1
|
Huang Y, Liang J, Wu H, Chen P, Xiao A, Guan BO. Microscale insight into the proton concentration during electrolytic reaction via an optical microfiber: potential for microcurrent monitoring by a dielectric probe. LIGHT, SCIENCE & APPLICATIONS 2025; 14:73. [PMID: 39915465 PMCID: PMC11802907 DOI: 10.1038/s41377-025-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Local microcurrent monitoring is of great significance for biological and battery systems, yet it poses a formidable challenge. The current measurement techniques rely on electromagnetic materials which inevitably introduce interference to the system under examination. To address this issue, a promising approach based on a dielectric fiber-optic sensor is demonstrated. The microfiber is capable of detecting microcurrent through monitoring the localized proton concentration signal with a pH resolution of 0.0052 pH units. By sensing the refractive index variation surrounding the sensor induced by the interaction between local proton concentration changes and oxidizer-treated microfiber surface through the evanescent field, this sensing mechanism effectively avoids the interference of the electromagnetic material on the performance of the tested system. This sensor exhibits a limit of detection for microcurrent of 1 μA. The sensing region is a microfiber with a diameter of 8.8 μm. It can get invaluable information that cannot be obtained through conventional electrochemical methods. Examples include photocurrent attenuation in photogenerated carrier materials during illumination, electrical activation in nerve cells, and fluctuations in the efficiency of electrical energy generation during battery discharge. This approach provides a powerful complement to electrochemical methods for the elucidation of microscale reaction mechanisms. The information provided by the prepared dielectric fiber-optic sensor will shed more light on proton kinetics and electrochemical and electrobiological mechanisms, which may fill an important gap in the current bioelectricity and battery monitoring methods.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China.
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Aoxiang Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China.
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Li J, Li H, Long Z, Meng L, Guo H, Lv M. Wearable multifunctional optical sensor based on Er 3+/Yb 3+ co-doped Gd 2O 3 nanoparticles and tapered U-shaped fiber. OPTICS LETTERS 2025; 50:281-284. [PMID: 39815490 DOI: 10.1364/ol.544678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Wearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er3+/Yb3+ co-doped Gd2O3 nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper. Temperature resolution of about 0.16℃ is achieved by monitoring the fluorescence intensity ratio (FIR) around 562 nm and 522 nm emitted by Er3+/Yb3+ co-doped Gd2O3 phosphors, which are integrated in a single-mode fiber (SMF). The stress measurement is obtained by monitoring the fluorescence intensity change around 522 nm, which is insensitive to temperature. The results show that the pressure sensitivity and low detection limit are 7% kPa-1 and 127 Pa, respectively. In addition, the response time of 20 ms are achieved for stress sensing. As a proof-of-concept, human skin temperature and heart and respiratory rates are detected before and after exercise by positioning the sensing probe on the wrist. Furthermore, heart and respiratory rates in different parts of the body are also monitored, which are in good agreement with one another. The results demonstrate that the proposed wearable multifunctional optical sensor has huge potential for health monitoring.
Collapse
|
3
|
Xie Y, Pan J, Yu L, Fang H, Yu S, Zhou N, Tong L, Zhang L. Optical Micro/Nanofiber Enabled Multiaxial Force Sensor for Tactile Visualization and Human-Machine Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404343. [PMID: 39377221 PMCID: PMC11615745 DOI: 10.1002/advs.202404343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Indexed: 10/09/2024]
Abstract
Tactile sensors with capability of multiaxial force perception play a vital role in robotics and human-machine interfaces. Flexible optical waveguide sensors have been an emerging paradigm in tactile sensing due to their high sensitivity, fast response, and antielectromagnetic interference. Herein, a flexible multiaxial force sensor enabled by U-shaped optical micro/nanofibers (MNFs) is reported. The MNF is embedded within an elastomer film topped with a dome-shaped protrusion. When the protrusion is subjected to vector forces, the embedded MNF undergoes anisotropic deformations, yielding time-resolved variations in light transmission. Detection of both normal and shear forces is achieved with sensitivities reaching 50.7 dB N-1 (14% kPa-1) and 82.2 dB N-1 (21% kPa-1), respectively. Notably, the structural asymmetry of the MNF induces asymmetrical optical modes, granting the sensor directional responses to four-directional shear forces. As proof-of-concept applications, tactile visualizations for texture and relief pattern recognition are realized with a spatial resolution of 160 µm. Moreover, a dual U-shaped MNF configuration is demonstrated as a human-machine interface for cursor manipulation. This work represents a step towards advanced multiaxial tactile sensing.
Collapse
Affiliation(s)
- Yu Xie
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Jing Pan
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Longteng Yu
- Research Center for Humanoid SensingZhejiang LabHangzhou311100China
| | - Hubiao Fang
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Shaoliang Yu
- Research Center for Frontier Fundamental StudiesZhejiang LabHangzhou311100China
| | - Ning Zhou
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Limin Tong
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Lei Zhang
- State Key Laboratory of Extreme Photonics and InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
4
|
Wang A, Fu L. Nano-Functional Materials for Sensor Applications. Molecules 2024; 29:5515. [PMID: 39683674 DOI: 10.3390/molecules29235515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The rapid development of nanotechnology and materials science has led to remarkable advances in sensor applications across various fields [...].
