1
|
Jeong JH, Park KN, Kim JH, Noh K, Hur SS, Kim Y, Hong M, Chung JC, Park JH, Lee J, Son YI, Lee JH, Kim SH, Hwang Y. Self-organized insulin-producing β-cells differentiated from human omentum-derived stem cells and their in vivo therapeutic potential. Biomater Res 2023; 27:82. [PMID: 37644502 PMCID: PMC10466773 DOI: 10.1186/s40824-023-00419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived β-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional β-cells remains challenging. METHODS We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing β-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the β-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing β-cell progenitors, as evident from the upregulation of pancreatic β-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated β-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic β-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - KyungMu Noh
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Moonju Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Jun Chul Chung
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Young-Ik Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Bio-Med Engineering, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea.
| |
Collapse
|
2
|
Buchacher T, Honkimaa A, Välikangas T, Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL, Hyöty H, Elo LL, Lahesmaa R. Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. iScience 2022; 25:103653. [PMID: 35024587 PMCID: PMC8728469 DOI: 10.1016/j.isci.2021.103653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses, particularly the group B coxsackieviruses (CVBs), have been associated with the development of type 1 diabetes. Several CVB serotypes establish chronic infections in human cells in vivo and in vitro. However, the mechanisms leading to enterovirus persistency and, possibly, beta cell autoimmunity are not fully understood. We established a carrier-state-type persistent infection model in human pancreatic cell line PANC-1 using two distinct CVB1 strains and profiled the infection-induced changes in cellular transcriptome. In the current study, we observed clear changes in the gene expression of factors associated with the pancreatic microenvironment, the secretory pathway, and lysosomal biogenesis during persistent CVB1 infections. Moreover, we found that the antiviral response pathways were activated differently by the two CVB1 strains. Overall, our study reveals extensive transcriptional responses in persistently CVB1-infected pancreatic cells with strong opposite but also common changes between the two strains.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - M. Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | | | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere FI-33520, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Connexin 43 Gene Ablation Does Not Alter Human Pluripotent Stem Cell Germ Lineage Specification. Biomolecules 2021; 12:biom12010015. [PMID: 35053163 PMCID: PMC8773696 DOI: 10.3390/biom12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/23/2023] Open
Abstract
During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification. We screened the mRNA profile and protein expression patterns of select human Cx isoforms in undifferentiated human induced pluripotent stem cells (iPSCs), and after directed differentiation into the three embryonic germ lineages: ectoderm, definitive endoderm, and mesoderm. Transcript analyses by qPCR revealed upregulation of Cx45 and Cx62 in iPSC-derived ectoderm; Cx45 in mesoderm; and Cx30.3, Cx31, Cx32, Cx36, Cx37, and Cx40 in endoderm relative to control human iPSCs. Generated Cx43 (GJA1) CRISPR-Cas9 knockout iPSCs successfully differentiated into cells of all three germ layers, suggesting that Cx43 is dispensable during directed iPSC lineage specification. Furthermore, qPCR screening of select Cx transcripts in our GJA1-/- iPSCs showed no significant Cx upregulation in response to the loss of Cx43 protein. Future studies will reveal possible compensation by additional Cxs, suggesting targets for future CRISPR-Cas9 ablation studies in human iPSC lineage specification.
Collapse
|
4
|
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers (Basel) 2021; 13:cancers13215300. [PMID: 34771463 PMCID: PMC8582473 DOI: 10.3390/cancers13215300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.
