1
|
Liu S, Liu J, Cheng X, Fang D, Chen X, Ding X, Zhang X, Chen Y. Application Value of Platelet-to-Lymphocyte Ratio as a Novel Indicator in Rheumatoid Arthritis: A Review Based on Clinical Evidence. J Inflamm Res 2024; 17:7607-7617. [PMID: 39464342 PMCID: PMC11512772 DOI: 10.2147/jir.s477262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronically progressive autoimmune disease with increasing age-standardized prevalence and incidence of RA worldwide. Its pathological features are persistent synovitis of the joint, accompanied by the release of a large number of inflammatory cytokines and cartilage and bone destruction. RA can lead to progressive joint damage, stiffness and swelling, vascular and bone-related complications, and irreversible disability, which seriously affects patients' life treatment. Early diagnosis and treatment can enhance the quality of life of RA patients. Platelet-to-lymphocyte ratio (PLR), as a common indicator in routine blood tests, has been proposed as an indicator of systemic inflammation in recent years. Its clinical detection is less invasive, economical, rapid and simple, and has been applied to the clinical evaluation of a variety of diseases. Of note, this indicator is important in assessing disease activity in RA, co-diagnosing RA, detecting subclinical complications, and monitoring responses to anti-inflammatory therapy. Therefore, this review summarizes the relationship between PLR and RA and the relevant mechanisms, further advancing the understanding of the clinical value of PLR.
Collapse
Affiliation(s)
- Shengfeng Liu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xueni Cheng
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Dahai Fang
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiaolu Chen
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiang Ding
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xianheng Zhang
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yiming Chen
- Department of Rheumatology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
2
|
Ahmed SF, Jasim SA, Pallathadka H, Kaur H, Renuka Jyothi S, Bansal P, Abdali H, Mustafa YF, Al-Abdeen SHZ, Zwamel AH. New Therapeutic Strategies for the Inflammatory Rheumatoid Arthritis Disease: Emphasizing Mesenchymal Stem Cells and Associated exo-miRNA or exo-lncRNA. Cell Biochem Biophys 2024; 82:1599-1611. [PMID: 38822204 DOI: 10.1007/s12013-024-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
The most prevalent inflammatory arthritis and a leading contributor to disability is rheumatoid arthritis (RA). Although it may not have arrived in Europe until the 17th century, it was present in early Native American communities several thousand years ago. Exosomes released by mesenchymal stem cells (MSCs) are highly immunomodulatory due to the origin of the cell. As a cell-free therapy, MSCs-exosomes are less toxic and elicit a weakened immune response than cell-based therapies. Exosomal noncoding RNAs (ncRNAs) are closely associated with a number of biological and functional facets of human health, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Various exo-miRNAs and lncRNAs such as HAND2-AS1, miR-150-5p, miRNA-124a, and miR-320a lodged with MSC could be appropriate therapeutic ways for RA treatment. These MSC-derived exosomes affect RA disorders via different molecular pathways such as NFK-β, MAPK, and Wnt. The purpose of this review is to review the research that has been conducted since 2020 so far in the field of RA disease treatment with MSC-loaded exo-miRNAs and exo-lncRNAs.
Collapse
Affiliation(s)
- Shadia Faris Ahmed
- Biology Department, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq.
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq.
| | | | - Harpreet Kaur
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Hussam Abdali
- Department of Medical Engineering, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
4
|
Elharrif MG, Abdel Maksoud HA, Abdullah MH, Abd Elmohsen AS. Biochemical evaluation of possible protective effect of purslane extract in experimentally induced arthritis associated with obesity. Prostaglandins Other Lipid Mediat 2024; 172:106823. [PMID: 38408536 DOI: 10.1016/j.prostaglandins.2024.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Arthritis, a prevalent inflammatory condition, is often linked to obesity as a contributing factor. This study aimed to assess the potential protective effects of purslane extract in male albino rats with induced arthritis and obesity. Fifty rats were randomly assigned to five groups: a control group, an induced arthritis-high-fat diet group, a high-dose purslane extract-supplemented group (300 mg/kg body weight) for 8 weeks, a low-dose purslane extract-supplemented group (150 mg/kg body weight) for 8 weeks, and a metformin-supplemented group. Arthritis was induced in the rats using Complete Freund's Adjuvant. Plasma biomarkers, including Total Cholesterol, Triglycerides, HDL-cholesterol, LDL-cholesterol, C Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), Rheumatoid Factor (RF), and Anti-CCP, were assessed in each group. The results revealed a significant improvement in these biomarkers in the high-dose purslane-supplemented group (300 mg/kg body weight) compared to the induced arthritis-high-fat-diet group. This suggests a potential protective role of purslane against arthritis associated with obesity, likely attributed to its lipolytic capacity and anti-inflammatory properties. These findings contribute to our understanding of the interplay between obesity, arthritis, and natural interventions, providing valuable insights for future therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed G Elharrif
- Department of Basic Medical Sciences, Shaqra University, Kingdom of Saudi Arabia.