Collapse
Affiliation(s)
- Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Huang Y, Mou C, Liang J, Wan J, Chen P, Guan B. Operando Decoding of Surface Chemical and Thermal Events in Photoelectrocatalysis via a Lab-Around-Microfiber Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310264. [PMID: 38689507 PMCID: PMC11234440 DOI: 10.1002/advs.202310264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/16/2024] [Indexed: 05/02/2024]
Abstract
Operando decoding of the key parameters of photo-electric catalysis provides reliable information for catalytic effect evaluation and catalytic mechanism exploration. However, to capture the details of surface-localized and rapid chemical and thermal events at the nanoscale in real-time is highly challenging. A promising approach based on a lab-around-microfiber sensor capable of simulating photo-electric catalytic reactions on the surface of optical fibers as well as monitoring reactant concentration changes and catalytic heat generation processes is demonstrated. Due to the penetration depth of submicron size and the fast response ability of the evanescent field, the lab-around-microfiber sensor overcame the difficulty of reading instantaneous surface parameters in the submicron range. This sensor operando dismantled the changes in reactant concentration and temperature on the catalyst surface induced by light and voltage, respectively. It also decoded the impact of catalyst composition on the adsorption efficiency and catalytic efficiency across various wavelengths and determined the synchronized occurrence of pollutant degradation and catalytic thermal effects. Stable correlations between the real-time parameters and catalytic activities are obtained, helping to provide a basic understanding of the catalytic process and mechanism. This approach fills an important gap in the current monitoring methods of catalytic processes and heat production.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| | - Caini Mou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| | - Jiaxin Wan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| | - Bai‐Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443China
- College of Physics & Optoelectronic EngineeringJinan UniversityGuangzhou510632China
| |
Collapse
|
6
|
Li X, Li Y, Wei H, Wang C, Liu B. A Review of Wearable Optical Fiber Sensors for Rehabilitation Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:3602. [PMID: 38894393 PMCID: PMC11175184 DOI: 10.3390/s24113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
As the global aging population increases, the demand for rehabilitation of elderly hand conditions has attracted increased attention in the field of wearable sensors. Owing to their distinctive anti-electromagnetic interference properties, high sensitivity, and excellent biocompatibility, optical fiber sensors exhibit substantial potential for applications in monitoring finger movements, physiological parameters, and tactile responses during rehabilitation. This review provides a brief introduction to the principles and technologies of various fiber sensors, including the Fiber Bragg Grating sensor, self-luminescent stretchable optical fiber sensor, and optic fiber Fabry-Perot sensor. In addition, specific applications are discussed within the rehabilitation field. Furthermore, challenges inherent to current optical fiber sensing technology, such as enhancing the sensitivity and flexibility of the sensors, reducing their cost, and refining system integration, are also addressed. Due to technological developments and greater efforts by researchers, it is likely that wearable optical fiber sensors will become commercially available and extensively utilized for rehabilitation.
Collapse
Affiliation(s)
- Xiangmeng Li
- Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China; (Y.L.); (H.W.); (C.W.); (B.L.)
| | | | | | | | | |
Collapse
|
7
|
Cao S, Chen R, Yang Q, He X, Chiavaioli F, Ran Y, Guan BO. Point-of-care diagnosis of pre-eclampsia based on microfiber Bragg grating biosensor. Biosens Bioelectron 2024; 249:116014. [PMID: 38219469 DOI: 10.1016/j.bios.2024.116014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pre-eclampsia is a serious multi-organ complication that severely threatens the safety of pregnant women and infants. To accurate and timely diagnose pre-eclampsia, point-of-care (POC) biosensing of the specific biomarkers is urgently required. However, one of the key biomarkers of pre-eclampsia, placental growth factor (PlGF), has a reduced level of expression in patients, which challenges the quantification capability and Limit-of-detection (LOD) of biosensors. Herein, we reported a microfiber Bragg grating biosensor for the quantification of PlGF in clinical serum samples. The Bragg grating was inscribed in a unilateral tapered fiber to generate the segmented Fabry-Perot spectrum for improving the capability of detection. Furthermore, a temperature-calibrated Bragg grating was added to enable dual parametric detection of PlGF and temperature simultaneously for removing the crosstalk. Finally, the biosensor was envisaged to be perfectly compatible with microfluidic chips, and thus dramatically reducing the sample consumption to as small as 10 μL. The proposed biosensor can respond to PlGF with concentrations ranging from 5 to 120 pg mL-1, attaining a LOD of 5 pg mL-1 of clinical relevance. More importantly, the biosensor achieved micro volume detection of clinical serum samples from patients, and the ROC curve with an AUC of 0.977 confirmed the viability of the device. Our study paves the way to a new idea for cost-effective and high-precision screening of patients with pre-eclampsia, and hence envisages a promising prospect for point-of-care (POC) diagnosis of patients with pre-eclampsia.
Collapse
Affiliation(s)
- Shifang Cao
- Clinical Laboratory Center, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Ruiping Chen
- Department of Obstetrics and Gynecology, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China.
| | - Qiaochu Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xin He
- Clinical Laboratory Center, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China.
