1
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2024:S0300-9084(24)00240-2. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Zhang XT, Ji CL, Fu YJ, Yang Y, Xu GY. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders. Biosci Rep 2024; 44:BSR20232068. [PMID: 38904095 PMCID: PMC11292473 DOI: 10.1042/bsr20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.
Collapse
Affiliation(s)
- Xiao-tian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130000, People’s Republic of China
| | - Chun-lei Ji
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yu-juan Fu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yue Yang
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Guang-yu Xu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| |
Collapse
|
3
|
Yang Q, Shen X, Zhao J, Er-Bu A, Liang X, He C, Yin L, Xu F, Li H, Tang H, Fu Y, Lv C. Onosma glomeratum Y. L. Liu polysaccharide alleviates LPS-induced pulmonary inflammation via NF-κB signal pathway. Int J Biol Macromol 2024; 263:130452. [PMID: 38417755 DOI: 10.1016/j.ijbiomac.2024.130452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Qian Yang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuelian Shen
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Junxi Zhao
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Aga Er-Bu
- Medical college, Tibet University, Lasa 850000, PR China
| | - Xiaoxia Liang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, PR China.
| | - Changliang He
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Funeng Xu
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Haohuan Li
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huaqiao Tang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuping Fu
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
4
|
Liu C, Chen F, Fan X, Liu B, Chai X, He S, Huang T, Wang X, Liu L, Liu H, Zeng D, Jiang B, Zhang X, Liu M. Combined NMR and MS-based metabonomics and real-time PCR analyses reveal dynamic metabolic changes of Ganoderma lucidum during fruiting body growing. Food Res Int 2024; 180:114056. [PMID: 38395571 DOI: 10.1016/j.foodres.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.
Collapse
Affiliation(s)
- Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangfang Chen
- Songjiang Yunjian High School affiliated to Shanghai Foreign Language School, Shanghai 201600, China; Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinyu Fan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Biao Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xin Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sipei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohua Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Laixing Liu
- School of Management Wuhan Institute of Technology, Wuhan 430205, China.
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|
5
|
Lian S, Zhang X, Shen Y, He S, Chen Z, Zhou L, Jiang W. Protective effect of apelin-13 on ventilator-induced acute lung injury. Mol Biol Rep 2024; 51:74. [PMID: 38175266 DOI: 10.1007/s11033-023-08911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Mechanical Ventilation (MV) is an essential mechanism of life support in the clinic. It may also lead to ventilator-induced acute lung injury (VILI) due to local alveolar overstretching and/or repeated alveolar collapse. However, the pathogenesis of VILI is not completely understood, and its occurrence and development may be related to physiological processes such as the inflammatory response, oxidative stress, and apoptosis. Some studies have found that the the apelin/APJ axis is an endogenous antagonistic mechanism activated during acute respiratory distress syndrome(ARDS), that can counteract the injury response and prevent uncontrolled lung injury. To indicate that apelin-13 plays a protective role in VILI, an animal model of VILI was established in this study to explore whether apelin-13 can alleviate VILI in rats by inhibiting inflammation, apoptosis and oxidative stress. METHODS SD rats were divided into four groups: control, high tidal volume, high tidal volume + normal saline and high tidal volume + apelin-13. After tracheotomy, the rats in control maintained spontaneous breathing, and the other rats were connected to the small animal ventilator for 4 h to establish the rat VILI model. The mRNA expression of apelin was measured by real-time quantitative polymerase chain reaction(qRT-PCR), immunofluorescence and Western blotting(WB) were used to detect the expression level of APJ, and WB was used to detect the expression of the apoptotic proteins Bax and bcl-2. The degree of lung injury was evaluated by pathological staining of lung tissue,W/D ratio, and BALF total protein concentration. The expression of inflammatory factors(IL-1β, IL-6, TNF-α) in alveolar lavage fluid was measured using ELISA. The activities of MPO and cat and the content of MDA, an oxidative product, in lung tissue were measured to evaluate the degree of oxidative stress in the lung. RESULTS After treatment with apelin-13, the apelin/APJ axis in the lung tissue of VILI model rats was activated, and the effect was further enhanced. The pathological damage of lung tissue was alleviated, the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax was reversed, and the levels of the inflammatory cytokines IL-1β, IL-6, TNF-α levels were all decreased. MPO activity and MDA content decreased, while CAT activity increased. CONCLUSION The apelin/apj axis is activated in VILI. Overexpression of apelin-13 further plays a protective role in VILI, mainly by including reducing pathological damage, the inflammatory response, apoptosis and antioxidant stress in lung tissue, thus delaying the occurrence and development of VILI.
