1
|
Sasaki T, Sugiyama M, Kuno M, Miyata T, Kobayashi T, Yasuda Y, Onoue T, Takagi H, Hagiwara D, Iwama S, Suga H, Banno R, Arima H. Voluntary exercise suppresses inflammation and improves insulin resistance in the arcuate nucleus and ventral tegmental area in mice on a high-fat diet. Physiol Behav 2024; 287:114703. [PMID: 39342979 DOI: 10.1016/j.physbeh.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
A high-fat diet (HFD) causes inflammation with an increase in microglial activity in the hypothalamic arcuate nucleus (ARC) and ventral tegmental area (VTA), resulting in insulin resistance in both regions. This leads to a deterioration in glucose and energy metabolism. The effect of voluntary exercise on HFD-induced inflammation in the central nervous system (CNS) remains unclear. To clarify the effects of voluntary exercise on the CNS, 8-week-old male C57BL6 mice were fed a chow diet (CHD) or HFD for 4 weeks; each group was further divided into running exercise (EX+) on a wheel and no exercise (EX-) groups. The expression of the inflammatory cytokine, tumor necrosis factor alpha (TNFα), in the ARC and VTA was significantly increased in the HFD/EX- group, with an increase of microglial activity noted, compared to the CHD/EX- group. The expression of TNFα was significantly suppressed, with a decrease of microglial activity, in the HFD/EX+ compared to HFD/EX- group. Insulin resistance in the ARC and VTA was improved with the suppression of TNFα expression. The HFD/EX- group showed significant weight gain and impaired glucose metabolism compared to the CHD/EX- group. The HFD/EX+ group showed an improvement in glucose and energy metabolism compared to the HFD/EX- group. In addition, voluntary wheel running suppressed HFD-induced inflammation in the ARC, with a decrease in microglial activity observed independently of weight changes. Our data suggest that voluntary exercise prevents obesity and improves glucose metabolism by suppressing inflammation in the ARC and VTA under HFD conditions.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
|
3
|
Kim K, Yoon H. Gamma-Aminobutyric Acid Signaling in Damage Response, Metabolism, and Disease. Int J Mol Sci 2023; 24:ijms24054584. [PMID: 36902014 PMCID: PMC10003236 DOI: 10.3390/ijms24054584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in signal transduction and can function as a neurotransmitter. Although many studies have been conducted on GABA in brain biology, the cellular function and physiological relevance of GABA in other metabolic organs remain unclear. Here, we will discuss recent advances in understanding GABA metabolism with a focus on its biosynthesis and cellular functions in other organs. The mechanisms of GABA in liver biology and disease have revealed new ways to link the biosynthesis of GABA to its cellular function. By reviewing what is known about the distinct effects of GABA and GABA-mediated metabolites in physiological pathways, we provide a framework for understanding newly identified targets regulating the damage response, with implications for ameliorating metabolic diseases. With this review, we suggest that further research is necessary to develop GABA's beneficial and toxic effects on metabolic disease progression.
Collapse
|
4
|
Sun R, Sugiyama M, Wang S, Kuno M, Sasaki T, Hirose T, Miyata T, Kobayashi T, Tsunekawa T, Onoue T, Yasuda Y, Takagi H, Hagiwara D, Iwama S, Suga H, Arima H. Inflammation in VTA Caused by HFD Induces Activation of Dopaminergic Neurons Accompanied by Binge-like Eating. Nutrients 2022; 14:nu14183835. [PMID: 36145208 PMCID: PMC9502544 DOI: 10.3390/nu14183835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Binge eating is a characteristic symptom observed in obese individuals that is related to dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated dopaminergic neuron specific IKKβ deficient mice (KO) to examine the effects of inflammation in DNs on binge-like eating under inflammatory conditions associated with HFD. After administration of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for 2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin was administered intraventricularly to assess downstream signaling. The consumption of HFD was significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.
Collapse
Affiliation(s)
- Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-52-744-2142
| | - Sixian Wang
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, Ichinomiya 491-8558, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Sun R, Tsunekawa T, Hirose T, Yaginuma H, Taki K, Mizoguchi A, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Banno R, Bettler B, Arima H. GABA B receptor signaling in the caudate putamen is involved in binge-like consumption during a high fat diet in mice. Sci Rep 2021; 11:19296. [PMID: 34588513 PMCID: PMC8481241 DOI: 10.1038/s41598-021-98590-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Previous studies suggest that signaling by the gamma-aminobutyric acid (GABA) type B receptor (GABABR) is involved in the regulation of binge eating, a disorder which might contribute to the development of obesity. Here, we show that intermittent access to a high fat diet (HFD) induced binge-like eating behavior with activation of dopamine receptor d1 (drd1)-expressing neurons in the caudate putamen (CPu) and nucleus accumbens (NAc) in wild-type (WT) mice. The activation of drd1-expressing neurons during binge-like eating was substantially increased in the CPu, but not in the NAc, in corticostriatal neuron-specific GABABR-deficient knockout (KO) mice compared to WT mice. Treatment with the GABABR agonist, baclofen, suppressed binge-like eating behavior in WT mice, but not in KO mice, as reported previously. Baclofen also suppressed the activation of drd1-expressing neurons in the CPu, but not in the NAc, during binge-like eating in WT mice. Thus, our data suggest that GABABR signaling in CPu neurons expressing drd1 suppresses binge-like consumption during a HFD in mice.