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR), Institute of Applied Physics "Nello Carrara", Sesto Fiorentino, 50019, Italy
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
8
|
Wang Z, Chen Z, Ma L, Wang Q, Wang H, Leal-Junior A, Li X, Marques C, Min R. Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8333-8345. [PMID: 38321958 DOI: 10.1021/acsami.3c16165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
With the advantages of high flexibility, strong real-time monitoring capabilities, and convenience, wearable devices have shown increasingly powerful application potential in medical rehabilitation, health monitoring, the Internet of Things, and human-computer interaction. In this paper, we propose a novel and wearable optical microfiber intelligent sensor based on a wavy-shaped polymer optical microfiber (WPOMF) for cardiorespiratory and behavioral monitoring of humans. The optical fibers based on polymer materials are prepared into optical microfibers, fully using the advantages of the polymer material and optical microfibers. The prepared polymer optical microfiber is designed into a flexible wave-shaped structure, which enables the WPOMF sensor to have higher tensile properties and detection sensitivity. Cardiorespiratory and behavioral detection experiments based on the WPOMF sensor are successfully performed, which demonstrates the high sensitivity and stability potential of the WPOMF sensor when performing wearable tasks. Further, the success of the AI-assisted medical keyword pronunciation recognition experiment fully demonstrates the feasibility of integrating AI technology with the WPOMF sensor, which can effectively improve the intelligence of the sensor as a wearable device. As an optical microfiber intelligent sensor, the WPOMF sensor offers broad application prospects in disease monitoring, rehabilitation medicine, the Internet of Things, and other fields.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University, Zhuhai 519087, China
| | - Ziyang Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University, Zhuhai 519087, China
| | - Lin Ma
- College of Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Qi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University, Zhuhai 519087, China
| | - Heng Wang
- College of Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Arnaldo Leal-Junior
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo (UFES), Fernando Ferrari Avenue, Vitória 29075-910, Brazil
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University, Zhuhai 519087, China
| | - Carlos Marques
- CICECO - Aveiro Institute of Materials and I3N, Physics Department, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rui Min
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
9
|
Yazdani M. Tear film lipid layer and corneal oxygenation: a new function? Eye (Lond) 2023; 37:3534-3541. [PMID: 37138094 PMCID: PMC10686381 DOI: 10.1038/s41433-023-02557-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The classic model of tear film is composed of mucin layer, aqueous layer and the outermost tear film lipid layer (TFLL). The complex mixture of different classes of lipids, mainly secreted by meibomian glands, gives the TFLL unique physicochemical properties. Based on these properties, several functions of TFLL have been found and/or proposed such as the resistance to evaporation and facilitating the formation of a thin film. However, the role of TFLL in the oxygenation of the cornea, a transparent avascular tissue, has never been discussed in the literature. The continuous metabolic activity of the corneal surface and the replenishment of atmospheric gas creates an O2 gradient in the tear film. The molecules of O2 must therefore be transferred from the gas phase to the liquid phase through the TFLL. This process is a function of the diffusion and solubility of the lipid layer as well as interface transfer, which is influenced by alterations in the physical state and lipid composition. In the absence of research on TFLL, the present paper aims to bring the topic into the spotlight for the first time based on existing knowledge on O2 permeability of the lipid membranes and evaporation resistance of the lipid layers. The oxidative stress generated in perturbed lipid layers and the consequent adverse effects are also covered. The function of the TFLL proposed here intends to encourage future research in both basic and clinical sciences, e.g., opening new avenues for the diagnosis and treatment of ocular surface conditions.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.
| |
Collapse
|
10
|
Liu N, Yao N, Wang S, Zhang Z, Ren T, Gao Y, Zhou X, Tong L, Zhang L. An optical nanofibre-enabled on-chip single-nanoparticle sensor. LAB ON A CHIP 2023; 23:4901-4908. [PMID: 37874569 DOI: 10.1039/d3lc00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Single-nanoparticle detection has received tremendous interest due to its significance in fundamental physics and biological applications. Here, we demonstrate an optical nanofibre-enabled microfluidic sensor for the detection and sizing of nanoparticles. Benefitting from the strong evanescent field outside the nanofibre, a nanoparticle close to the nanofibre can scatter a portion of the field energy to the environment, resulting in a decrease in the transmitted intensity of the nanofibre. On the other hand, the narrow and shallow microfluidic channel provides a femtoliter-scale detection region, making nanoparticles flow through the detection region one by one. By real-time monitoring of the transmitted intensity of the nanofibre, the detection of a single polystyrene (PS) nanoparticle as small as 100 nm in diameter and exosomes in solution is realised. Based on a statistical analysis, the mean scattering signal is related to the size of the nanoparticle. Experimentally, a mixture of nanoparticles of different diameters (200, 500, and 1000 nm) in solution is identified. To demonstrate its potential in biological applications, high-throughput counting of yeasts using a pair of microchannels and dual-wavelength detection of fluorescently labelled nanoparticles are realised. We believe that the developed nanoparticle sensor holds great potential for the multiplexed and rapid sensing of diverse viruses.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ni Yao
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Shipeng Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Zhang Zhang
- Research Center for Intelligent Robotics, Zhejiang Lab, Hangzhou 311121, China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Gao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Lei Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Wu Q, Ran J, Zheng T, Wu H, Liao Y, Wang F, Chen S. MXene V 2C-coated runway-type microfiber knot resonator for an all-optical temperature sensor. RSC Adv 2023; 13:19366-19372. [PMID: 37383689 PMCID: PMC10293882 DOI: 10.1039/d3ra03190j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
We present an all-optical temperature sensor device made of an MXene V2C integrated runway-type microfiber knot resonator (MKR) for the first time. MXene V2C is coated on the surface of the microfiber by optical deposition. The experimental results show that the normalized temperature sensing efficiency is ∼1.65 dB °C-1 mm-1. The high sensing efficiency of the temperature sensor we proposed benefits from the efficient coupling of the highly photothermal material MXene and the runway-type resonator structure, which provides a better idea for the preparation of all-fiber sensor devices.
