1
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Elazab ST, Hsu WH. Ferulic acid ameliorates concanavalin A-induced hepatic fibrosis in mice via suppressing TGF-β/smad signaling. Toxicol Appl Pharmacol 2024; 492:117099. [PMID: 39260469 DOI: 10.1016/j.taap.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Hepatic fibrosis, one of the main reasons for death globally, is a serious complication of chronic liver disorders. However, the available therapies for liver fibrosis are limited, ineffective, and often associated with adverse events. Hence, seeking for a novel, effective therapy is warranted. Our objective was to investigate the potential efficacy of ferulic acid (FA), a phenolic phytochemical, at different doses in hindering the progress of concanavalin A (Con A)-induced hepatic fibrosis and explore the involved mechanisms. METHODS Thirty-six mice were assorted into 6 groups (n = 6): Group I (control); group II received FA (20 mg/kg/day orally for 4 weeks); group III received Con A (6 mg/kg/week/i.v.) for 4 weeks; groups IV, V, and VI received Con A and were offered FA at 5, 10, and 20 mg/kg/day, respectively. RESULTS The data showed the palliative effect of FA against Con A-induced fibrosis in a dose-dependent manner. This was obvious from the recovery of liver markers and hepatic architecture with the regression of fibrosis in FA-treated mice. FA abolished Con A-mediated oxidative insults and promoted the antioxidant enzyme activities, which run through the Nrf2/HO-1 signaling. Additionally, FA suppressed Con A-induced increase in NF-kB and IL-β levels, and TNF-α immune-expression. The anti-fibrotic effect of FA was evident from the drop in TGF-β, smad3 levels, α-SMA expression, and hydroxyproline content. CONCLUSION FA attenuated Con A-induced liver fibrosis through stimulating Nrf2 signaling, suppressing NF-kB, and inhibiting the TGF-β/smad3 signaling pathway. Thus FA can be considered as a promising therapy for combating liver fibrosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
3
|
Mosaoa RM, Al-Rabia MW, Asfour HZ, Alhakamy NA, Mansouri RA, El-Agamy DS, Abdulaal WH, Mohamed GA, Ibrahim SRM, Elshal M. Targeting SIRT1/AMPK/Nrf2/NF-кB by sitagliptin protects against oxidative stress-mediated ER stress and inflammation during ANIT-induced cholestatic liver injury. Toxicology 2024; 507:153889. [PMID: 39029735 DOI: 10.1016/j.tox.2024.153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intrahepatic cholestasis is a common clinical form of hepatobiliary injury characterized by the intrahepatic accumulation of toxic bile acids. Besides its antidiabetic activity, the dipeptidyl peptidase IV inhibitor sitagliptin (SG) has been recently assigned diverse pharmacological activities and therapeutic potential against different disorders owing to its emerging antioxidant and anti-inflammatory properties. The current study explored the potential hepatoprotective effect of SG on α-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and investigate its possible targeted signaling pathways. Mice received SG (10 and 20 mg/kg) for four consecutive days, two days before and after a single oral administration of ANIT (75 mg/kg). Our results revealed that SG administration remarkably prevented ANIT-induced histopathological lesions in the liver and maintained hepatic functions and oxidative/antioxidant balance. Ultimately, SG counteracted the inflammatory response in the liver, as indicated by the marked suppression of hepatic expression of NF-κB, TNF-α, and IL-6. Moreover, it inhibited the endoplasmic reticulum (ER) stress response in the liver. These beneficial effects of SG were accompanied by upregulation of SIRT1, p-AMPK, and Nrf2 expressions while downregulating keap1 expression in the liver. In conclusion, this study is the first to demonstrate the ability of SG to protect against ANIT-induced CLI through modulating multiple signaling cascades, including SIRT1/AMPK, Nrf2/keap1, and NF-кB, which resulted in enhanced antioxidant capacity and repressed inflammatory and ER stress responses in the liver.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Artificial Intelligence for Precision Medicines, king Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wesam H Abdulaal
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse cardiac events of hypercholesterolemia are enhanced by sitagliptin in sprague dawley rats. Nutr Metab (Lond) 2024; 21:54. [PMID: 39080769 PMCID: PMC11290187 DOI: 10.1186/s12986-024-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. Therefore, studies on the combined effects of Cho and Met were carried out using male Sprague Dawley rats. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. We hypothesized that feeding a dietary combination of Cho and Met would result in adverse cardiac effects and would be attenuated upon administration of sitagliptin. METHODS Adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with an aqueous preparation of sitagliptin (100 mg/kg/d) or vehicle (water) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. RESULTS Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. CONCLUSIONS Adverse cardiac outcomes in HChol were enhanced by the administration of sitagliptin, and such effects were alleviated by Met. Our findings could be significant for understanding or revisiting the risk-benefit evaluation of sitagliptin in type 2 diabetics, and especially those who are known to consume atherogenic diets.
