2023] Open
Abstract
Dexmedetomidine (DEX) is a commonly used sedative agent with no or minimal effects on breathing. DEX may also be beneficial in myocardial protection. Since the mechanisms of cardiac effects are not well known, we carried out a descriptive review and examined the effects of DEX on myocardial electrical conduction in a prospective and controlled manner. For the review, clinical studies exploring DEX in myocardial protection published between 2020-2022 were explored. A case study included 11 consecutive patients at a median (range) age of 48 (38-59), scheduled for elective radiofrequency ablation of paroxysmal atrial fibrillation. A bolus dose of DEX 1 µg/kg given in 15 min was followed by a continuous infusion of 0.2-0.7 µg/kg/h. Direct intracardiac electrophysiologic measurements, hemodynamics and oxygenation were measured before and after the DEX bolus. Experimental studies show that DEX protects the heart both via stabilizing cardiac electrophysiology and reducing apoptosis and autophagy after cell injury. The clinical evidence shows that DEX provides cardiac protection during different surgeries. In a clinical study, DEX increased the corrected sinus node recovery time, prolongated the atrioventricular (AV) nodal refractory period and cycle length producing AV nodal Wenckebach retrograde conduction block. DEX has a putative role in organ protection against hypoxic, oxidative and reperfusion injury. DEX slows down the firing of the sinus node and prolongs AV refractoriness.
Collapse
Affiliation(s)
- Reino Pöyhiä
- Palliative Medicine, Department of Clinical Medicine, Kuopio Campus, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Anaesthesia and Intensive Care Medicine, Helsinki University Central Hospital, 00280 Helsinki, Finland
- Palliative Center, Essote, The South Savo Social and Health Care Authority, 50100 Mikkeli, Finland
| | - Teija Nieminen
- Department of Anaesthesia and Intensive Care Medicine, Helsinki University Central Hospital, 00280 Helsinki, Finland
| | | | - Hannu Parikka
- Department of Cardiology, Helsinki University Central Hospital, 00280 Helsinki, Finland
| |
Collapse
|
18
|
Zheng Y, Xu X, Chi F, Cong N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules 2022; 12:1625. [PMID: 36358975 PMCID: PMC9687982 DOI: 10.3390/biom12111625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/15/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury, uncommon among patients suffering from myocardial infarction, stroke, or acute kidney injury, can result in cell death and organ dysfunction. Previous studies have shown that different types of cell death, including apoptosis, necrosis, and autophagy, can occur during I/R injury. Pyroptosis, which is characterized by cell membrane pore formation, pro-inflammatory cytokine release, and cell burst, and which differentiates itself from apoptosis and necroptosis, has been found to be closely related to I/R injury. Therefore, targeting the signaling pathways and key regulators of pyroptosis may be favorable for the treatment of I/R injury, which is far from adequate at present. This review summarizes the current status of pyroptosis and its connection to I/R in different organs, as well as potential treatment strategies targeting it to combat I/R injury.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Xinda Xu
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Ning Cong
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| |
Collapse
|
19
|
Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research Progress on the Role of Pyroptosis in Myocardial Ischemia-Reperfusion Injury. Cells 2022; 11:cells11203271. [PMID: 36291138 PMCID: PMC9601171 DOI: 10.3390/cells11203271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) results in the aggravation of myocardial injury caused by rapid recanalization of the ischemic myocardium. In the past few years, there is a growing interest in investigating the complex pathophysiological mechanism of MIRI for the identification of effective targets and drugs to alleviate MIRI. Currently, pyroptosis, a type of inflammatory programmed death, has received greater attention. It is involved in the MIRI development in combination with other mechanisms of MIRI, such as oxidative stress, calcium overload, necroptosis, and apoptosis, thereby forming an intertwined association between different pathways that affect MIRI by regulating common pathway molecules. This review describes the pyroptosis mechanism in MIRI and its relationship with other mechanisms, and also highlights non-coding RNAs and non-cardiomyocytes as regulators of cardiomyocyte pyroptosis by mediating associated pathways or proteins to participate in the initiation and development of MIRI. The research progress on novel small molecule drugs, clinical drugs, traditional Chinese medicine, etc. for regulating pyroptosis can play a crucial role in effective MIRI alleviation. When compared to research on other mature mechanisms, the research studies on pyroptosis in MIRI are inadequate. Although many related protective drugs have been identified, these drugs generally lack clinical applications. It is necessary to further explore and verify these drugs to expand their applications in clinical setting. Early inhibition of MIRI by targeted regulation of pyroptosis is a key concern that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