Collapse
Affiliation(s)
- Qing Wu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology Harbin 150080 China
| | - Junhong Ran
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology Harbin 150080 China
| | - Tong Zheng
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology Harbin 150080 China
- School of Artificial Intelligence, Beijing Technology and Business University Beijing 100048 China
| | - Haibin Wu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology Harbin 150080 China
| | - Yubo Liao
- School of Physics and Electronic Information, Gannan Normal University Ganzhou Jiangxi 341000 China
| | - Fengpeng Wang
- School of Physics and Electronic Information, Gannan Normal University Ganzhou Jiangxi 341000 China
| | - Si Chen
- School of Physics and Electronic Information, Gannan Normal University Ganzhou Jiangxi 341000 China
| |
Collapse
|
12
|
Wu Y, Duan B, Song J, Tian H, Chen JH, Yang D, Huang S. Simultaneous temperature and pressure sensing based on a single optical resonator. OPTICS EXPRESS 2023; 31:18851-18861. [PMID: 37381315 DOI: 10.1364/oe.489625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
We propose a dual-parameter sensor for the simultaneous detection of temperature and pressure based on a single packaged microbubble resonator (PMBR). The ultrahigh-quality (∼107) PMBR sensor exhibits long-term stability with the maximum wavelength shift about 0.2056 pm. Here, two resonant modes with different sensing performance are selected to implement the parallel detection of temperature and pressure. The temperature and pressure sensitivities of resonant Mode-1 are -10.59 pm/°C and 0.1059 pm/kPa, while the sensitivities of Mode-2 are -7.69 pm/°C and 0.1250 pm/kPa, respectively. By adopting a sensing matrix, the two parameters are precisely decoupled and the root mean square error of measurement are ∼ 0.12 °C and ∼ 6.48 kPa, respectively. This work promises the potential for the multi-parameters sensing in a single optical device.
Collapse
|
13
|
Deng K, Tang Y, Xiao Y, Zhong D, Zhang H, Fang W, Shen L, Wang Z, Pan J, Lu Y, Chen C, Gao Y, Jin Q, Zhuang L, Wan H, Zhuang L, Wang P, Zhai J, Ren T, Hu Q, Lang M, Zhang Y, Wang H, Zhou M, Gao C, Zhang L, Zhu Y. A biodegradable, flexible photonic patch for in vivo phototherapy. Nat Commun 2023; 14:3069. [PMID: 37244895 PMCID: PMC10224912 DOI: 10.1038/s41467-023-38554-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Diagnostic and therapeutic illumination on internal organs and tissues with high controllability and adaptability in terms of spectrum, area, depth, and intensity remains a major challenge. Here, we present a flexible, biodegradable photonic device called iCarP with a micrometer scale air gap between a refractive polyester patch and the embedded removable tapered optical fiber. ICarP combines the advantages of light diffraction by the tapered optical fiber, dual refractions in the air gap, and reflection inside the patch to obtain a bulb-like illumination, guiding light towards target tissue. We show that iCarP achieves large area, high intensity, wide spectrum, continuous or pulsatile, deeply penetrating illumination without puncturing the target tissues and demonstrate that it supports phototherapies with different photosensitizers. We find that the photonic device is compatible with thoracoscopy-based minimally invasive implantation onto beating hearts. These initial results show that iCarP could be a safe, precise and widely applicable device suitable for internal organs and tissue illumination and associated diagnosis and therapy.
Collapse
Affiliation(s)
- Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yao Tang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Zhong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, Zhejiang University, Haining, 314400, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changming Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, San Francisco, 94121, USA
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min Zhou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, Zhejiang University, Haining, 314400, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou, 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China.
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Ma J, Zhao J, Chen H, Sun LP, Li J, Guan BO. Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging. PHOTOACOUSTICS 2023; 30:100482. [PMID: 37025114 PMCID: PMC10070891 DOI: 10.1016/j.pacs.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Photoacoustic tomography emerged as a promising tool for noninvasive biomedical imaging and diseases diagnosis. However, most of the current piezoelectric ultrasound transducers suffer optical opacity and tissue-mismatched acoustic impedance, hindering the miniaturization and integration of the system for multiscale and multimodal imaging. Here, a transparent polydimethylsiloxane (PDMS) encapsulated optical microfiber ultrasound sensor was demonstrated for photoacoustic imaging with scalable spatial resolution and penetration depth. The sensor comprised a microfiber loop sandwiched by a pair of in-line Bragg gratings, which formed an ultrasound-sensitive Fabry-Perot cavity allowing free delivery of ultrasound/light beams and unique needle-shaped ultrasound focusing along the penetration depth. The sensor with a detection limit of ∼ 700 Pa and a bandwidth of ∼ 10 MHz was applied for multiscale photoacoustic imaging of mouse ear and brain vasculatures. With advantages of flexibility, optical transparence and focusing capability, the sensor offers new opportunities for developing photoacoustic/ultrasound imaging devices for biomedical and clinic applications.
Collapse
|
15
|
Tang L, Yang J, Wang Y, Deng R. Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sens 2023; 8:956-973. [PMID: 36892106 DOI: 10.1021/acssensors.2c02311] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.
Collapse
Affiliation(s)
- Lichao Tang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, Illinois, United States
| | - Jiyuan Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47906, Indiana, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
16
|
Ghobara M, Oschatz C, Fratzl P, Reissig L. Numerical Analysis of the Light Modulation by the Frustule of Gomphonema parvulum: The Role of Integrated Optical Components. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010113. [PMID: 36616023 PMCID: PMC9823621 DOI: 10.3390/nano13010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications.