Collapse
Affiliation(s)
- Siyu Lian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xianming Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Yi Shen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shuang He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zongyu Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Leilei Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wenqing Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
6
|
Fu DN, Kong ZY, Sun W, Bai CM, Wu Y, Bian M, Ma QQ. Synthesis and cytotoxic activity of ethyl ferulate derivatives as potent anti-inflammatory agents. Nat Prod Res 2024; 38:261-269. [PMID: 36054816 DOI: 10.1080/14786419.2022.2118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
While a range of pharmacological agents are currently used to alleviate inflammation, the clinical administration of many of these anti-inflammatory drugs is associated with high rates of adverse side effects that make them poorly suited to long-term use. Therefore, there is a critical need for the development of novel anti-inflammatory agents. Natural compounds and derivatives like ethyl ferulate have risen to prominence as a foundation for many drug discovery efforts owing to their structural diversity and wide-ranging biological activities. In the present study, 24 ethyl ferulate derivatives were synthesized. Their anti-inflammatory activity was evaluated in vitro using RAW264.7 cells and CCK-8, ELISA, and Western blotting assays. These analyses revealed that most of the synthesized compounds exhibited moderate to high anti-inflammatory activities. In particular, c10 and c23 exerted more pronounced activity than ethyl ferulate or dexamethasone with respect to the suppression of tumour necrosis factor-α production by RAW264.7 cells through the targeting of the NF-κB and MAPK signalling pathways, suggesting that these compounds warrant further investigation.
Collapse
Affiliation(s)
- Dan-Ni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Zi-Yi Kong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Wen Sun
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Chun-Mei Bai
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Qian-Qian Ma
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
7
|
Zhou W, Dai Q, Su N, Liu Z, Hu J. IGF2BP2‑dependent STIM1 inhibition protects against LPS‑induced pneumonia in vitro by alleviating endoplasmic reticulum stress and the inflammatory response. Exp Ther Med 2023; 26:575. [PMID: 38023363 PMCID: PMC10652236 DOI: 10.3892/etm.2023.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 12/01/2023] Open
Abstract
Pneumonia is a disease caused by inflammation and has high morbidity and mortality rates. Stromal interaction molecule 1 (STIM1) is involved in the regulation of inflammatory processes. However, to the best of the authors' knowledge, the role of STIM1 in pneumonia has not yet been reported. In the present study, lipopolysaccharide (LPS) was administered to A549 cells to construct a cell damage model. The expression of STIM1 in the model cells was detected by western blotting and reverse transcription-quantitative PCR. Then, STIM1 expression was inhibited and cell survival was detected by Cell Counting Kit-8 and flow cytometry. The expression of inflammatory factors was detected by enzyme-linked immunosorbent assay and endoplasmic reticulum stress (ERS)-related proteins were detected by immunofluorescence and western blotting. Subsequently, the relationship between insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and STIM1 was verified by RNA-binding protein immunoprecipitation assay and actinomycin D treatment. Finally, the regulatory mechanism of IGF2BP2 and STIM1 in LPS-induced A549 cells was further investigated. The results of the present study demonstrated that STIM1 expression was increased in LPS-induced A549 cells and that STIM1 knockdown inhibited LPS-induced A549 cell apoptosis and alleviated LPS-induced A549 cell inflammation and ERS. In addition, IGF2BP2 enhanced the stability of STIM1 mRNA and knockdown of IGF2BP2-regulated STIM1 expression alleviated LPS-induced ERS and inflammatory responses in A549 cells. In conclusion, knockdown of IGF2BP2-regulated STIM1 improved cell damage in the LPS-induced pneumonia cell model by alleviating ERS and the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pathology, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Qigang Dai
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510699, P.R. China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Zhihui Liu
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Jinxing Hu
- Department of Tuberculosis, Guangzhou Chest Hospital, Guangzhou, Guangdong 510095, P.R. China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511495, P.R. China