| | | | - M H Abdullah
- Department of Biochemistry, October 6th University. Egypt
| | | |
Collapse
|
5
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
6
|
Qi J, Liu J, Zhao X, Huang H, Tang Y, Li X. IL-27 enhances peripheral B cell glycolysis of rheumatoid arthritis patients via activating mTOR signaling. Int Immunopharmacol 2023; 121:110532. [PMID: 37354782 DOI: 10.1016/j.intimp.2023.110532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Our previous study found that increased serum IL-27 could promote rheumatoid arthritis (RA) B cell dysfunction via activating mTOR signaling pathway. This study aimed to explore the effects of IL-27 on B cell metabolism and clarify the mechanisms via which IL-27 enhancing glycolysis to induce B cells hyperactivation. Peripheral CD19+ B cells were purified from healthy controls (HC) and RA patients and then cultured with or without anti-CD40/CpG and glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or mTOR inhibitor rapamycin. Furthermore, the isolated CD19+ B cells were treated by HC serum or RA serum in the presence and absence of recombinant human IL-27 or anti-IL-27 neutralizing antibodies or 2-DG or rapamycin. The B cell glycolysis level, proliferation, differentiation and inflammatory actions were detected by qPCR, flow cytometry or ELISA. We found that the glycolysis in RA B cells was increased significantly compared with HC B cells. Glycolysis inhibition downregulated the proliferation, differentiation, and inflammatory actions of RA B cells. RA serum and IL-27 promoted B cell glycolysis, which could be obviously rescued by anti-IL-27 antibodies or mTOR inhibitor rapamycin. Our results suggest that the enhanced cellular glycolysis of RA B cells induced by IL-27 may contribute to B cells hyperactivation through activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Xiangge Zhao
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Huina Huang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Yawei Tang
- Department of Flow Cytometry Center, Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Radu AF, Bungau SG, Negru AP, Uivaraseanu B, Bogdan MA. Novel Potential Janus Kinase Inhibitors with Therapeutic Prospects in Rheumatoid Arthritis Addressed by In Silico Studies. Molecules 2023; 28:4699. [PMID: 37375255 DOI: 10.3390/molecules28124699] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder with an inflammatory condition targeting the joints that affects millions of patients worldwide. Several unmet needs still need to be addressed despite recent improvements in the management of RA. Although current RA therapies can diminish inflammation and alleviate symptoms, many patients remain unresponsive or experience flare-ups of their ailment. The present study aims to address these unmet needs through in silico research, with a focus on the identification of novel, potentially active molecules. Therefore, a molecular docking analysis has been conducted using AutoDockTools 1.5.7 on Janus kinase (JAK) inhibitors that are either approved for RA or in advanced phases of research. The binding affinities of these small molecules against JAK1, JAK2, and JAK3, which are target proteins implicated in the pathophysiology of RA, have been assessed. Subsequent to identifying the ligands with the highest affinity for these target proteins, a ligand-based virtual screening was performed utilizing SwissSimilarity, starting with the chemical structures of the previously identified small molecules. ZINC252492504 had the highest binding affinity (-9.0 kcal/mol) for JAK1, followed by ZINC72147089 (-8.6 kcal/mol) for JAK2, and ZINC72135158 (-8.6 kcal/mol) for JAK3. Using SwissADME, an in silico pharmacokinetic evaluation showed that oral administration of the three small molecules may be feasible. Based on the preliminary results of the present study, additional extensive research is required for the most promising candidates to be conducted so their efficacy and safety profiles can be thoroughly characterized, and they can become medium- and long-term pharmacotherapeutic solutions for the treatment of RA.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei Paul Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Bogdan Uivaraseanu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
8
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Liang J, Cai Y, Zhang J, Jing Z, Lv L, Zhang G, Zhang R, Liu R, Nan K, Dang X. Metformin Treatment Reduces the Incidence of Rheumatoid Arthritis: A Two-Sample Mendelian Randomized Study. J Clin Med 2023; 12:jcm12072461. [PMID: 37048545 PMCID: PMC10095374 DOI: 10.3390/jcm12072461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies have shown that rheumatologic patients can benefit from metformin, but it remains unclear whether metformin treatment is causally associated with the risk of rheumatoid arthritis (RA). A two-sample Mendelian randomization (MR) study was conducted to investigate the causal relationship between metformin treatment and the incidence of rheumatoid arthritis. The genome-wide significant (p < 5 × 10-8) single-nucleotide polymorphisms (SNPs) associated with metformin use were selected as instrumental variables (IVs). Summary statistics on RA were extracted from a large genome-wide association study (GWAS) meta-analysis. The inverse variance-weighted (IVW) method was used as the determinant of the causal effects of metformin treatment on RA. Cochran's Q was used to detect heterogeneity. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test and MR-Egger regression were used to detect horizontal pleiotropy. A total of 34 SNPs significantly associated with metformin treatment were obtained. Thirty-two SNPs were selected as IVs after removing two SNPs for being palindromic with intermediate allele frequencies (rs11658063 and rs4930011). The IVW results showed a negative causal association between metformin treatment and RA (OR = 0.0232, 95% CI 1.6046 × 10-3 - 0.3368; p = 0.006). Meanwhile, no heterogeneity or pleiotropy was detected, indicating that the results were reliable. This study indicated a negative causality between metformin treatment and RA, indicating that the treatment of metformin can prevent the pathogenesis of RA.