Collapse
Affiliation(s)
- Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cathleen Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
17
|
Pan F, Karlsson K, Nixon AG, Hogan LT, Ward JM, Smith KC, Masiello DJ, Nic Chormaic S, Goldsmith RH. Active Control of Plasmonic-Photonic Interactions in a Microbubble Cavity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:20470-20479. [PMID: 36620077 PMCID: PMC9814823 DOI: 10.1021/acs.jpcc.2c05733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Active control of light-matter interactions using nanophotonic structures is critical for new modalities for solar energy production, cavity quantum electrodynamics (QED), and sensing, particularly at the single-particle level, where it underpins the creation of tunable nanophotonic networks. Coupled plasmonic-photonic systems show great promise toward these goals because of their subwavelength spatial confinement and ultrahigh-quality factors inherited from their respective components. Here, we present a microfluidic approach using microbubble whispering-gallery mode cavities to actively control plasmonic-photonic interactions at the single-particle level. By changing the solvent in the interior of the microbubble, control can be exerted on the interior dielectric constant and, thus, on the spatial overlap between the photonic and plasmonic modes. Qualitative agreement between experiment and simulation reveals the competing roles mode overlap and mode volume play in altering coupling strengths.
Collapse
Affiliation(s)
- Feng Pan
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| | - Kristoffer Karlsson
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa904-0495, Japan
| | - Austin G. Nixon
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Levi T. Hogan
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| | - Jonathan M. Ward
- Department
of Physics, University College Cork, CorkVGV5+95, Ireland
| | - Kevin C. Smith
- Department
of Physics, Yale University, New Haven, Connecticut06511, United States
| | - David J. Masiello
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| |
Collapse
|
18
|
Stasiewicz KA, Jakubowska I, Moś JE, Marć P, Paczesny J, Zbonikowski R, Jaroszewicz LR. Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe 3O 4 Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207801. [PMID: 36298151 PMCID: PMC9609915 DOI: 10.3390/s22207801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 05/08/2023]
Abstract
The presented research shows the possibilities of creating in-line magnetic sensors based on the detection of changes of light propagation parameters, especially polarization, obtained by mixing Fe3O4 nanoparticles with hexadecane (higher alkane) surrounding a biconical optical fiber taper. The fiber optic taper allows to directly influence light parameters inside the taper without the necessity to lead the beam out of the structure. The mixture of hexadecane and Fe3O4 nanoparticles forms a special cladding surrounding a fiber taper which can be controlled by external factors such as the magnetic field. Described studies show changes of transmission (power, loss) and polarization properties like azimuth, and ellipticity, depending on the location of the mixture on sections of tapered optical fiber. The taper was made of a standard single-mode telecommunication fiber, stretched out to a length of 20.0 ± 0.5 mm and the diameter of the tapers is around 15.0 ± 0.3 μm, with the loss lower than 0.5 dB @ 1550 nm. Such a taper causes the beam to leak out of the waist structure and allows the addition of the external beam-controlling cladding material. The presented research can be used to build polarization switches or optical sensor. The results show that it can be a new way to control the propagation parameters of a light beam using tapered optical fiber and magnetic mixture.
Collapse
Affiliation(s)
- Karol A. Stasiewicz
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
- Correspondence:
| | - Iwona Jakubowska
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Joanna E. Moś
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Paweł Marć
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland
| | - Leszek R. Jaroszewicz
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| |
Collapse
|
19
|
Rambaran T, Schirhagl R. Nanotechnology from lab to industry - a look at current trends. NANOSCALE ADVANCES 2022; 4:3664-3675. [PMID: 36133326 PMCID: PMC9470025 DOI: 10.1039/d2na00439a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology holds great promise and is hyped by many as the next industrial evolution. Medicine, food and cosmetics, agriculture and environmental health, and technology industries already profit from nanotechnology innovations and their influence is expected to increase drastically in the near future. However, there are also many challenges that need to be overcome to bring a nanotechnological product or business to the market. In this article we discuss current examples of nanotechnology that have been successfully introduced in the market and their relevance and geographical spread. We then discuss different partners for scientists and their role in the commercialization process. Finally, we review the different steps it takes to bring a nanotechnology to the market, highlight the many difficulties related to these steps, and provide a roadmap for the journey from lab to industry which can be beneficial to researchers.
Collapse
Affiliation(s)
- Theresa Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University 90187 Umeå Sweden
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University Antonius Deusinglaan 1 9713AW Groningen The Netherlands
| |
Collapse
|
20
|
Li L, Zhang YN, Zheng W, Li X, Zhao Y. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta 2022; 247:123599. [DOI: 10.1016/j.talanta.2022.123599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 01/08/2023]
|
21
|
Temperature-dependent optical properties of some mixtures nematic liquid crystal. Sci Rep 2022; 12:12676. [PMID: 35879343 PMCID: PMC9314397 DOI: 10.1038/s41598-022-16750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
The presence of optical anisotropy in liquid crystals (LCs) has caused these materials to have dual refractive indices: ordinary (no) and extra-ordinary (ne). Many fundamental information about LCs can be found by looking at these refractive indices. In this work, the refractive indices of four mixtures nematic liquid crystal (NLC) have been studied as a function of temperature, and the relevant functions were then calculated. Subsequently, the order parameter of mentioned LCs was determined using three methods: Vuks, Haller, and the effective geometry parameter method. It was concluded that the obtained values are not significantly different and exhibit the same temperature dependence. The obtained results were evaluated in relation to the approach utilized.