| |
Collapse
|
8
|
Xue Z, Li Y, Xiao S, Zhang H, Xu J. FOXA2 attenuates lipopolysaccharide‑induced pneumonia by inhibiting the inflammatory response, oxidative stress and apoptosis through blocking of p38/STAT3 signaling. Exp Ther Med 2023; 26:469. [PMID: 37664675 PMCID: PMC10469380 DOI: 10.3892/etm.2023.12168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Pneumonia is a severe inflammatory disease of the lung. Forkhead box protein A2 (FOXA2) has been demonstrated to serve an important regulatory role in various pulmonary diseases; however, the role of FOXA2 in pneumonia remains to be elucidated. The present study aimed to explore the functional effects and regulatory mechanism of FOXA2 in pneumonia. An in vitro pneumonia model was induced using lipopolysaccharide (LPS) in WI-38 cells. The mRNA and protein expression levels of FOXA2 were determined by reverse transcription-quantitative PCR and western blotting, respectively. Cell viability was assessed using a Cell Counting Kit-8 assay. Inflammatory cytokines were evaluated using ELISA kits and oxidative stress markers were assessed using a malondialdehyde assay kit, superoxide dismutase assay kit and CATalase assay kit. Cell apoptosis was evaluated using flow cytometry and the caspase3 activity was determined. Western blotting was performed to examine the protein expression levels of endoplasmic reticulum stress (ERS)-associated factors. For a rescue assay, a p38 MAPK activator, U46619, was used to investigate the regulatory mechanism of FOXA2 involving p38/STAT3 signaling. FOXA2 was downregulated in LPS-induced WI-38 cells. FOXA2 overexpression alleviated LPS-induced inflammation, oxidative stress, apoptosis and ERS in WI-38 cells. Furthermore, the inhibitory effects of FOXA2 on inflammation, oxidative stress and apoptosis, as well as ERS in LPS-induced WI-38 cells were partly weakened by additional treatment with U46619. In conclusion, FOXA2 served a protective role against LPS-induced pneumonia by regulating p38/STAT3 signaling, providing a novel idea for the development of targeted therapeutic strategies for pneumonia.
Collapse
Affiliation(s)
- Zhibin Xue
- Department of Pediatrics, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Yinglin Li
- Department of Pediatrics, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Shiji Xiao
- Department of Pediatrics, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Hanqing Zhang
- Department of Pediatrics, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Jianzhang Xu
- Department of Pediatrics, Putian Children's Hospital, Putian, Fujian 351100, P.R. China
| |
Collapse
|
9
|
Jiang X, Lin Y, Wu Y, Yuan C, Lang X, Chen J, Zhu C, Yang X, Huang Y, Wang H, Wu C. Identification of potential anti-pneumonia pharmacological components of Glycyrrhizae Radix et Rhizoma after the treatment with Gan An He Ji oral liquid. J Pharm Anal 2022; 12:839-851. [PMID: 36605579 PMCID: PMC9805948 DOI: 10.1016/j.jpha.2022.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023] Open
Abstract
Glycyrrhizae Radix et Rhizoma, a traditional Chinese medicine also known as Gan Cao (GC), is frequently included in clinical prescriptions for the treatment of pneumonia. However, the pharmacological components of GC for pneumonia treatment are rarely explored. Gan An He Ji oral liquid (GAHJ) has a simple composition and contains GC liquid extracts and paregoric, and has been used clinically for many years. Therefore, GAHJ was selected as a compound preparation for the study of GC in the treatment of pneumonia. We conducted an in vivo study of patients with pneumonia undergoing GAHJ treatments for three days. Using the intelligent mass spectrometry data-processing technologies to analyze the metabolism of GC in vivo, we obtained 168 related components of GC in humans, consisting of 24 prototype components and 144 metabolites, with 135 compounds screened in plasma and 82 in urine. After analysis of the metabolic transformation relationship and relative exposure, six components (liquiritin, liquiritigenin, glycyrrhizin, glycyrrhetinic acid, daidzin, and formononetin) were selected as potential effective components. The experimental results based on two animal pneumonia models and the inflammatory cell model showed that the mixture of these six components was effective in the treatment of pneumonia and lung injury and could effectively downregulate the level of inducible nitric oxide synthase (iNOS). Interestingly, glycyrrhetinic acid exhibited the strongest inhibition on iNOS and the highest exposure in vivo. The following molecular dynamic simulations indicated a strong bond between glycyrrhetinic acid and iNOS. Thus, the current study provides a pharmaceutical basis for GC and reveals the possible corresponding mechanisms in pneumonia treatment.