Collapse
Affiliation(s)
- Henry A Palfrey
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Avinash Kumar
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rashmi Pathak
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
5
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse Cardiac Events of Hypercholesterolemia Are Enhanced by Sitagliptin Administration in Sprague Dawley Rats. RESEARCH SQUARE 2024:rs.3.rs-4075353. [PMID: 38562676 PMCID: PMC10984018 DOI: 10.21203/rs.3.rs-4075353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. Thus, we hypothesized that atherogenic feeding would result in adverse cardiac effects and would attenuate upon sitagliptin administration. Methods Six-week-old adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with vehicle (water) or sitagliptin (100 mg/kg/d) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. Results Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. Conclusion Adverse cardiac outcomes in HChol were enhanced with sitagliptin administration and such effects were alleviated by Met. Our findings could be significant for understanding the risk-benefit of sitagliptin in type 2 diabetics who are known to consume atherogenic diets.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Southern University and Agricultural and Mechanical College
| | - Rashmi Pathak
- Southern University and Agricultural and Mechanical College
| | | | | | | |
Collapse
|
6
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
7
|
Ibrahim KM, Ahmed HI, Ramadan L, Balah A. A low dose of naloxone mitigates autoimmune hepatitis by regulating TLR4/NF-κB and Nrf2/HO-1 signaling pathways. Inflammopharmacology 2023; 31:2467-2478. [PMID: 37661242 PMCID: PMC10518291 DOI: 10.1007/s10787-023-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Naloxone is a non-selective opiate receptor antagonist that is mainly used in the management of acute opioid overdose or intoxication. Previously, naloxone has been shown to have anti-inflammatory and antioxidant properties. Concanavalin A (Con A) model is a common and well established animal model of autoimmune hepatitis that closely resembles the pathological alterations that occur in human. The present study demonstrates that a low dose of naloxone (LD NX) has the ability to improve hepatic function and attenuate hepatic damage induced by Con A as indicated by a clear reduction in serum aminotransferase, bilirubin and enhancement of albumin production as well as liver pathological changes. Also, The proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interferon- γ (IFN-γ), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were highly suppressed in animals pretreated with LD NX via interference with TLR4/NF-κB as well as JNK signaling pathways. Furthermore, oxidative stress was highly attenuated in animals pretreated with LD NX as indicated by high reduction in hepatic MDA and an increase in Nrf2, HO-1 expression and subsequent production of the endogenous antioxidants, SOD, CAT and GSH. Collectively, this study demonstrates that LD NX has the ability to mitigate Con A-induced autoimmune hepatitis via modulation of inflammatory cytokines secretion and interference with reactive oxygen species generation.
Collapse
Affiliation(s)
- Kawther Magdy Ibrahim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Laila Ramadan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Amany Balah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
8
|
Wu S, Wang X, Xing W, Li F, Liang M, Li K, He Y, Wang J. An update on animal models of liver fibrosis. Front Med (Lausanne) 2023; 10:1160053. [PMID: 37035335 PMCID: PMC10076546 DOI: 10.3389/fmed.2023.1160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.