Collapse
|
22
|
Zhao X, Yao N, Zhang X, Zhang L, Tao G, Li Z, Liu Q, Zhao X, Xu Y. Optimizing Evanescent Efficiency of Chalcogenide Tapered Fiber. MATERIALS 2022; 15:ma15113834. [PMID: 35683134 PMCID: PMC9181228 DOI: 10.3390/ma15113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Evanescent wave absorption-based mid-infrared chalcogenide fiber sensors have prominent advantages in multicomponent liquid and gas detection. In this work, a new approach of tapered-fiber geometry optimization was proposed, and the evanescent efficiency was also theoretically calculated to evaluate sensing performance. The influence of fiber geometry (waist radius (Rw), taper length (Lt), waist deformation) on the mode distribution, light transmittance (T), evanescent proportion (TO) and evanescent efficiency (τ) is discussed. Remarkably, the calculated results show that the evanescent efficiency can be over 10% via optimizing the waist radius and taper length. Generally, a better sensing performance based on tapered fiber can be achieved if the proportion of the LP11-like mode becomes higher or Rw becomes smaller. Furthermore, the radius of the waist boundary (RL) was introduced to analyze the waist deformation. Mode proportion is almost unchanged as the RL increases, while τ is halved. In addition, the larger the micro taper is, the easier the taper process is. Herein, a longer waist can be obtained, resulting in larger sensing area which increases sensitivity greatly.
Collapse
Affiliation(s)
- Xudong Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
| | - Ni Yao
- Research Center for Intelligent Sensing, Zhejiang Laboratory, Hangzhou 311121, China;
- Correspondence: (N.Y.); (Y.X.)
| | - Xianghua Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
- Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, 35042 Rennes, France
| | - Lei Zhang
- Research Center for Intelligent Sensing, Zhejiang Laboratory, Hangzhou 311121, China;
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Zijian Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
| | - Quan Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
| | - Yinsheng Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (X.Z.); (X.Z.); (Z.L.); (Q.L.); (X.Z.)
- Correspondence: (N.Y.); (Y.X.)
| |
Collapse
|
23
|
Wu Q, Chen S, Guan L, Wu H. Highly Sensitive Photothermal Fiber Sensor Based on MXene Device and Vernier Effect. NANOMATERIALS 2022; 12:nano12050766. [PMID: 35269254 PMCID: PMC8911983 DOI: 10.3390/nano12050766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/28/2023]
Abstract
A photothermal fiber sensor based on a microfiber knot resonator (MKR) and the Vernier effect is proposed and demonstrated. An MXene Ti3C2Tx nanosheet was deposited onto the ring of an MKR using an optical deposition method to prepare photothermal devices. An MXeneMKR and a bare MKR were used as the sensing part and reference part, respectively, of a Vernier-cascade system. The optical and photothermal properties of the bare MKR and the MXeneMKR were tested. Ti3C2Tx was applied to a photothermal fiber sensor for the first time. The experimental results showed that the modulation efficiency of the MXeneMKR was 0.02 nm/mW, and based on the Vernier effect, the modulation efficiency of the cascade system was 0.15 nm/mW. The sensitivity was amplified 7.5 times. Our all-fiber photothermal sensor has many advantages such as low cost, small size, and good system compatibility. Our sensor has broad application prospects in many fields. The proposed stable MKR device based on two-dimensional-material modification provides a new solution for improving the sensitivity of optical fiber sensors.
Collapse
Affiliation(s)
- Qing Wu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China;
| | - Si Chen
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China; (S.C.); (L.G.)
| | - Lixin Guan
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China; (S.C.); (L.G.)
| | - Haibin Wu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence:
| |
Collapse
|
24
|
Núñez RN, Veglia AV, Pacioni NL. MultiShapeC, an algorithm to assess concentration in multi-shape nanoparticle samples: nanosilver, a case study. RSC Adv 2022; 12:26550-26555. [PMID: 36275155 PMCID: PMC9486825 DOI: 10.1039/d2ra04078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Shape, size, and dispersity play a crucial role in the calculation of colloidal nanoparticle concentrations, which results in remarkable differences in the determination of parameters like Stern–Volmer constants. In this work, we propose an algorithm named MultiShapeC to include the variability in shapes and polydispersity in the concentration calculation. This algorithm was validated using the quenching of carbazole fluorescence emission by silver nanoparticles. An algorithm to include multi-shape and polydispersity in the nanoparticle concentration calculation is presented.![]()
Collapse
Affiliation(s)
- Rodrigo Nicolás Núñez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Alicia Viviana Veglia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Natalia Lorena Pacioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| |
Collapse
|
25
|
Wei Y, Zhou W, Wu Y, Zhu H. High Sensitivity Label-Free Quantitative Method for Detecting Tumor Biomarkers in Human Serum by Optical Microfiber Couplers. ACS Sens 2021; 6:4304-4314. [PMID: 34806360 DOI: 10.1021/acssensors.1c01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free optical fiber immunosensors have attracted widespread attention in recent decades due to their high sensitivity. However, nonspecific adsorption in serum has remained a critical bottleneck in existing label-free fiber optic biosensors, which hinders their widespread use in diagnostics. In addition, individual differences in clinical human serum (HS) negatively impact biosensing results. In this work, the modified serum preadsorption strategy was applied to reduce nonspecific adsorption by forming a saturated antifouling interface on an optical microfiber coupler (OMC). Furthermore, to reduce the effect of the differences between individual HS samples, we proposed a new method where Sigma HS was used as a wavelength shift reference due to being close to clinical serum compared to other serums. Sigma HS was used first to reduce the differences in immune sensors before performing a clinical sample test in which quantitative detection was achieved based on the independent calibration of several sensors with wide dynamic ranges via dissociation processes. The individual differences in 25% HS were corrected by 30% Sigma HS. As a proof of concept, the label-free OMC immune sensor demonstrates good sensitivity and specificity for the detection of carcinoembryonic antigen (CEA) in 25% Sigma HS at different concentrations. The detection limit of CEA reached as low as 34.6 fg/mL (0.475 fM). Additionally, label-free quantitative detection of CEA using this OMC immune sensor was verified experimentally according to the calibration line, and the results agree well with clinical examination detection. To our knowledge, it is the first study to employ an OMC immune sensor in point-of-care label-free quantitative detection for clinical HS.
