1
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
2
|
Shen Z, Chen X, Sun C, Lu T, Shi Y, Zhang H, Ye J, Wang L, Zhu T, Miao Y, Zhang X, Wang L, Cai G, Sang W. Comparative analysis of clinicopathologic characteristics and prognosis between nasal and nonnasal extranodal NK/T-cell lymphoma. Cancer Med 2023; 12:21138-21147. [PMID: 37902266 PMCID: PMC10726883 DOI: 10.1002/cam4.6674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The clinicopathologic characteristics and prognosis of nasal and nonnasal extranodal natural killer T-cell lymphoma (ENKTL) are considered to be different. However, the underlying features responsible for these differences are not well clarified especially in the era of asparaginase therapy. METHODS In total, 1007 newly diagnosed ENKTL patients from 11 medical centers were included in this study. Clinicopathologic characteristics and survival data were collected. The chi-squared test and Kruskal-Wallis test were utilized for the comparison of different groups. Univariable and multivariable Cox proportional hazards models were used to screen prognostic factors. RESULTS Overall, 869 (86.3%) patients were nasal forms. Compared to patients with nasal ENKTL, nonnasal patients were at more advanced stages and had poor performance status, bone marrow involvement, elevated serum lactate dehydrogenase (LDH), and CD56-negative status (p < 0.05). The 5-year overall survival (OS) for nasal and nonnasal patients were 65.6% and 45.0%, respectively. The OS of nasal forms patients were superior to nonnasal patients, especially in Eastern Cooperative Oncology Group performance status (ECOG PS) (≥2), advanced stage, KPI (HIR/HR), IPI (HIR/HR), PINK (HR), and high EBV DNA load groups. In patients treated with pegaspargase/L-asparaginase-based regimens, the OS of nasal patients was better than that of nonnasal patients. After adjusting the covariates of age, stage, ECOG PS score, LDH, B symptoms, and BM involvement, results showed that the nonnasal site was associated with poor survival of ENKTL. CONCLUSIONS The clinicopathologic characteristics and prognosis of nasal and nonnasal ENKTL patients are different. Nasal forms patients had superior OS than nonnasal patients, especially in the era of asparaginase.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Xicheng Chen
- Department of HematologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Cai Sun
- Department of HematologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Tianyi Lu
- Department of HematologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Yuye Shi
- Department of HematologyThe First People's Hospital of Huai'anHuai'anJiangsuChina
| | - Hao Zhang
- Department of HematologyThe Affiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Jingjing Ye
- Department of HematologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ling Wang
- Department of HematologyTai'an Central HospitalTai'anShandongChina
| | - Taigang Zhu
- Department of HematologyThe General Hospital of Wanbei Coal‐Electric GroupSuzhouAnhuiChina
| | - Yuqing Miao
- Department of HematologyYancheng First People's HospitalYanchengJiangsuChina
| | - Xudong Zhang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liang Wang
- Department of Hematology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Wei Sang
- Department of HematologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Blood Diseases Institute, Xuzhou Medical UniversityXuzhouJiangsuChina
- Key Laboratory of Bone Marrow Stem CellXuzhouJiangsuChina
| |
Collapse
|
3
|
Espinar-Buitrago MS, Tarancon-Diez L, Vazquez-Alejo E, Magro-Lopez E, Genebat M, Romero-Candau F, Leal M, Muñoz-Fernandez MA. The use of alpha 1 thymosin as an immunomodulator of the response against SARS-Cov2. Immun Ageing 2023; 20:32. [PMID: 37408063 DOI: 10.1186/s12979-023-00351-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Since the beginning of SARS-CoV2 pandemic, the mortality rate among elderly patients (60-90 years) has been around 50%, so age has been a determining factor of a worse COVID-19 prognosis. Associated with age, the thymic function involution and depletion plays an important role, that could be related to a dysregulated and ineffective innate and adaptive immune response against SARS-CoV2. Our study aims to further in vitro effect of human Thymosin-alpha-1 (α1Thy) treatment on the immune system in population groups with different thymic function levels in the scenario of SARS-CoV2 infection. RESULTS Activation markers such as CD40, CD80 and TIM-3 were upregulated in α1Thy presence, especially in plasmacytoid dendritic cells (pDCs) and, with increased TNFα production was observed compared to untreated condition. Co-cultures of CD4 + and CD8 + T cells with DCs treated with α1Thy in response to SARS-CoV2 peptides showed a decrease in the cytokine production compared to the condition without α1Thy pre-treated. A decrease in CD40L activation co-receptor expression in CD8 + LTs was also observed, as well as an increase in PD1 in CD4 + TLs expression in both age groups. In fact, there are no age-related differences in the immunomodulatory effect of the hormone, and it seems that effector memory and terminally differentiated memory T lymphocyte subsets were the most actively influenced by the immunomodulatory α1Thy effect. Finally, the polyfunctionality measured in SARS-CoV2 Specific-T cells response was maintained in α1Thy presence in total and memory subpopulations CD4 + and CD8 + T-cells, despite decreased proinflammatory cytokines production. CONCLUSION The hormone α1Thy could reduce, through the modulation of DCs, the amount of proinflammatory cytokines produced by T cells. Moreover, α1Thy improve lymphocyte functionality and could become a beneficial therapeutic alternative as an adjuvant in SARS-CoV2 treatment either in the acute phase after infection or reinfection. In addition, the effect on the T immune response means that α1Thy can be incorporated into the vaccination regimen, especially in the most immunologically vulnerable individuals such as the elderly. SUBJECTS Thymosin alpha 1, Dendritic cells, SARS-CoV2-specific T cells response, Immunomodulation.