- Correspondence:
| |
Collapse
|
20
|
Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, Qian X, Zhao Y, Qian J. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother 2022; 154:113572. [PMID: 35988428 DOI: 10.1016/j.biopha.2022.113572] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate whether dexmedetomidine (Dex) exerts cardioprotection effect through inhibiting ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) was induced in Sprague-Dawley rats in Langendorff preparation. The hemodynamic parameters were recorded. Triphenyltetrazolium chloride (TTC) staining was used to determine infarct size. In the in vitro study, the model of hypoxia/reoxygenation (HR) was established in H9c2 cells. Cell viability and apoptosis were detected using cell counting kit 8 (CCK-8), and AV/PI dual staining respectively. Lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY581/591 probe and intracellular ferrous iron levels were measured by fluorescence of Phen Green SK (PGSK) probe, whereas immunofluorescence and transmission electron microscopy were also used to examine ferroptosis. Protein levels were investigated by Western blot. The interactions of AMPK/GSK-3β signaling with Nrf2 were also assessed through AMPK inhibition and GSK-3β overexpression. Our findings indicated that Dex significantly alleviated myocardial infarction, improved heart function, and decreased HR-induced accumulation of Fe2+ and lipid peroxidation in cardiomyocytes. Dex significantly increased the expression levels of Nrf2, SLC7A11, and GPX4. However, inhibition of Nrf2 by ML385 blunted the protective effect of Dex in HR-treated H9c2 cells. Inhibition of AMPK with a specific inhibitor or siRNA decreased the expression levels of phosphorylation of GSK-3β and Nrf2 induced by Dex. Overexpression of GSK-3β resulted in lower levels of nuclear Nrf2, whereas depression of GSK-3β enhanced expressions of nuclear Nrf2. In conclusion, Dex protects hearts against MIRI-induced ferroptosis via activation of Nrf2 through AMPK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengran Yao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
21
|
Role of Keap1-Nrf2/ARE signal transduction pathway in protection of dexmedetomidine preconditioning against myocardial ischemia/reperfusion injury. Biosci Rep 2022; 42:231655. [PMID: 35959640 PMCID: PMC9446386 DOI: 10.1042/bsr20221306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.
Collapse
|
22
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
23
|
Analysis of the miRNA-mRNA Regulatory Network Reveals the Biomarker Genes in the Progression of Myocardial Ischemic Reperfusion. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2045619. [PMID: 35463659 PMCID: PMC9020924 DOI: 10.1155/2022/2045619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
Objective Cardiac injury induced by myocardial ischemic reperfusion (MI/R) is still an intractable question in clinical, and it has been confirmed as a major reason for the development of cardiovascular disease. Bioinformatics analysis has been widely used for revealing the pathogenic mechanism of diseases. This study attempted to identify the biomarkers and reveal the regulation mechanism of MI/R injury via bioinformatics analysis. Methods The GSE67308 and GSE74951 were obtained from the GEO database. The datasets were analyzed with GEO2R tool, and the genes with |logFC| > 2 and p value <0.05 were identified as the differentially expressed genes (DEGs). The enrichment analysis of the DEGs was performed with the DAVID database and R language. Moreover, the protein-protein interaction (PPI) network of DEGs was performed with the STRING database and then visualized with Cytoscape. Result The results showed that 195 downregulated mRNAs and 240 downregulated mRNAs were found in GSE67308, and 11 miRNAs were found in GSE7495. 152 common genes were screened in DEGs of GSE67308 and the targets of 11 miRNAs in GSE7495. Moreover, the enrichment analysis showed that the common genes were related with inflammatory response, immune response, PI3K/AKT, NF-κB, and TNF pathways. Besides, mmu-miR-92a-3p and mmu-miR-27b-3p were identified as the hubs miRNAs, and TNF, IL1B, and IFG1 were screened as the key nodes. Conclusion This study established a miRNA-mRNA network for cardiac injury induced by MI/R and provided the evidence concerning the molecular mechanism of MI/R injury, which provided some reference for MI/R treatment.
