1
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Long P, Xiong L, Ding C, Kuang Y, He Y, Li G, Xiao J, Li S. Connexin43 reduces LPS-induced inflammation in hDPCs through TLR4-NF-κB pathway via hemichannels. Oral Dis 2024; 30:3239-3249. [PMID: 37811593 DOI: 10.1111/odi.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES Connexin43 (Cx43) is involved in the inflammation of many tissue types. Dental caries is infectious disease resulting from mineralized tissue dissolution by a specific bacterial population, causing pulp inflammation. However, Cx43's role in dental pulp remains unclear. Here, we investigated the function of Cx43 during pulp inflammation. MATERIALS AND METHODS We constructed a dentin injury model in Sprague-Dawley rats to investigate changes in Cx43 expression during pulp inflammation. Cx43 was inhibited in human dental pulp cells (hDPCs) that had been stimulated with lipopolysaccharide (LPS) to investigate the effect of Cx43 on inflammatory response. Promotion of TLR4-NF-κB pathway activity and special Cx43 channel inhibitors were used to clarify the function of Cx43 in hDPCs. RESULTS Dentin injury led to low-level inflammation in dental pulp. Following dentin injury, Cx43 expression initially decreased before gradually recovering to normal levels. Cx43 inhibition reduced LPS-induced expression of inflammatory cytokines and NF-κB pathway activity. Promotion of NF-κB pathway activity counteracted the effect of Cx43 in hDPCs. Furthermore, inhibition of Cx43 hemichannels reduced LPS-induced inflammatory cytokine expression. CONCLUSIONS Cx43 is involved in inflammation of dental pulp, while its inhibition reduced LPS-induced inflammation in hDPCs through NF-κB pathway via blockage of hemichannels.
Collapse
Affiliation(s)
- Ping Long
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Lin Xiong
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Cancan Ding
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Yanli Kuang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
- Department of Stomatology, Chengdu Children's Specialized Hospital, Cheng Du, China
| | - Yuanpei He
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Guangwen Li
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Jingang Xiao
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Shiting Li
- Department of Operative Dentistry and Endodontics, School of Stomatology, Southwest Medical University, Lu Zhou, China
| |
Collapse
|
3
|
Li P, Zhong R, Yu J, Wang Y, Wang C, Geng W, Bao S, Wang S, Zhang G, Zhu X, Ji M, Guan H. DCLRE1A Contributes to DNA Damage Repair and Apoptosis in Age-Related Cataracts by Regulating the lncRNA/miRNA/mRNA Axis. Curr Eye Res 2023; 48:992-1005. [PMID: 37503815 DOI: 10.1080/02713683.2023.2241159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Age-related cataract (ARC) is associated with the deregulation of transcription and defects in DNA repair in lens epithelial cells (LECs). DCLRE1A acted in DNA interstrand cross-links pathway to improve DNA replication and transcription. The aim of this study was to examined the further regulatory effect on DCLRE1A in the lncRNA-miRNA-mRNA network using a cell model of DCLRE1A overexpression (OE-DCLRE1A) in LECs. METHODS The expression level of DCLRE1A in ARC tissues and SRA01/04 cells after H2O2 treatment was measured as protein and mRNA by qRT-PCR and Western Blot(WB). CCK8, and TUNEL assays detected the change in cell viability and apoptosis, respectively. Furthermore, Immunofluorescence assays detect the expression of DNA damaged and repair marker proteins after OE-DCLRE1A. The global expression profiles of lncRNAs, miRNAs, and mRNAs were determined using high-throughput sequencing. KEGG and GO enrichment analysis disclose the possible function of differentially expressed (DE) lncRNA, miRNA, and mRNA. RESULTS The protein and mRNA of DCLRE1A were decreased in the anterior capsule of ARC and SRA01/04 cells treated by H2O2. OE-DCLRE1A improved damaged-DNA repair and enhanced cell viability against apoptosis after H2O2 treatment. Furthermore, we demonstrated the DE-molecules between the OE-DCLRE1A and control groups including 595 DE-lncRNAs, 221 DE-miRNAs, and 4718 DE-mRNAs. Next, bioinformatics analysis not only found that the DE-mRNAs are mainly involved in DNA repair-related signaling pathways after OE-DCLRE1A, but also screened two lncRNA-miRNA-mRNA networks focusing on DNA damage activated by OE-DCLRE1A, which involved 2 lncRNAs, 2 miRNAs, and 53 mRNAs. CONCLUSION We revealed that DCLRE1A activated the lncRNA/miRNA/DNA-repair network to take part in DNA repair processes, which not only represents a new regulatory mechanism employed by DCLRE1A but also uncovers the screening lncRNA may hold potential therapeutic values in ARC formation. However, these conclusions will need to be confirmed by future studies in vitro and in vivo models.