Collapse
Affiliation(s)
- ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Liang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - KeShen Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Yan He,
| | - JianMing Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- JianMing Wang,
| |
Collapse
|
9
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
10
|
Arai T, Atsukawa M, Tsubota A, Mikami S, Haruki U, Yoshikata K, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa‐Iwashita A, Itokawa N, Kondo C, Kaneko K, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun 2022; 6:3073-3082. [PMID: 36039537 PMCID: PMC9592771 DOI: 10.1002/hep4.2069] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this retrospective multicenter study was to clarify the antifibrotic effect and long-term outcome of sodium glucose cotransporter 2 inhibitors (SGLT2-Is) in patients with nonalcoholic fatty liver disease (NAFLD) complicated by type 2 diabetes mellitus (T2DM). Of the 1262 consecutive patients with T2DM who recently received SGLT2-Is, 202 patients with NAFLD had been receiving SGLT2-Is for more than 48 weeks and were subjected to this analysis. Furthermore, 109 patients who had been on SGLT2-I therapy for more than 3 years at the time of analysis were assessed for the long-term effects of SGLT2-Is. Significant decreases in body weight, liver transaminases, plasma glucose, hemoglobin A1c, and Fibrosis-4 (FIB-4) index were found at week 48. Overall, the median value of FIB-4 index decreased from 1.42 at baseline to 1.25 at week 48 (p < 0.001). In the low-risk group (FIB-4 index < 1.3), there was no significant change in the FIB-4 index. In the intermediate-risk (≥1.3 and <2.67) and high-risk (≥2.67) groups, the median levels significantly decreased from 1.77 and 3.33 at baseline to 1.58 and 2.75 at week 48, respectively (p < 0.001 for both). Improvements in body weight, glucose control, liver transaminases, and FIB-4 index were found at 3 years of SGLT2-I treatment. In the intermediate-risk and high-risk groups (≥1.3 FIB-4 index), the FIB-4 index maintained a significant reduction from baseline throughout the 3 years of treatment. Conclusion: This study showed that SGLT2-Is offered a favorable effect on improvement in FIB-4 index as a surrogate marker of liver fibrosis in patient with NAFLD complicated by T2DM, especially those with intermediate and high risks of advanced fibrosis, and this antifibrotic effect is sustained for the long term.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Masanori Atsukawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
| | - Shigeru Mikami
- Division of Gastroenterology, Department of Internal MedicineKikkoman General HospitalMiyazaki NodaJapan
| | - Uojima Haruki
- Department of Gastroenterology, Internal MedicineKitasato University School of MedicineSagamiharaJapan
| | | | - Hiroki Ono
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tadamichi Kawano
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Yuji Yoshida
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Tomohide Tanabe
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tomomi Okubo
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Korenobu Hayama
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | | | - Norio Itokawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Chisa Kondo
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Keiko Kaneko
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Kyoko Inagaki
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Izumi Fukuda
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Hitoshi Sugihara
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
11
|
Shehata AM, Elbadawy HM, Ibrahim SRM, Mohamed GA, Elsaed WM, Alhaddad AA, Ahmed N, Abo-Haded H, El-Agamy DS. Alpha-Mangostin as a New Therapeutic Candidate for Concanavalin A-Induced Autoimmune Hepatitis: Impact on the SIRT1/Nrf2 and NF-κB Crosstalk. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182441. [PMID: 36145841 PMCID: PMC9502360 DOI: 10.3390/plants11182441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 05/04/2023]