Collapse
|
5
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
6
|
Xu X, Nie Y, Wang W, Ullah I, Tung WT, Ma N, Lendlein A. Generation of 2.5D lung bud organoids from human induced pluripotent stem cells. Clin Hemorheol Microcirc 2021; 79:217-230. [PMID: 34487028 DOI: 10.3233/ch-219111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC_70%_hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL_90%_het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Ullah
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wing Tai Tung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
7
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
8
|
Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene 2021; 40:1909-1920. [PMID: 33603164 PMCID: PMC8191514 DOI: 10.1038/s41388-021-01668-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is aggressive, highly metastatic and characterized by a robust desmoplasia. Connexin proteins that form gap junctions have been implicated in tumor suppression for over 30 years. Cx43, the most widely expressed connexin, regulates cell behaviors, including migration and proliferation. Thus, we hypothesized that Cx43 could regulate PDA progression. Phosphorylation of Cx43 by Casein Kinase 1 (CK1) regulates gap junction assembly. We interbred the well-established KrasLSL-G12D/+;p48Cre/+ (KC) mouse model of PDA with homozygous "knock-in" mutant Cx43 mice bearing amino acid substitution at CK1 sites (Cx43CK1A) and found profound and surprising effects on cancer progression. Crossing the Cx43CK1A mouse onto the KC background (termed KC;CxCK1A) led to significant extension of lifespan, from a median of 370 to 486 days (p = 0.03) and a decreased incidence of metastasis (p = 0.045). However, when we examined early stages of disease, we found more rapid onset of tissue remodeling in the KC;CxCK1A mouse followed by divergence to a cystic phenotype. During tumorigenesis, gap junctions are increasingly present in stromal cells of the KC mice but are absent from the KC;Cx43CK1A mice. Tail vein metastasis assays with cells derived from KC or KC;CxCK1A tumors showed that KC;CxCK1A cells could efficiently colonize the lung and downregulate Cx43 expression, arguing that inhibition of metastasis was not occurring at the distal site. Instead, stromal gap junctions, their associated signaling events or other unknown Cx43-dependent events facilitate metastatic capacity in the primary tumor.
Collapse
|
9
|
Cervera J, Ramirez P, Levin M, Mafe S. Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations. Phys Rev E 2020; 102:052412. [PMID: 33327213 DOI: 10.1103/physreve.102.052412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Bioelectrical patterns are established by spatiotemporal correlations of cell membrane potentials at the multicellular level, being crucial to development, regeneration, and tumorigenesis. We have conducted multicellular simulations on bioelectrical community effects and intercellular coupling in multicellular aggregates. The simulations aim at establishing under which conditions a local heterogeneity consisting of a small patch of cells can be stabilized against a large aggregate of surrounding identical cells which are in a different bioelectrical state. In this way, instructive bioelectrical information can be persistently encoded in spatiotemporal patterns of separated domains with different cell polarization states. The multicellular community effects obtained are regulated both at the single-cell and intercellular levels, and emerge from a delicate balance between the degrees of intercellular coupling in: (i) the small patch, (ii) the surrounding bulk, and (iii) the interface that separates these two regions. The model is experimentally motivated and consists of two generic voltage-gated ion channels that attempt to establish the depolarized and polarized cell states together with coupling conductances whose individual and intercellular different states permit a dynamic multicellular connectivity. The simulations suggest that community effects may allow the reprogramming of single-cell bioelectrical states, in agreement with recent experimental data. A better understanding of the resulting electrical regionalization can assist the electroceutical correction of abnormally depolarized regions initiated in the bulk of normal tissues as well as suggest new biophysical mechanisms for the establishment of target patterns in multicellular engineering.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Patricio Ramirez
- Departamento Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, USA
| | - Salvador Mafe
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
10
|
The Connexin 43 Regulator Rotigaptide Reduces Cytokine-Induced Cell Death in Human Islets. Int J Mol Sci 2020; 21:ijms21124311. [PMID: 32560352 PMCID: PMC7352593 DOI: 10.3390/ijms21124311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. Methods: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1β + IFNɣ. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. Results: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. Conclusion: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling.
Collapse
|
11
|
Vishwakarma SK, Jaiswal J, Park K, Lakkireddy C, Raju N, Bardia A, Habeeb MA, Paspala SAB, Khan AA, Dhayal M. TiO
2
Nanoflowers on Conducting Substrates Ameliorate Effective Transdifferentiation of Human Hepatic Progenitor Cells for Long‐Term Hyperglycemia Reversal in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Juhi Jaiswal
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Kyung‐Hee Park
- Department of Dental Materials and Hard‐tissue Biointerface Research Center, School of DentistryChonnam National University Gwangju 61186 Republic of Korea
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Md. Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Marshal Dhayal
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|