Collapse
Affiliation(s)
- Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yihua Lin
- Department of Respiratory and Critical Care Medicine, The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, China,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Caixia Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuli Lang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China,Institute of National Security, Minzu University of China, Beijing, 100081, China,Corresponding author. School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China,Corresponding author.
| |
Collapse
|
10
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Liu Y, Bao C, Deng G, Ouyang Y. Arid2-IR downregulates miR-132-3p through methylation to promote LPS-induced ALI in pneumonia. Inhal Toxicol 2022; 34:297-303. [PMID: 36074605 DOI: 10.1080/08958378.2022.2102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Arid2-IR is a long non-coding RNA (lncRNA) that promotes renal injury, while its role in lipopolysaccharides (LPS)-induced acute lung injury (ALI) is unknown. Our preliminary sequencing analysis revealed an inverse correlation of Arid2-IR and miR-132-3p, which is known to suppress LPS-induced ALI. Therefore, Arid2-IR and miR-132-3p may interact with each other to participate in LPS-induced ALI in pneumonia. This study aimed to investigate the interaction between Arid2-IR and miR-132-3p in ALI induced by pneumonia. MATERIALS AND METHODS Plasma samples were obtained from patients with pneumonia (n = 98) and healthy controls (n = 98) to detect the expression of circulating Arid2-IR and miR-132-3p. The correlation between them was analyzed using Pearson's correlation coefficient. The crosstalk between them in human bronchial epithelial cells (HBEpC) was analyzed through overexpression assay. MSP was applied to determine the methylation of the miR-132-3p gene. Cell viability was evaluated by 2,5-diphenyl-2H-tetrazolium bromide assay. RESULTS Arid2-IR was highly upregulated in pneumonia group, while the expression levels of miR-132-3p decreased in pneumonia group compared to that in the controls. Arid2-IR and miR-132-3p were inversely correlated across patient samples. Overexpression of Arid2-IR decreased the expression levels of miR-132-3p in HBEpCs and increased the methylation of miR-132-3p gene. Arid2-IR suppressed the role of miR-132-3p in increasing the viability of HBEpCs induced by LPS. DISCUSSION AND CONCLUSION Arid2-IR is upregulated in pneumonia and may downregulate miR-132-3p by increasing its methylation to decrease cell viability, thereby promoting LPS-induced ALI in pneumonia.