Collapse
Affiliation(s)
- M S Espinar-Buitrago
- Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - L Tarancon-Diez
- Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Vazquez-Alejo
- Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Magro-Lopez
- Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - M Genebat
- Department of Internal Medicine, Hospital Fátima, 41012, Sevilla, Spain
| | - F Romero-Candau
- Department of Internal Medicine, Hospital Viamed Santa Ángela de la Cruz, 41014, Seville, Spain
| | - M Leal
- Department of Internal Medicine, Hospital Viamed Santa Ángela de la Cruz, 41014, Seville, Spain
- Home Residencia de la Santa Caridad, 41001, Seville, Spain
| | - M A Muñoz-Fernandez
- Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain.
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
4
|
Tao N, Xu X, Ying Y, Hu S, Sun Q, Lv G, Gao J. Thymosin α1 and Its Role in Viral Infectious Diseases: The Mechanism and Clinical Application. Molecules 2023; 28:molecules28083539. [PMID: 37110771 PMCID: PMC10144173 DOI: 10.3390/molecules28083539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Thymosin α1 (Tα1) is an immunostimulatory peptide that is commonly used as an immune enhancer in viral infectious diseases such as hepatitis B, hepatitis C, and acquired immune deficiency syndrome (AIDS). Tα1 can influence the functions of immune cells, such as T cells, B cells, macrophages, and natural killer cells, by interacting with various Toll-like receptors (TLRs). Generally, Tα1 can bind to TLR3/4/9 and activate downstream IRF3 and NF-κB signal pathways, thus promoting the proliferation and activation of target immune cells. Moreover, TLR2 and TLR7 are also associated with Tα1. TLR2/NF-κB, TLR2/p38MAPK, or TLR7/MyD88 signaling pathways are activated by Tα1 to promote the production of various cytokines, thereby enhancing the innate and adaptive immune responses. At present, there are many reports on the clinical application and pharmacological research of Tα1, but there is no systematic review to analyze its exact clinical efficacy in these viral infectious diseases via its modulation of immune function. This review offers an overview and discussion of the characteristics of Tα1, its immunomodulatory properties, the molecular mechanisms underlying its therapeutic effects, and its clinical applications in antiviral therapy.
Collapse
Affiliation(s)
- Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xie Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| |
Collapse
|
5
|
Mei Y, Wu D, Berg J, Tolksdorf B, Roehrs V, Kurreck A, Hiller T, Kurreck J. Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. Int J Mol Sci 2023; 24:ijms24076071. [PMID: 37047045 PMCID: PMC10094257 DOI: 10.3390/ijms24076071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Lung cancer still has one of the highest morbidity and mortality rates among all types of cancer. Its incidence continues to increase, especially in developing countries. Although the medical field has witnessed the development of targeted therapies, new treatment options need to be developed urgently. For the discovery of new drugs, human cancer models are required to study drug efficiency in a relevant setting. Here, we report the generation of a non-small cell lung cancer model with a perfusion system. The bioprinted model was produced by digital light processing (DLP). This technique has the advantage of including simulated human blood vessels, and its simple assembly and maintenance allow for easy testing of drug candidates. In a proof-of-concept study, we applied gemcitabine and determined the IC50 values in the 3D models and 2D monolayer cultures and compared the response of the model under static and dynamic cultivation by perfusion. As the drug must penetrate the hydrogel to reach the cells, the IC50 value was three orders of magnitude higher for bioprinted constructs than for 2D cell cultures. Compared to static cultivation, the viability of cells in the bioprinted 3D model was significantly increased by approximately 60% in the perfusion system. Dynamic cultivation also enhanced the cytotoxicity of the tested drug, and the drug-mediated apoptosis was increased with a fourfold higher fraction of cells with a signal for the apoptosis marker caspase-3 and a sixfold higher fraction of cells positive for PARP-1. Altogether, this easily reproducible cancer model can be used for initial testing of the cytotoxicity of new anticancer substances. For subsequent in-depth characterization of candidate drugs, further improvements will be necessary, such as the generation of a multi-cell type lung cancer model and the lining of vascular structures with endothelial cells.