Collapse
Affiliation(s)
- Jialin Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Jianan Zhang
- Zonglian College, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Leifeng Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Rupeng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Ruiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Kai Nan
- Department of Osteonecrosis & Joint Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| |
Collapse
|
10
|
Huang R, Jin M, Liu Y, Lu Y, Zhang M, Yan P, Xian S, Wang S, Zhang H, Zhang X, Chen S, Lu B, Yang Y, Huang Z, Liu X, Ji S. Global trends in research of fibroblasts associated with rheumatoid diseases in the 21st century: A bibliometric analysis. Front Immunol 2023; 14:1098977. [PMID: 36845163 PMCID: PMC9950622 DOI: 10.3389/fimmu.2023.1098977] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Background Rheumatoid Diseases (RDs) are a group of systemic auto-immune diseases that are characterized by chronic synovitis, and fibroblast-like synoviocytes (FLSs) play an important role in the occurrence and progression of synovitis. Our study is the first to adopt bibliometric analysis to identify the global scientific production and visualize its current distribution in the 21st century, providing insights for future research through the analysis of themes and keywords. Methods We obtained scientific publications from the core collection of the Web of Science (WoS) database, and the bibliometric analysis and visualization were conducted by Biblioshiny software based on R-bibliometrix. Results From 2000 to 2022, a total of 3,391 publications were reviewed. China is the most prolific country (n = 2601), and the USA is the most cited country (cited 7225 times). The Center of Experimental Rheumatology at University Hospital Zürich supported the maximum number of articles (n = 40). Steffen Gay published 85 records with 6263 total citations, perhaps making him the most impactful researcher. Arthritis and Rheumatism, Annals of Rheumatic Diseases, and Rheumatology are the top three journals. Conclusion The current study revealed that rheumatoid disease (RD)-related fibroblast studies are growing. Based on the bibliometric analysis, we summarized three important topics: activation of different subsets of fibroblasts; regulation of fibroblast function; and in vitro validation of existing discoveries. They are all valuable directions, which provide reference and guidance for researchers and clinicians engaged in the research of RDs and fibroblasts.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of People's Liberation Army (PLA), Second Military Medical University, Shanghai, China
| | - Xinkun Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Shaofeng Chen
- Department of Orthopedics, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| | - Xin Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| | - Shizhao Ji
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| |
Collapse
|
11
|
Liang Z, Wang N, Shang L, Wang Y, Feng M, Liu G, Gao C, Luo J. Evaluation of the immune feature of ACPA-negative rheumatoid arthritis and the clinical value of matrix metalloproteinase-3. Front Immunol 2022; 13:939265. [PMID: 35967336 PMCID: PMC9363571 DOI: 10.3389/fimmu.2022.939265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-citrullinated protein antibodies (ACPAs) are highly specific for the diagnosis of rheumatoid arthritis (RA). However, about one-third of RA patients are negative for ACPAs, which presents a challenge to the early diagnosis of RA. The purpose of this study was to analyze differences in lymphocyte subsets and CD4+ T cell subsets between ACPA+ and ACPA- RA patients, and to evaluate the value of matrix metalloproteinase-3 (MMP-3) as a diagnostic and monitoring marker in ACA- RA patients. A total of 145 ACPA+ RA patients, 145 ACPA- RA patients, and 38 healthy controls (HCs) were included in this study. Peripheral lymphocyte subsets were detected using flow cytometry, and serum MMP-3 was detected using chemiluminescence. Information about joint symptoms, other organ involvement, and related inflammatory markers was also collected. The results showed that, compared to ACPA- RA patients, ACPA+ cases had greater imbalances between peripheral CD4+ T cell subsets, mainly manifested as an increase in T-helper 1 (Th1) cells (p < 0.001) and decrease in regulatory T (Treg) cells (p = 0.029). This makes these patients more prone to inflammatory reactions and joint erosion. MMP-3 levels in ACPA+ and ACPA- RA patients were significantly higher than in HCs (p < 0.001), and MMP-3 could effectively distinguish between ACPA- RA patients and HCs (area under the curve [AUC] = 0.930, sensitivity 84.14%, specificity 92.11%). MMP-3 was also a serum marker for distinguishing between RA patients with low and high disease activities. Further analysis showed that MMP-3 was positively correlated with the levels of inflammatory markers and disease activity, and negatively correlated with the levels of lymphocyte subsets. In addition, with improvements in the disease, MMP-3 levels decreased, and further increased as the patients started to deteriorate. In summary, our research showed that there was a mild imbalance between peripheral CD4+ T cell subsets in ACPA- RA patients. MMP-3 may be used as a potential marker for early diagnosis of ACPA- RA. MMP-3 was an important index for RA disease evaluation, disease activity stratification, and prognosis.
Collapse
Affiliation(s)
- Zhaojun Liang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Nan Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Lili Shang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Yanlin Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Min Feng
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Guangying Liu
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
12
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|