Collapse
|
24
|
Wang L, Wang S, Jia T, Sun X, Xing Z, Liu H, Yao J, Chen Y. Dexmedetomidine prevents cardiomyocytes from hypoxia/reoxygenation injury via modulating tetmethylcytosine dioxygenase 1-mediated DNA demethylation of Sirtuin1. Bioengineered 2022; 13:9369-9386. [PMID: 35387565 PMCID: PMC9161963 DOI: 10.1080/21655979.2022.2054762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Myocardial hypoxia/reoxygenation (H/R) injury is a common pathological change in patients with acute myocardial infarction undergoing reperfusion therapy. Dexmedetomidine (DEX) has been found to substantially improve ischemia-mediated cell damage. Here, we focus on probing the role and mechanism of DEX in ameliorating myocardial H/R injury. Oxygen–glucose deprivation and reoxygenation (OGD/R) were applied to construct the H/R injury model in human myocardial cell lines. After different concentrations of DEX’s treatment, cell counting kit-8 (CCK-8) assay and BrdU assay were employed to test cell viability. The profiles of apoptosis-related proteins Bcl2, Bax, Bad and Caspase3, 8, 9 were determined by Western blot (WB). The expression of inflammatory factors interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) was checked by reverse transcription-polymerase chain reaction (RT-PCR). By conducting WB, we examined the expression of NF-κB, Sirt1, Tet methylcytosine dioxygenase 1 (TET1) and DNA methylation-related proteins (DNA methyltransferase 1, DNMT1; DNA methyltransferase 3 alpha, DNMT3A; and DNA methyltransferase 3 beta, DNMT3B). Our data showed that OGD/R stimulation distinctly hampered the viability and elevated apoptosis and inflammatory factor expression in cardiomyocytes. DEX treatment notably impeded myocardial apoptosis and inflammation and enhanced cardiomyocyte viability. OGD/R enhanced total DNA methylation levels in cardiomyocytes, while DEX curbed DNA methylation. In terms of mechanism, inhibiting TET1 or Sirtuin1 (Sirt1) curbed the DEX-mediated myocardial protection. TET1 strengthened demethylation of the Sirt1 promoter and up-regulated Sirt1. DEX up-regulates Sirt1 by accelerating TET1 and mediating demethylation of the Sirt1 promoter and improves H/R-mediated myocardial injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Shaowei Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Tong Jia
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Xiaojia Sun
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Zhen Xing
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Hui Liu
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Jie Yao
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Yanlin Chen
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| |
Collapse
|
25
|
Yue M, Xiao L, Yan R, Li X, Yang W. Pyroptosis in neurodegenerative diseases: What lies beneath the tip of the iceberg? Int Rev Immunol 2022:1-16. [PMID: 35312447 DOI: 10.1080/08830185.2022.2052064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurodegenerative diseases gradually receive attention with a rapidly aging global population. The hallmark of them is a progressive neuronal loss in the brain or peripheral nervous system due to complex reasons ranging from protein aggregation, immune dysregulation to abnormal cell death. The death style of nerve cell is no longer restricted to apoptosis, autophagy and necrosis as confirmed before. With the successive discoveries of the gasdermin (GSDM) protein family and key caspase molecules in the past several decades, pyroptosis emerges as a novel kind of programmed cell death. A substantial body of evidence has recognized the close connection between pyroptosis and the occurrence and development of neurodegenerative diseases. In this review, we summarize molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in neurodegenerative diseases and finally we hope to provide a novel angle for clinical decision-making.