Collapse
Affiliation(s)
- Yikun Mei
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anke Kurreck
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| | - Thomas Hiller
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- PRAMOMOLECULAR GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
6
|
Thymosin α-1 in cancer therapy: Immunoregulation and potential applications. Int Immunopharmacol 2023; 117:109744. [PMID: 36812669 DOI: 10.1016/j.intimp.2023.109744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023]
Abstract
Thymosin α-1 (Tα-1) is an immunomodulating polypeptide of 28 amino acids, which was the first peptide isolated from thymic tissue and has been widely used for the treatment of viral infections, immunodeficiencies, and especially malignancies. Tα-1 stimulates both innate and adaptive immune responses, and its regulation of innate immune cells and adaptive immune cells varies under different disease conditions. Pleiotropic regulation of immune cells by Tα-1 depends on activation of Toll-like receptors and its downstream signaling pathways in various immune microenvironments. For treatment of malignancies, the combination of Tα-1 and chemotherapy has a strong synergistic effect by enhancing the anti-tumor immune response. On the basis of the pleiotropic effect of Tα-1 on immune cells and the promising results of preclinical studies, Tα-1 may be a favorable immunomodulator to enhance the curative effect and decrease immune-related adverse events of immune checkpoint inhibitors to develop novel cancer therapies.
Collapse
|
7
|
Lin L, Liu X, Yu H, Deng H, Peng K, Chen J, Zhang C, Jiang T, Liu X. Inhibitory effect and related mechanism of decitabine combined with gemcitabine on proliferation of NK/T cell lymphoma cells. Front Pharmacol 2023; 14:1134895. [PMID: 36937854 PMCID: PMC10014839 DOI: 10.3389/fphar.2023.1134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background: EBV-associated lymphoma is a neoplasm with a poor prognosis, highly aggressive, and progressive rapidly. There is no standard clinical treatment protocol. Decitabine and gemcitabine are known to have anticancer properties against cells of various cancer, respectively. However, the effect of the combination medication on NK/T cell lymphoma cells and potential mechanisms have not been thoroughly investigated. Methods: Human NK/T cell lymphoma cells NK92MI were treated with decitabine and gemcitabine alone or in combination. Experiments, including the Cell Counting Kit-8 and flow cytometry, were performed to investigate how the combination of decitabine and gemcitabine affects the biological behavior of NK92MI cells in vitro. mRNA sequencing, RT-PCR, and western blotting were used to detect changes in the related signal pathway, mRNA, and protein expressions. Results: Decitabine and gemcitabine significantly inhibited the viability and proliferation of NK92MI cells in a dose-dependent manner. The combination index was less than 1 after treating with two drugs, which was a significant synergistic effect. The decitabine concentration with the best synergistic effect was 4.046 µM, and the gemcitabine concentration was 0.005 µM. Flow cytometry showed that combining two drugs could significantly promote apoptosis and arrest the cell cycle at the S phase. In the combined DAC and GEM group, caspase3 protein levels were higher than in either group alone or the control group. The transcriptome sequence, KEGG, and PPI analysis showed that the differential genes after combined treatment were mainly enriched in signal pathways related to cell proliferation, adhesion, and migration compared with using alone and control groups. Based on the sequencing results, we further investigated the role of DAC and GEM in ferroptosis-related signaling molecules using RT-PCR and Western blot techniques. RT-PCR and western blotting showed that the expression levels of HMOX1 and EBV cleavage gene BRLF1 were higher in the group with combined DAC and GEM than in the group alone and the control group, while the protein and mRNA expression levels of SLC7A11 were lower than the others. In addition, the GPX4 protein expression level in the combination group was lower than in the drug-alone and control groups. In addition, the combination treatment increased the ROS level of NK92MI cells. Conclusion: Our current findings suggested that decitabine had an inhibitory effect on the proliferation of NK92MI cells when co-treated with gemcitabine. This combination may increase the expression of ferroptosis-related signaling molecules, thus inhibiting the proliferation of NK92MI cells. It also promoted apoptosis in NK/T cell lymphoma. For patients with NK/T cell lymphoma, this novel combination may provide clinical benefits.
Collapse
Affiliation(s)
- Lanke Lin
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangqin Liu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Yu
- Department of Laboratory Medicine, The People’s Hospital of Leshan, Leshan, China
| | - Huan Deng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Peng
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunle Zhang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Xiaoqi Liu, ; Tao Jiang, ; Chunle Zhang,
| | - Tao Jiang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Xiaoqi Liu, ; Tao Jiang, ; Chunle Zhang,
| | - Xiaoqi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital,, Chengdu, Sichuan, China
- *Correspondence: Xiaoqi Liu, ; Tao Jiang, ; Chunle Zhang,
| |
Collapse
|