Abstract
Alpha-mangostin (α-MN) is a xanthone obtained from Garcinia mangostana that has diverse anti-oxidative and anti-inflammatory potentials. However, its pharmacological activity against autoimmune hepatitis (AIH) has not been investigated before. Concanavalin A (Con A) was injected into mice to induce AIH and two doses of α-MN were tested for their protective effects against Con A-induced AIH. The results demonstrated the potent hepatoprotective activity of α-MN evidenced by a remarkable decrease of serum indices of the hepatic injury and amendment of the histological lesions. α-MN significantly attenuated the level and immuno-expression of myeloperoxidase (MPO) indicating a decrease in the neutrophil infiltration into the liver. Additionally, the recruitment of the CD4+ T cell was suppressed in the α-MN pre-treated animals. α-MN showed a potent ability to repress the Con A-induced oxidative stress evident by the reduced levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and protein carbonyl (PC), as well as the enhanced levels of antioxidants as the reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC). The ELISA, RT-PCR, and IHC analyses revealed that α-MN enhanced the sirtuin1/nuclear factor erythroid 2 related factor-2 (SIRT1/Nrf2) signaling and its downstream cascade genes concurrently with the inhibition of the nuclear factor kappa B (NF-κB) and the inflammatory cytokines (tumor necrosis factor-alpha and interleukine-6) signaling. Taken together, these results inferred that the hepatoprotective activity of α-MN could prevent Con A-induced AIH through the modulation of the SIRT1/Nrf2/NF-κB signaling. Hence, α-MN may be considered as a promising candidate for AIH therapy.
Collapse
Affiliation(s)
- Ahmed M Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Aisha A Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Hany Abo-Haded
- College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
13
|
Mohamed GA, Ibrahim SRM, El-Agamy DS, Elsaed WM, Sirwi A, Asfour HZ, Koshak AE, Elhady SS. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115223. [PMID: 35354089 DOI: 10.1016/j.jep.2022.115223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cucurbitacins are highly oxygenated tetracyclic triterpenoids, that represent the major metabolites reported from C. colocynthis (L.) Schrad.. Cucurbitacin E glucoside (CuE) is a tetracyclic triterpene glycoside separated from Cucurbitaceae plants. CuE has potent anti-inflammatory, immunomodulatory, and anti-tumor properties. AIM OF THE STUDY The current study aimed at examining the hepatoprotective effect of CuE against concanavalin A (Con A)-produced hepatitis. MATERIALS AND METHODS Mice were intravenously administered Con A (15 mg/kg) to induce AIH. CuE was orally administered at two different doses for five days preceding Con A injection. RESULTS The results revealed that CuE pretreatment markedly attenuated the serum indices of hepatotoxicity and the severity of hepatic lesions. CuE depressed Con A-provoked increment in CD4+ T-cells in hepatic tissue. The antioxidant activity of CuE was evident through its ability to decrease markers of Con A-induced oxidative stress (malondialdehyde, 4-hydroxyenonanal, and protein carbonyl) and intensified the antioxidants in the hepatic tissue (SOD, GSH, and TAC). CuE increased mRNA expression of SIRT1 and Nrf2 as well as its binding capacity. Subsequently, CuE augmented mRNA expression of Nrf2 targeted genes as NQO1, GCL, and HO-1 and recovered its normal level. CuE inhibited the activation of NF-κB/downstream pro-inflammatory mediators signaling. Furthermore, CuE attenuated the mRNA expression of NLRP3 and its associated genes. CONCLUSION Collectively, these results demonstrated the remarkable hepatoprotective potential of CuE towards Con A-induced AIH which was mediated via suppression of oxidative stress, enhancing SIRT1/Nrf2/HO-1, and prohibition of the NF-κB/NLRP3 signaling. CuE could be a candidate for hepatitis patients.