Collapse
Affiliation(s)
- Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22, Bunkyo, Ichinomiya, 491-8558, Japan.
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22, Bunkyo, Ichinomiya, 491-8558, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| |
Collapse
|
6
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
7
|
Mizoguchi A, Banno R, Sun R, Yaginuma H, Taki K, Kobayashi T, Sugiyama M, Tsunekawa T, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Nagai T, Yamada K, Arima H. Glucocorticoid receptor signaling in ventral tegmental area neurons increases the rewarding value of a high-fat diet in mice. Sci Rep 2021; 11:12873. [PMID: 34145364 PMCID: PMC8213822 DOI: 10.1038/s41598-021-92386-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
The reward system, which consists of dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and caudate-putamen in the striatum, has an important role in the pathogenesis of not only drug addiction but also diet-induced obesity. In the present study, we examined whether signaling through glucocorticoid receptors (GRs) in the reward system affects the rewarding value of a high-fat diet (HFD). To do so, we generated mice that lack functional GRs specifically in dopaminergic neurons (D-KO mice) or corticostriatal neurons (CS-KO mice), subjected the mice to caloric restriction stress conditions, and evaluated the rewarding value of a HFD by conditioned place preference (CPP) test. Caloric restriction induced increases in serum corticosterone to similar levels in all genotypes. While CS-KO as well as WT mice exhibited a significant preference for HFD in the CPP test, D-KO mice exhibited no such preference. There were no differences between WT and D-KO mice in consumption of HFD after fasting or cognitive function evaluated by a novel object recognition test. These data suggest that glucocorticoid signaling in the VTA increases the rewarding value of a HFD under restricted caloric stress.
Collapse
Affiliation(s)
- Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan. .,Physical Fitness and Sports, Research Center of Health, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-0814, Japan.
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.,Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.,Division of Behavioral Neuropharmacology, Project Office for Neuropsychological Research Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
8
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
9
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
10
|
Hypothalamic glial cells isolated by MACS reveal that microglia and astrocytes induce hypothalamic inflammation via different processes under high-fat diet conditions. Neurochem Int 2020; 136:104733. [PMID: 32222288 DOI: 10.1016/j.neuint.2020.104733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
|
11
|
Antunes LC, Elkfury JL, Parizotti CS, Brietzke AP, Bandeira JS, Torres ILDS, Fregni F, Caumo W. Longer Cortical Silent Period Length Is Associated to Binge Eating Disorder: An Exploratory Study. Front Psychiatry 2020; 11:559966. [PMID: 33173510 PMCID: PMC7591768 DOI: 10.3389/fpsyt.2020.559966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Although binge eating disorder (BED) is an eating disorder and obesity is a clinical disease, it is known that both conditions present overlapped symptoms related to, at least partially, the disruption of homeostatic and hedonistic eating behavior pathways. Therefore, the understanding of neural substrates, such as the motor cortex excitability assessed by transcranial magnetic stimulation (TMS), might provide new insights into the pathophysiology of BED and obesity. Objectives: (i) To compare, among BED, obesity, ex-obese, and HC (healthy control) subjects, the cortical excitability indexed by TMS measures, such as CSP (cortical silent period; primary outcome), SICI (intracortical inhibition), and ICF (intracortical facilitation; secondary outcome). (ii) To explore the relationship of the CSP, eating behavior (e.g., restraint, disinhibition, and hunger), depressive symptoms, and sleep quality among the four groups (BED, obesity, ex-obese, and HC). Methods: Fifty-nine women [BED (n = 13), obese (n = 20), ex-obese (n = 12), and HC (n = 14)] comprise the total sample for this study. Assessments: cortical excitability measures (CSP, SICI, and ICF), inhibition response task by the Go/No-go paradigm, and instruments to assess the eating psychopathology (Three-Factor Eating Questionnaire, Eating Disorder Examination Questionnaire, and Binge Eating Scale) were used. Results: A MANCOVA analysis revealed that the mean of CSP was longer in the BED group compared with other three groups: 24.10% longer than the obesity group, 25.98% longer than the HC group, and 25.41% longer than the ex-obese group. Pearson's correlations evidenced that CSP was positively associated with both eating concern and binge eating scores. Conclusion: The findings point out that BED patients present longer CSP, which might suggest an upregulation of intracortical inhibition. Additionally, CSP was positively correlated with Binge Eating Scale and eating concern scores. Further studies are needed.
Collapse
Affiliation(s)
- Luciana C Antunes
- Associate Professor in the Health Science Center, Nutrition Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jessica Lorenzzi Elkfury
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiane Schultz Parizotti
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Patrícia Brietzke
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Janete Shatkoski Bandeira
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Associate Professor, Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Anesthesiologist, Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Associate Professor of Pain and Anesthesia, Surgery Department, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|