Collapse
Affiliation(s)
- Mengli Yue
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Li Xiao
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Rui Yan
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Xinyi Li
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, JiLin University, Changchun City, Jilin Province, China
| |
Collapse
|
26
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
27
|
Yu P, Zhang J, Ding Y, Chen D, Sun H, Yuan F, Li S, Li X, Yang P, Fu L, Yu S, Zhang J. Dexmedetomidine post-conditioning alleviates myocardial ischemia-reperfusion injury in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation. Hum Cell 2022; 35:836-848. [PMID: 35212945 DOI: 10.1007/s13577-022-00682-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
The SLC7A11/GPX4 axis plays an important role in ferroptosis during cardiac ischemia/reperfusion injury (IRI). The present study was designed to evaluate the impact of dexmedetomidine (DEX) post-conditioning on cardiac IRI and to explore whether the effect was achieved by SLC7A11/GPX4 signaling pathway regulation. Rat myocardial IRI was established by occluding the left anterior descending artery for 30 min followed by 2-h reperfusion. The infarct area was detected by diphenyltetrazolium chloride (TTC) staining; the cardiac function was evaluated by echocardiography. The levels of lipid peroxide biomarkers were measured to estimate the injury caused by lipid peroxide. HE staining and Sirius staining were utilized to assess myocardial damage and fibrosis. The mitochondrial morphology was observed by electron micrography. Western blot and quantitative real-time polymerase chain reaction were employed to measure the relative molecular characteristics. Our results showed that DEX administration at the beginning of reperfusion attenuated IRI-induced myocardial injury, alleviated mitochondrial dysfunction, decreased the level of reactive oxygen species (ROS), alleviated mitochondrial dysfunction, inhibited the activation of SLC7A11/GPX4, and modulated the expression of ferroptosis-related proteins, including SLC7A11, glutathione peroxidase 4 (GPX4), ferritin heavy chain (FTH), and cyclooxygenase-2 (COX-2). Conversely, the ferroptosis activator erastin partly suppressed the DEX-mediated cardio protection. Altogether, these results reveal that DEX inhibits ferroptosis by enhancing the expression of SLC7A11 and GPX4, thereby preventing cardiac I/R injury.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yi Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, China
| | - Dandan Chen
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, China
| | - Haijian Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fenglai Yuan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, China
| | - Siyuan Li
- Grade 2017, The Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xiaozhong Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Linghua Fu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shuchun Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, China.
| |
Collapse
|
28
|
Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered 2022; 13:1377-1387. [PMID: 34974801 PMCID: PMC8805856 DOI: 10.1080/21655979.2021.2017611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dexmedetomidine (DEX) has been reported to attenuate the ischemia and reperfusion (I/R) induced cardiomyocyte apoptosis. However, mechanisms underlying these protective effect remain to be fully elucidated. Cardiomyocyte apoptosis is associated with ischemic heart disease. Here we investigated the role of DEX in I/R -induced cardiomyocyte apoptosis. Mice and H9c2 cardiomyocyte cells were subjected to cardiomyocyte I/R injury and hypoxia/reoxygenation (H/R) injury, respectively. The roles and mechanisms of DEX on H9c2 cardiomyocyte cells and mice cardiomyocyte cells exposured to H/R or I/R injury were explored. The results showed that DEX attenuates H/R injury-induced H9c2 cell apoptosis and alleviated mitochondrial oxidative stress; it also reduced myocardial infarct size and protected the cardiac function following cardiomyocyte I/R injury. In addition, H/R and I/R injury increased p53 expression and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling in H9c2 cardiomyocyte cells and cardiomyocytes. Targeting p53 expression or FOXO3a/PUMA signaling inhibited cell apoptosis and protected against H/R injury in H9c2 cardiomyocyte cells and cardiomyocytes. Pretreatment with DEX reduced the H/R or I/R injury-induced activation of p53 expression and FOXO3a/PUMA signaling, and alleviated H/R or I/R injury-induced apoptosis and mitochondrial oxidative stress. Therefore, DEX could alleviate H/R- or I/R-induced cardiomyocytes injury by reducing cell apoptosis and blocking p53 expression and FOXO3a/PUMA signaling. Targeting p53 or/and FOXO3a/PUMA signaling could alleviate cardiomyocyte I/R injury.