Collapse
Affiliation(s)
- Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Siwen Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Dai Y, Xuan G, Yin M. DUXAP8 Promotes LPS-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. Int Dent J 2023; 73:636-644. [PMID: 36522211 PMCID: PMC10509439 DOI: 10.1016/j.identj.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dysregulated long noncoding RNAs (lncRNAs) are implicated in progression of various diseases, including pulpitis. Double homeobox A pseudogene 8 (DUXAP8) has been found to be upregulated in pulpitis. Herein, the functional mechanism of DUXAP8 in lipopolysaccharide (LPS)-induced pulpitis was explored. MATERIAL AND METHODS DUXAP8, microRNA-18b-5p (miR-18b-5p), or hypoxia-inducible factor 3A (HIF3A) levels were examined through reverse transcription-quantitative polymerase chain reaction assay. Cell behaviours were determined by Cell Counting Kit-8 assay for cell viability, Ethynyl-2'-deoxyuridine (EdU) assay for cell proliferation, and flow cytometry for cell apoptosis. Protein levels were measured using western blot. Inflammatory reaction was analysed via enzyme-linked immunosorbent assay. Oxidative stress was assessed by commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and pull-down assay were used for validation of interaction between targets. RESULTS Cell apoptosis, inflammatory reaction, and oxidative stress were induced by LPS in human dental pulp cells (HDPCs). DUXAP8 upregulation and miR-18b-5p downregulation were found in pulpitis. LPS-induced cell injury was relieved after downregulation of DUXAP8. DUXAP8 interacted with miR-18b-5p. The regulation of DUXAP8 was related to miR-18b-5p sponging function in LPS-treated HDPCs. HIF3A served as a target of miR-18b-5p. MiR-18b-5p protected against LPS-induced cell injury through targeting HIF3A. DUXAP8 targeted miR-18b-5p to regulate HIF3A level. CONCLUSIONS Results demonstrated that LPS-induced cell injury in pulpitis was promoted by DUXAP8 through mediating miR-18b-5p/HIF3A axis.
Collapse
Affiliation(s)
- Ying Dai
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Guihong Xuan
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Min Yin
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
5
|
Gong W, Hong L, Qian Y. Identification and Experimental Validation of LINC00582 Associated with B Cell Immune and Development of Pulpitis: Bioinformatics and In Vitro Analysis. Diagnostics (Basel) 2023; 13:diagnostics13101678. [PMID: 37238161 DOI: 10.3390/diagnostics13101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pulpitis is a common oral disease. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) can regulate the immune response in pulpitis. This study focused on finding the key immune-related lncRNAs that regulate the development of pulpitis. METHODS Differentially expressed lncRNAs were analyzed. Enrichment analysis was performed to explore the function of differentially expressed genes. Immune cell infiltration was evaluated with Immune Cell Abundance Identifier. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase release assays were conducted to measure the viability of human dental pulp cells (HDPCs) and BALL-1 cells. Transwell assay was processed to prove migration and invasion of BALL-1 cells. RESULTS Our results revealed that 17 lncRNAs were significantly upregulated. Pulpitis-related genes were mainly enriched in inflammatory relative signal pathways. The abundance of various immune cells was significantly abnormal in pulpitis tissues, among which the expression of eight lncRNAs was significantly correlated with the expression of B cell marker protein CD79B. As the most relevant lncRNA for B cells, LINC00582 could regulate the proliferation, migration, invasion, and CD79B expression of BALL-1 cells. CONCLUSIONS Our study identified eight B cell immune-related lncRNAs. Meanwhile, LINC00582 has a positive effect on B cell immunity in the development of pulpitis.
Collapse
Affiliation(s)
- Wenting Gong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Lilin Hong
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| | - Yi Qian
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University North District, Hefei 230000, China
- Anhui Public Health Clinical Center, Hefei 230000, China
| |
Collapse
|
6
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
7
|
Li Z, Fang Y, Zhang Y, Zhou X. RNA-seq analysis of differentially expressed LncRNAs from leishmaniasis patients compared to uninfected humans. Acta Trop 2023; 238:106738. [PMID: 36379256 DOI: 10.1016/j.actatropica.2022.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a parasitic disease that seriously endangers human health. Furthermore, among the parasitic diseases, leishmaniasis is the third most common cause of death after malaria and schistosomiasis. However, the potential function of LncRNAs in leishmaniasis remain unclear. This study aimed to explore the differentially expressed LncRNAs in leishmaniasis. The sera of leishmaniasis patients and uninfected persons for controls were obtained and analyzed by high-throughput sequencing. Moreover, the expression of key LncRNAs was detected by qPCR. The results showed that 970 differentially expressed LncRNAs and 1692 differentially expressed mRNAs were screened compared to control groups. Then, 520 target genes were identified by using bioinformation analysis and the ENCORI database. The bioinformatics analysis revealed that the differentially expressed target genes were enriched in autophagy animal, FoxO signaling pathway, mTOR signaling pathway, and apoptosis, et al. Among those differentially expressed LncRNAs, nine key LncRNAs were selected (MALAT1, NUTM2A-AS1, and LINC00963 had high expression; LINC00622, MAPKAPK5-AS1, LINC02289, XPC-AS1, ZFAS1 and SNHG5 had low expression) by qPCR. This study suggests that different expressions of LncRNAs may involve in the potential function in leishmaniasis and provide a novel insight for diagnosis of this zoonotic disease.