Collapse
Affiliation(s)
- Yuanshui Liu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou City, Hainan Province, P.R. China
| | - Chuanyu Bao
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou City, Hainan Province, P.R. China
| | - Gongping Deng
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou City, Hainan Province, P.R. China
| | - Yanhong Ouyang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou City, Hainan Province, P.R. China
| |
Collapse
|
12
|
Shao G, He J, Meng J, Ma A, Geng X, Zhang S, Qiu Z, Lin D, Li M, Zhou H, Lin S, Yang B. Ganoderic Acids Prevent Renal Ischemia Reperfusion Injury by Inhibiting Inflammation and Apoptosis. Int J Mol Sci 2021; 22:10229. [PMID: 34638569 PMCID: PMC8508562 DOI: 10.3390/ijms221910229] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Renal ischemia reperfusion injury (RIRI) is one of the main causes of acute kidney injury (AKI), which can lead to acute renal failure. The development of RIRI is so complicated that it involves many factors such as inflammatory response, oxidative stress and cell apoptosis. Ganoderic acids (GAs), as one of the main pharmacological components of Ganoderma lucidum, have been reported to possess anti-inflammatory, antioxidant, and other pharmacological effects. The study is aimed to investigate the protective effect of GAs on RIRI and explore related underlying mechanisms. The mechanisms involved were assessed by a mouse RIRI model and a hypoxia/reoxygenation model. Compared with sham-operated group, renal dysfunction and morphological damages were relieved markedly in GAs-pretreatment group. GAs pretreatment could reduce the production of pro-inflammatory factors such as IL-6, COX-2 and iNOS induced by RIRI through inhibiting TLR4/MyD88/NF-kB signaling pathway. Furthermore, GAs reduced cell apoptosis via the decrease of the ratios of cleaved caspase-8 and cleaved caspase-3. The experimental results suggest that GAs prevent RIRI by alleviating tissue inflammation and apoptosis and might be developed as a candidate drug for preventing RIRI-induced AKI.
Collapse
Affiliation(s)
- Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Dongmei Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou 350002, China; (D.L.); (S.L.)
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Shuqian Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou 350002, China; (D.L.); (S.L.)
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100816, China
| |
Collapse
|
13
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Ko HM, Lee SH, Jee W, Jung JH, Kim KI, Jung HJ, Jang HJ. Gancaonin N from Glycyrrhiza uralensis Attenuates the Inflammatory Response by Downregulating the NF-κB/MAPK Pathway on an Acute Pneumonia In Vitro Model. Pharmaceutics 2021; 13:pharmaceutics13071028. [PMID: 34371720 PMCID: PMC8309055 DOI: 10.3390/pharmaceutics13071028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute pneumonia is an inflammatory disease caused by several pathogens, with symptoms such as fever and chest pain, to which children are particularly vulnerable. Gancaonin N is a prenylated isoflavone of Glycyrrhiza uralensis that has been used in the treatment of various diseases in oriental medicine. There are little data on the anti-inflammatory efficacy of Gancaonin N, and its effects and mechanisms on acute pneumonia are unknown. Therefore, this study was conducted as a preliminary analysis of the anti-inflammatory effect of Gancaonin N in lipopolysaccharide (LPS)-induced RAW264.7 cells, and to identify its preventive effect on the lung inflammatory response and the molecular mechanisms underlying it. In this study, Gancaonin N inhibited the production of NO and PGE2 in LPS-induced RAW264.7 cells and significantly reduced the expression of iNOS and COX-2 proteins at non-cytotoxic concentrations. In addition, in LPS-induced A549 cells, Gancaonin N significantly reduced the expression of COX-2 and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Moreover, Gancaonin N reduced MAPK signaling pathway phosphorylation and NF-κB nuclear translocation. Therefore, Gancaonin N relieved the inflammatory response by inactivating the MAPK and NF-κB signaling pathways; thus, it is a potential natural anti-inflammatory agent that can be used in the treatment of acute pneumonia.