Collapse
Affiliation(s)
- Youlian Wei
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Wenchao Zhou
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Hongquan Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
26
|
Abstract
With diameters close to the wavelength of the guided light, optical microfibers (MFs) can guide light with tight optical confinement, strong evanescent fields and manageable waveguide dispersion and have been widely investigated in the past decades for a variety of applications. Compared to silica MFs, which are ideal for working in visible and near-infrared regions, chalcogenide glass (ChG) MFs are promising for mid-infrared (mid-IR) optics, owing to their easy fabrication, broad-band transparency and high nonlinearity, and have been attracting increasing attention in applications ranging from near-field coupling and molecular sensing to nonlinear optics. Here, we review this emerging field, mainly based on its progress in the last decade. Starting from the high-temperature taper drawing technique for MF fabrication, we introduce basic mid-IR waveguiding properties of typical ChG MFs made of As2S3 and As2Se3. Then, we focus on ChG-MF-based passive optical devices, including optical couplers, resonators and gratings and active and nonlinear applications of ChG MFs for mid-IR Raman lasers, frequency combs and supercontinuum (SC) generation. MF-based spectroscopy and chemical/biological sensors are also introduced. Finally, we conclude the review with a brief summary and an outlook on future challenges and opportunities of ChG MFs.
Collapse
|
27
|
Allsop T, Neal R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:6755. [PMID: 34695970 PMCID: PMC8537185 DOI: 10.3390/s21206755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
At the present time, there are major concerns regarding global warming and the possible catastrophic influence of greenhouse gases on climate change has spurred the research community to investigate and develop new gas-sensing methods and devices for remote and continuous sensing. Furthermore, there are a myriad of workplaces, such as petrochemical and pharmacological industries, where reliable remote gas tests are needed so that operatives have a safe working environment. The authors have concentrated their efforts on optical fibre sensing of gases, as we became aware of their increasing range of applications. Optical fibre gas sensors are capable of remote sensing, working in various environments, and have the potential to outperform conventional metal oxide semiconductor (MOS) gas sensors. Researchers are studying a number of configurations and mechanisms to detect specific gases and ways to enhance their performances. Evidence is growing that optical fibre gas sensors are superior in a number of ways, and are likely to replace MOS gas sensors in some application areas. All sensors use a transducer to produce chemical selectivity by means of an overlay coating material that yields a binding reaction. A number of different structural designs have been, and are, under investigation. Examples include tilted Bragg gratings and long period gratings embedded in optical fibres, as well as surface plasmon resonance and intra-cavity absorption. The authors believe that a review of optical fibre gas sensing is now timely and appropriate, as it will assist current researchers and encourage research into new photonic methods and techniques.
Collapse
Affiliation(s)
- Thomas Allsop
- School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
- Aston Institute of Photonic Technologies (AIPT), Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ronald Neal
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK;
| |
Collapse
|
28
|
Yang DQ, Chen JH, Cao QT, Duan B, Chen HJ, Yu XC, Xiao YF. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. LIGHT, SCIENCE & APPLICATIONS 2021; 10:128. [PMID: 34135305 PMCID: PMC8209048 DOI: 10.1038/s41377-021-00570-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 05/26/2023]
Abstract
Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity, miniature footprint and fast response. Despite the achievements of ultrasensitive detection, optical microcavities still face significant challenges in the measurement of biochemical and physical processes with complex dynamics, especially when multiple effects are present. Here we demonstrate operando monitoring of the transition dynamics of a phase-change material via a self-referencing optofluidic microcavity. We use a pair of cavity modes to precisely decouple the refractive index and temperature information of the analyte during the phase-transition process. Through real-time measurements, we reveal the detailed hysteresis behaviors of refractive index during the irreversible phase transitions between hydrophilic and hydrophobic states. We further extract the phase-transition threshold by analyzing the steady-state refractive index change at various power levels. Our technology could be further extended to other materials and provide great opportunities for exploring on-demand dynamic biochemical processes.
Collapse
Affiliation(s)
- Da-Quan Yang
- School of Information and Communication Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Jin-Hui Chen
- Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Qi-Tao Cao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bing Duan
- School of Information and Communication Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Hao-Jing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Xiao-Chong Yu
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
| |
Collapse
|
29
|
Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens Bioelectron 2021; 179:113081. [PMID: 33588296 DOI: 10.1016/j.bios.2021.113081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Fiber-optic biosensor has shown tremendous promise in probing cardiac biomarkers label-free and in-operando. However, temperature cross-sensitivity is ubiquitously found and impedes further advances of the fiber-optic biosensors, especially for the scenario of rapid test at-body. In this study, we exploit a new regime that harnesses the harmonic resonances of a single microfiber Bragg grating to rule out the impact of the thermal noise. The reflections yielded by the harmonics can be engineered simultaneously at the two overriding optical wavebands, i.e., 1 μm and 1.55 μm, promising a remote acquisition of the sensing signals at patient by virtue of the Yb and/or Er-doped fiber amplifiers which are highly commercial. Furthermore, the functionality of the temperature-offset allows for the understanding of the biomolecular stimulating at the body temperature and thus facilitating the acceleration of the cardiac biomarker test. The proposed proof-of-concept enriches the arsenal of tools for fiber biosensors and enables a vista for the instant and in-vivo diagnosis of acute heart diseases.