Collapse
Affiliation(s)
- Feng Yun Yang
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Zhang
- Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zheng
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - He Dong
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
30
|
Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W. Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 2021; 25:9983-9994. [PMID: 34664412 PMCID: PMC8572787 DOI: 10.1111/jcmm.16871] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Gaolin Qiu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hainie Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Leilei Zhu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Gao Cheng
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yiqiao Wang
- Department of AnesthesiologyAnhui NO.2 Provincial People's HospitalHefeiChina
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Weiwei Wu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
31
|
Gao J, Chen X, Wei P, Wang Y, Li P, Shao K. Regulation of pyroptosis in cardiovascular pathologies: Role of noncoding RNAs. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:220-236. [PMID: 34458007 PMCID: PMC8368762 DOI: 10.1016/j.omtn.2021.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) is one of the most important diseases endangering human life. The pathogenesis of CVDs is complex. Pyroptosis, which differs from traditional apoptosis and necrosis, is characterized by cell swelling until membrane rupture, resulting in the release of cell contents and activation of a strong inflammatory response. Recent studies have revealed that inflammation and pyroptosis play important roles in the progression of CVDs. Noncoding RNAs (ncRNAs) are considered promising biomarkers and potential therapeutic targets for the diagnosis and treatment of various diseases, including CVDs. Growing evidence has revealed that ncRNAs can mediate the transcriptional or posttranscriptional regulation of pyroptosis-related genes by participating in the pyroptosis regulatory network. The role and molecular mechanism of pyroptosis-regulating ncRNAs in cardiovascular pathologies are attracting increasing attention. Here, we summarize research progress on pyroptosis and the role of ncRNAs, particularly microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of pyroptosis in CVD pathologies. Identifying these disease-related ncRNAs is important for understanding the pathogenesis of CVDs and providing new targets and ideas for their prevention and treatment.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Pengcheng Wei
- College of Medicine, Qingdao University, Qingdao 266073, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
32
|
Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovasc Drugs Ther 2021; 36:1075-1089. [PMID: 34436706 DOI: 10.1007/s10557-021-07239-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Anti-inflammatory therapy is important for reducing myocardial injury after acute myocardial infarction (MI). New anti-inflammatory drugs and their mechanism are necessary to be explored to improve clinical efficacy. We aimed to improve the efficacy of colchicine on attenuating MI injury by nano-drug delivery systems and to investigate the mechanism of anti-inflammatory. METHODS A colchicine-containing delivery system based on calcium carbonate nanoparticles (ColCaNPs) was synthesized. The protection against MI by ColCaNPs was evaluated using an in vivo rat model established by ligating the left anterior descending coronary artery. Macrophage polarization and the levels of inflammatory cytokines were determined using immunohistochemistry, Western blot, and ELISA analysis. RESULTS ColCaNP treatment showed about a 45% reduction in myocardial infarct size and attenuating myocardial fibrosis compared with groups without drug intervention after MI. Furthermore, ColCaNPs significantly decreased the levels of CRP, TNF-α, and IL-1β in serum and the expression of proinflammatory cytokine in myocardial tissues after MI (p < 0.05). We also found that ColCaNPs notably restrained pyroptosis and inhibited inflammatory response by modulating on M1/M2 macrophage polarization and suppressing TLR4/NFκB/NLRP3 signal pathway. CONCLUSION Colchicine-containing nanoparticles can protect against MI injury in a clinically relevant rat model by reducing inflammation. In addition, calcium carbonate nanoparticles can increase the cardioprotective effects of colchicine.
Collapse
|
33
|
Sun T, Gong Q, Wu Y, Shen Z, Zhang Y, Ge S, Duan JS. Dexmedetomidine alleviates cardiomyocyte apoptosis and cardiac dysfunction may be associated with inhibition of RhoA/ROCK pathway in mice with myocardial infarction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1569-1577. [PMID: 33782744 DOI: 10.1007/s00210-021-02082-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
The global incidence of myocardial infarction has been consistently high, and it is one of the main causes of poor cardiovascular prognosis. Dexmedetomidine (DEX) is a highly selective α2 receptor agonist. Recent studies have found that DEX has a protective effect on myocardial infarction, but its specific mechanism is still unclear. In this experiment, we permanently ligated the anterior descending branch of mice to explore the protective mechanism of DEX against myocardial infarction. Our study found that intraperitoneal injection of DEX for 7 days after myocardial infarction in mice can increase the reduction of ejection fraction (EF) and fractional shortening (FS) caused by myocardial infarction and significantly reduce the release of serum markers. The results of myocardial HE and Sirius red staining suggest that the changes in the myocardial structure of mice after using DEX are reduced. Immunohistochemistry shows that DEX reduces the expression of ROCK1 protein after myocardial infarction. TUNEL staining and the protein expression levels of cleaved caspase-3 and cleaved caspase-9 were used to detect cell apoptosis and results make clear that DEX can reduce the apoptosis caused by myocardial infarction. Western blot experiments showed that DEX can reduce the expression levels of ROCK1 and ROCK2 (Rho-kinase). At the same time, it was observed that DEX improved the Bcl-2/Bax ratio. The above results indicate that DEX reduces cardiomyocyte apoptosis and improves cardiac function likely through inhibiting the RhoA/ROCK signaling pathway. This study may provide new insights into the protective effect of DEX after myocardial infarction in mice.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, Anhui, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, Anhui, China
| | - Ying Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, Anhui, China
| | - Zhiming Shen
- Yangzhou University Medical College, Yangzhou, 225001, Jiangsu, China
| | - Yan Zhang
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, Anhui, China.