Collapse
Affiliation(s)
- Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
| | - Hee-Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| |
Collapse
|
15
|
Baicalin Magnesium Salt Attenuates Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting of TLR4/NF- κB Signaling Pathway. J Immunol Res 2021; 2021:6629531. [PMID: 34212053 PMCID: PMC8205579 DOI: 10.1155/2021/6629531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Baicalin (BA) magnesium salt (BA-Mg) is a good water-soluble ingredient extracted from Scutellaria baicalensis Georgi, a commonly used traditional Chinese medicine. This study is aimed at investigating whether BA-Mg could exert a better protective effect on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and illuminate the underlying mechanisms in vivo and in vitro. Mice were intraperitoneally administrated with equimolar BA-Mg, BA, and MgSO4 before LPS inducing ALI. Lung tissues and bronchoalveolar lavage fluid were collected for lung wet/dry ratio, histological examinations, cell counts, and biochemical analyses at 48 h post-LPS exposure. Meanwhile, the protein expressions of TLR4/NF-κB signaling pathway and proinflammatory cytokines in lung tissues and lung bronchial epithelial cells (BEAS-2B) were detected. The results showed BA-Mg pronouncedly ameliorated LPS-induced inflammatory response and histopathological damages, elevated antioxidant enzyme activity (SOD), and downregulated myeloperoxidase (MPO) and malonaldehyde (MDA) levels through the inhibition of TLR4/NF-κB signaling pathway activation. Moreover, the effect of BA-Mg was significantly better than that of BA and MgSO4 in ameliorating symptoms. Overall, BA-Mg can effectively relieve inflammatory response and oxidative stress triggered by LPS, indicating it may be a potential therapeutic candidate for treating ALI.
Collapse
|
16
|
Huang C, Cao H, Qin J, Xu L, Hu F, Gu Y, Dou C, Zhang S. Ubiquitin-Specific Protease 14 (USP14) Aggravates Inflammatory Response and Apoptosis of Lung Epithelial Cells in Pneumonia by Modulating Poly (ADP-Ribose) Polymerase-1 (PARP-1). Inflammation 2021; 44:2054-2064. [PMID: 34085162 DOI: 10.1007/s10753-021-01482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022]
Abstract
Pneumonia is one of the common respiratory diseases in pediatrics. Ubiquitin-specific protease 14 (USP14) contributes the progress of inflammation-associated diseases. Poly (ADP-ribose) polymerase-1 (PARP-1) involves in the signal transduction of inflammatory pulmonary disease. This study aims to identify the precise function and elaborate the regulatory mechanism of USP14/PARP-1 in the injury of lung epithelial cells. Human lung epithelial BEAS-2B cells received lipopolysaccharide (LPS) (0, 1, 5, and 10 mg/L) treatment for 16 h, establishing in vitro pneumonia model. USP14 protein and mRNA levels in LPS-injured lung epithelial cells were separately assessed using western blot and RT-qPCR analysis. Lung epithelial cells were transfected with siRNA-USP14 or OV-USP14 to perform gain- or loss-of-function experiments. CCK-8 assay was applied to assess cell viability. TUNEL staining and western blot analysis were adopted to determine cell apoptosis. In addition, release of inflammatory cytokines and nitric oxide (NO) was detected using the commercial kits. Meanwhile, PARP-1 protein levels in LPS-injured lung epithelial cells were detected by performing western blot assay. Moreover, Co-IP assay was utilized for detection of the interaction between USP14 and PARP-1. The regulatory effects of PARP-1 on USP14 function in LPS-injured lung epithelial cells were also investigated. LPS dose-dependently reduced viability of lung epithelial cells and elevated USP14 protein. USP14 combined with PARP-1 and increased PARP-1 expression. USP14 elevation exacerbated inflammatory injury and boosted the apoptosis of LPS-injured lung epithelial cells, which was reversed upon downregulation of PARP-1. To sum up, USP14 promotion exacerbated inflammatory injury and boosted the apoptosis of LPS-injured lung epithelial cells by upregulating PARP-1 expression. These findings may represent a therapeutic target for clinical intervention in pneumonia.
Collapse
Affiliation(s)
- Chengcheng Huang
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Hui Cao
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Jie Qin
- Department of Pediatrics, Yancheng No.1 Peoples' Hospital, Yancheng, Jiangsu, China
| | - Lei Xu
- Department of Pediatrics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Fang Hu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Yong Gu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Changsheng Dou
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China.
| | - Shifa Zhang
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China.
| |
Collapse
|