1
|
Singuru G, Pulipaka S, Shaikh A, Sahoo S, Jangam A, Thennati R, Kotamraju S. Mitochondria targeted esculetin administration improves insulin resistance and hyperglycemia-induced atherosclerosis in db/db mice. J Mol Med (Berl) 2024; 102:927-945. [PMID: 38758435 DOI: 10.1007/s00109-024-02449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The development and progression of hyperglycemia (HG) and HG-associated atherosclerosis are exacerbated by mitochondrial dysfunction due to dysregulated mitochondria-derived ROS generation. We recently synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and tested its dose-response therapeutic efficacy in mitigating HG-induced atherosclerosis in db/db mice. In comparison to simvastatin and pioglitazone, Mito-Esc administration resulted in a considerable reduction in body weights and improved glucose homeostasis, possibly by reducing hepatic gluconeogenesis, as indicated by a reduction in glycogen content, non-esterified free fatty acids (NEFA) levels, and fructose 1,6-bisphosphatase (FBPase) activity. Interestingly, Mito-Esc treatment, by regulating phospho-IRS and phospho-AKT levels, greatly improved palmitate-induced insulin resistance, resulting in enhanced glucose uptake in adipocytes and HepG2 cells. Also, and importantly, Mito-Esc administration prevented HG-induced atheromatous plaque formation and lipid accumulation in the descending aorta. In addition, Mito-Esc administration inhibited the HG-mediated increase in VACM, ICAM, and MAC3 levels in the aortic tissue, as well as reduced the serum pro-inflammatory cytokines and markers of senescence. In line with this, Mito-Esc significantly inhibited monocyte adherence to human aortic endothelial cells (HAECs) treated with high glucose and reduced high glucose-induced premature senescence in HAECs by activating the AMPK-SIRT1 pathway. In contrast, Mito-Esc failed to regulate high glucose-induced endothelial cell senescence under AMPK/SIRT1-depleted conditions. Together, the therapeutic efficacy of Mito-Esc in the mitigation of hyperglycemia-induced insulin resistance and the associated atherosclerosis is in part mediated by potentiating the AMPK-SIRT1 axis. KEY MESSAGES: Mito-Esc administration significantly mitigates diabetes-induced atherosclerosis. Mito-Esc improves hyperglycemia (HG)-associated insulin resistance. Mito-Esc inhibits HG-induced vascular senescence and inflammation in the aorta. Mito-Esc-mediated activation of the AMPK-SIRT1 axis regulates HG-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Aruna Jangam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd., Vadodara, 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Dagar N, Habshi T, Shelke V, Jadhav HR, Gaikwad AB. Renoprotective effect of esculetin against ischemic acute kidney injury-diabetic comorbidity. Free Radic Res 2024; 58:69-87. [PMID: 38323807 DOI: 10.1080/10715762.2024.2313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Mitophagy maintains cellular homeostasis by eliminating damaged mitochondria. Accumulated damaged mitochondria can lead to oxidative stress and cell death. Induction of the PINK1/Parkin-mediated mitophagy is reported to be renoprotective in acute kidney injury (AKI). Esculetin, a naturally available coumarin, has shown protective action against diabetic complications. However, its effect on AKI-diabetes comorbidity has not been explored yet. Therefore, we aimed to investigate the renoprotective effect of esculetin against AKI under diabetic conditions via regulating PINK1/Parkin-mediated mitophagy. For this, type 1 diabetic male Wistar rats were treated with two doses of esculetin (50 and 100 mg/kg/day orally) for five days followed by AKI induction by bilateral ischemic-reperfusion injury (IRI). NRK-52E cells grown in high glucose were exposed to sodium azide (10 mM) for induction of hypoxia/reperfusion injury (HRI) in-vitro. Esculetin (50 µM) treatment for 24 h was given to the cells before HRI. The in-vitro samples were utilized for cell viability and ΔΨm assay, immunoblotting, and immunofluorescence. Rats' plasma, urine, and kidney samples were collected for biochemical analysis, histopathology, and western blotting. Our results showed a significant decrease in kidney injury-specific markers and increased expression of mitophagy markers (PINK1 and Parkin) with esculetin treatment. Moreover, esculetin prevented the HRI and hyperglycemia-induced decrease in ΔΨm and autophagosome marker. Also, esculetin therapy reduced oxidative stress via increased Nrf2 and Keap1 expression. Esculetin attenuated AKI under diabetic condition by preventing mitochondrial dysfunction via inducing PINK1/Parkin-mediated mitophagy, suggesting its potential as an effective therapy for preventing AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Tahib Habshi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | | |
Collapse
|