| | - Jing-Si Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
34
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
35
|
Zheng X, Li J, Fan Q, Zhao X, Chen K. Dexmedetomidine alleviates myocardial ischemia/reperfusion-induced injury and Ca 2+ overload via the microRNA-346-3p/CaMKIId axis. Int J Cardiol 2021; 338:185-195. [PMID: 33731281 DOI: 10.1016/j.ijcard.2021.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) may impair cardiac functions. Dexmedetomidine (DEX) is protective in various clinical cases. Therefore, this study investigated the role and mechanism of DEX in MI/R. The myocardial infarct size, apoptosis, and levels of myocardial enzymes, SOD, ROS, Ca2+, and inflammatory factors in DEX-treated MI/R rats were measured. Differentially expressed microRNAs (miRs) in DEX-treated MI/R rats were detected. miR-346-3p was intervened to assess the effects of DEX on MI/R rats. The targeted binding relationship between miR-346-3p and CaMKIId was predicted and verified. DEX effect on hypoxia/reoxygenation (H/R)-induced cell model was evaluated. The role of CaMKIId in DEX protection was assessed after CaMKIId overexpression in H/R cells. NF-κB pathway and NLRP3 inflammasome-related protein levels were detected. DEX alleviated the myocardial injury and Ca2+ overload in MI/R rats, as evidenced by reduced infarct size, apoptosis and levels of myocardial enzymes, ROS, Ca2+, and inflammatory factors. DEX promoted miR-346-3p expression in MI/R rats, and miR-346-3p knockdown reversed DEX protection on MI/R rats. miR-346-3p targeted CaMKIId. DEX improved H/R-induced cell injury and Ca2+ overload and inhibited NF-κB/NLRP3 inflammasome-related protein levels, which were all reversed by CaMKIId overexpression. DEX alleviated injury and Ca2+ overload in MI/R via regulating the miR-346-3p/CaMKIId axis and inhibiting the NF-κB/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xuwei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China.
| | - Jianxiu Li
- Disinfection and supply room, Weifang Yidu Central Hospital, No. 4138, Linglongshan South Road, Qingzhou 262500, Shandong, China
| | - Qian Fan
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| |
Collapse
|
36
|
Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting p75NTR-Mediated Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5454210. [PMID: 33194004 PMCID: PMC7648709 DOI: 10.1155/2020/5454210] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress and apoptosis play a key role in the pathogenesis of sepsis-associated acute kidney injury (AKI). Dexmedetomidine (DEX) may present renal protective effects in sepsis. Therefore, we studied antioxidant effects and the mechanism of DEX in an inflammatory proximal tubular epithelial cell model and lipopolysaccharide- (LPS-) induced AKI in mice. Methods. We assessed renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)), and apoptosis (TUNEL staining and Cleaved caspase-3) in mice. In vitro experiments including Cleaved caspase-3 and p75NTR/p38MAPK/JNK signaling pathways were evaluated using western blot. Reactive oxidative species (ROS) production and apoptosis were determined using flow cytometry. Results. DEX significantly improved renal function and kidney injury and also revert the substantially increased level of MDA concentrations as well as the reduction of the SOD enzyme activity found in LPS-induced AKI mice. In parallel, DEX treatment also reduced the apoptosis and Cleaved caspase-3 expression evoked by LPS. The expression of p75NTR was increased in kidney tissues of mice with AKI but decreased after treatment with DEX. In cultured human renal tubular epithelial cell line (HK-2 cells), DEX inhibited LPS-induced apoptosis and generation of ROS, but this was reversed by overexpression of p75NTR. Furthermore, pretreatment with DEX significantly downregulated phosphorylation of JNK and p38MAPK in LPS-stimulated HK-2 cells, and this effect was abolished by overexpression of p75NTR. Conclusion. DEX ameliorated AKI in mice with sepsis by partially reducing oxidative stress and apoptosis through regulation of p75NTR/p38MAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiali Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|