Collapse
Affiliation(s)
- Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sameh S Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
14
|
Sun X, Xia T, Zhang S, Zhang J, Xu L, Han T, Xin H. Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway. J Bone Miner Metab 2022; 40:375-388. [PMID: 35106609 DOI: 10.1007/s00774-021-01295-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Osteoporosis is closely related to iron metabolism. This study aimed to investigate whether hops extract (HLE) and its active component xanthohumol (XAN) could ameliorate bone loss caused by iron overload, and explored its potential mechanism. MATERIALS AND METHODS Iron overload mice induced by iron dextran (ID) were used in vivo, and were treated with HLE and XAN for 3 months. Bone micro-structure and bone morphology parameters were determined by Micro-CT and TRAP staining. Bone metabolism markers and oxidation indexes in serum and bone tissue were evaluated. For in vitro experiment, bone formation indexes were determined. Moreover, the expression of key proteins in protein kinase B (Akt)/glycogen synthetase kinase 3β (GSK3β)/nuclear factor E2-related (Nrf2) pathway was evaluated by Western blotting. RESULTS HLE and XAN effectively improved the bone micro-structure of the femur in mice, altered bone metabolism biomarkers, and regulated the expression of proteins related to bone metabolism. Additionally, they significantly promoted cell proliferation, runt-related gene 2 (Runx2) expression, and increased ALP activity in ID-induced osteoblasts. Moreover, HLE and XAN markedly inhibited the increase of oxidative stress caused by iron overload in vivo and in vitro. Further studies showed that they significantly up-regulated the expression of p-Akt, p-GSK3β, nuclear-Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1) in ID-induced osteoblasts. CONCLUSION These findings indicated hops and xanthohumol could ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway, which brought up a novel sight for senile osteoporosis therapy.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shiyao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Jiabao Zhang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
15
|
Qi JH, Chen PY, Cai DY, Wang Y, Wei YL, He SP, Zhou W. Exploring novel targets of sitagliptin for type 2 diabetes mellitus: Network pharmacology, molecular docking, molecular dynamics simulation, and SPR approaches. Front Endocrinol (Lausanne) 2022; 13:1096655. [PMID: 36699034 PMCID: PMC9868454 DOI: 10.3389/fendo.2022.1096655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Diabetes has become a serious global public health problem. With the increasing prevalence of type 2 diabetes mellitus (T2DM), the incidence of complications of T2DM is also on the rise. Sitagliptin, as a targeted drug of DPP4, has good therapeutic effect for T2DM. It is well known that sitagliptin can specifically inhibit the activity of DPP4 to promote insulin secretion, inhibit islet β cell apoptosis and reduce blood glucose levels, while other pharmacological mechanisms are still unclear, such as improving insulin resistance, anti-inflammatory, anti-oxidative stress, and anti-fibrosis. The aim of this study was to explore novel targets and potential signaling pathways of sitagliptin for T2DM. METHODS Firstly, network pharmacology was applied to find the novel target most closely related to DPP4. Semi-flexible molecular docking was performed to confirm the binding ability between sitagliptin and the novel target, and molecular dynamics simulation (MD) was carried to verify the stability of the complex formed by sitagliptin and the novel target. Furthermore, surface-plasmon resonance (SPR) was used to explored the affinity and kinetic characteristics of sitagliptin with the novel target. Finally, the molecular mechanism of sitagliptin for T2DM was predicted by the enrichment analysis of GO function and KEGG pathway. RESULTS In this study, we found the cell surface receptor-angiotensin-converting enzyme 2 (ACE2) most closely related to DPP4. Then, we confirmed that sitagliptin had strong binding ability with ACE2 from a static perspective, and the stability of sitagliptin-ACE2 complex had better stability and longer binding time than BAR708-ACE2 in simulated aqueous solution within 50 ns. Significantly, we have demonstrated a strong affinity between sitagliptin and ACE2 on SPR biosensor, and their kinetic characteristics were "fast binding/fast dissociation". The guiding significance of clinical administration: low dose can reach saturation, but repeated administration was needed. Finally, there was certain relationship between COVID-19 and T2DM, and ACE2/Ang-(1-7)/Mas receptor (MasR) axis may be the important pathway of sitagliptin targeting ACE2 for T2DM. CONCLUSION This study used different methods to prove that ACE2 may be another novel target of sitagliptin for T2DM, which extended the application of ACE2 in improving diabetes mellitus.
Collapse
|
16
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|