Collapse
Affiliation(s)
- Zhongqiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Vaseenon S, Srisuwan T, Chattipakorn N, Chattipakorn SC. Lipopolysaccharides and hydrogen peroxide induce contrasting pathological conditions in dental pulpal cells. Int Endod J 2023; 56:179-192. [PMID: 36269677 DOI: 10.1111/iej.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/17/2023]
Abstract
AIM To determine the effects of lipopolysaccharides (LPS), hydrogen peroxide (H2 O2 ), and both combined on cell proliferation/differentiation, inflammation, mitochondrial dynamics as indicated by mitochondrial fission/fusion, antioxidants as indicated by superoxide dismutase 2 (SOD2), and apoptosis of human dental pulpal cells (HDPCs). METHODOLOGY Pulpal tissues from eight healthy subjects (n = 8) were collected from Faculty of Dentistry, Chiang Mai University. Isolated HDPCs from healthy donors were divided into four experimental groups: vehicle, 20 μg/ml LPS, 400 μM H2 O2 , and the two combined. All experimental groups were investigated to assess cell proliferation, mineralization, differentiation, inflammation, mitochondrial dynamics, antioxidants, and apoptosis. RESULTS H2 O2 and combined agents decreased cell proliferation of HDPCs equally. LPS, H2 O2, and both combined decreased mineralization and differentiation with an increase in tumour necrosis factor-alpha (TNF-α) levels. Surprisingly, LPS and combined agents increased SOD2 expression and caused an imbalance in mitochondrial dynamics. A significant increase in apoptosis was observed in the case of H2 O2 and combined agents. CONCLUSIONS These findings suggest that LPS induced inflammation, imbalanced mitochondrial dynamics, and reduced cell differentiation without altering apoptosis and cell proliferation. However, H2 O2 decreased cell proliferation, and differentiation, and increased inflammation, and apoptosis without interfering with mitochondrial dynamics. Based on our findings, combining LPS and H2 O2 could be potentially used as the inducers in in vitro study to mimic the clinical pulpitis.
Collapse
Affiliation(s)
- Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Li Y, Li S, Li R, Xu H. LncRNA PVT1 upregulates FBN1 by sponging miR-30b-5p to aggravate pulpitis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ward B, Yombi JC, Balligand JL, Cani PD, Collet JF, de Greef J, Dewulf JP, Gatto L, Haufroid V, Jodogne S, Kabamba B, Pyr dit Ruys S, Vertommen D, Elens L, Belkhir L. HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses 2022; 14:1373. [PMID: 35891354 PMCID: PMC9318602 DOI: 10.3390/v14071373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.
Collapse
Affiliation(s)
- Bradley Ward
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
| | - Jean Cyr Yombi
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-Luc Balligand
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Patrice D. Cani
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-François Collet
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Julien de Greef
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Joseph P. Dewulf
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Department of Biochemistry, de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Sébastien Jodogne
- Computer Science and Engineering Department (INGI), Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Benoît Kabamba
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pôle de Microbiologie, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Pyr dit Ruys
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
| | - Didier Vertommen
- De Duve Institute, and MASSPROT Platform, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (B.W.); (S.P.d.R.)
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
| | - Leïla Belkhir
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.G.); (J.P.D.); (V.H.)
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
11
|
Li J, Wang Z. A novel NUTM2A-AS1/miR-769–5p axis regulates LPS-evoked damage in human dental pulp cells via the TLR4/MYD88/NF-κB signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Talotta R, Bahrami S, Laska MJ. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166291. [PMID: 34662705 PMCID: PMC8518135 DOI: 10.1016/j.bbadis.2021.166291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Objectives To investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes. Methods The FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases. Results A total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders. Conclusion This pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| | - Shervin Bahrami
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
13
|
Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022; 12:biom12010138. [PMID: 35053286 PMCID: PMC8774278 DOI: 10.3390/biom12010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.
Collapse
|