Collapse
|
30
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
31
|
Chen JH, Xiong YF, Xu F, Lu YQ. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. LIGHT, SCIENCE & APPLICATIONS 2021; 10:78. [PMID: 33854031 PMCID: PMC8046821 DOI: 10.1038/s41377-021-00520-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
In recent years, the integration of graphene and related two-dimensional (2D) materials in optical fibers have stimulated significant advances in all-fiber photonics and optoelectronics. The conventional passive silica fiber devices with 2D materials are empowered for enhancing light-matter interactions and are applied for manipulating light beams in respect of their polarization, phase, intensity and frequency, and even realizing the active photo-electric conversion and electro-optic modulation, which paves a new route to the integrated multifunctional all-fiber optoelectronic system. This article reviews the fast-progress field of hybrid 2D-materials-optical-fiber for the opto-electro-mechanical devices. The challenges and opportunities in this field for future development are discussed.
Collapse
Affiliation(s)
- Jin-Hui Chen
- Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi-Feng Xiong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Fei Xu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
32
|
Kim S, Brady J, Al-Badani F, Yu S, Hart J, Jung S, Tran TT, Myung NV. Nanoengineering Approaches Toward Artificial Nose. Front Chem 2021; 9:629329. [PMID: 33681147 PMCID: PMC7935515 DOI: 10.3389/fchem.2021.629329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.
Collapse
Affiliation(s)
- Sanggon Kim
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Jacob Brady
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Faraj Al-Badani
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Sooyoun Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph Hart
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sungyong Jung
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thien-Toan Tran
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Nosang V. Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
33
|
Tang Y, Liu H, Pan J, Zhang Z, Xu Y, Yao N, Zhang L, Tong L. Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4560-4566. [PMID: 33435667 DOI: 10.1021/acsami.0c20392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical micro/nanofibers (MNFs) can be applied for ultrasensitive tactile sensing with fast response and compact size, which are attractive for restoring tactile information in minimally invasive robotic surgery and tissue palpation. Herein, we present a compact tactile sensor (CTS) with a diameter of 1.5 mm enabled by an optical MNF. The CTS provides continuous readouts for high-fidelity transduction of touch and pressure stimuli into interpretable optical signals, which permit instantaneous sensing of contact and pressure with pressure-sensing sensitivity as high as 0.108 mN-1 and a resolution of 0.031 mN. Working in pressing mode, the CTS can discriminate the difference in the hardness of two poly(dimethylsiloxane) (PDMS) slats (with shore A of 36 and 40) directly, a hardness resolving ability even beyond the human hands. Benefitting from the fast response feature, the CTS can also be operated in either scanning or tapping mode, making it feasible for hardness identification by analyzing the shape of the response curve. As a proof of concept, the hardness discrimination of a pork liver and an adductor muscle was experimentally demonstrated. Such MNF-enabled compact tactile sensors may pave the way for hardness sensing in tissue palpation, surgical robotics, and object identification.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haitao Liu
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhang Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ni Yao
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Lei Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Salazar-Brann SA, Patiño-Herrera R, Navarrete-Damián J, Louvier-Hernández JF. Electrospinning of chitosan from different acid solutions. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
35
|
Moś JE, Stasiewicz KA, Matras-Postołek K, Jaroszewicz LR. Thermo-Optical Switching Effect Based on a Tapered Optical Fiber and Higher Alkanes Doped with ZnS:Mn. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13215044. [PMID: 33182417 PMCID: PMC7664860 DOI: 10.3390/ma13215044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 05/23/2023]
Abstract
The paper investigates the effect of thermo-optic switching resulting from the hybrid combination of a tapered optical fiber (TOF) with alkanes doped with nanoparticles of zinc sulfide doped with manganese (ZnS:Mn NP). Presented measurements focused on controlling losses in an optical fiber by modification of a TOF cladding by the alkanes used, characterized by phase change. Temperature changes cause power transmission changes creating a switcher or a sensor working in an ON-OFF mode. Phase change temperatures and changes in the refractive index of the alkane used directly affected power switching. Alkanes were doped with ZnS:Mn NPs to change the hysteresis observed between ON-OFF modes in pure alkanes. The addition of nanoparticles (NPs) reduces the difference between phase changes due to improved thermal conductivity and introduces extra nucleating agents. Results are presented in the wide optical range of 550-1200 nm. In this investigation, hexadecane and heptadecane were a new cladding for TOF. The higher alkanes were doped with ZnS: Mn NPs in an alkane volume of 1 wt.% and 5 wt.%. The thermo-optic effect can be applied to manufacture a thermo-optic switcher or a temperature threshold sensor.
Collapse
Affiliation(s)
- Joanna E. Moś
- Faculty of New Technology and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; (K.A.S.); (L.R.J.)
| | - Karol A. Stasiewicz
- Faculty of New Technology and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; (K.A.S.); (L.R.J.)
| | - Katarzyna Matras-Postołek
- Faculty Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Leszek R. Jaroszewicz
- Faculty of New Technology and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; (K.A.S.); (L.R.J.)
| |
Collapse
|
36
|
Sleczkowski P, Borkowski M, Zajaczkowska H, Ulanski J, Pisula W, Marszalek T. Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4974. [PMID: 33167331 PMCID: PMC7663849 DOI: 10.3390/ma13214974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023]
Abstract
In this work we study the influence of dielectric surface and process parameters on the geometry and electrical properties of silver electrodes obtained by electrohydrodynamic inkjet printing. The cross-section and thickness of printed silver tracks are optimized to achieve a high conductivity. Silver overprints with cross-section larger than 4 μm2 and thickness larger than 90 nm exhibit the lowest resistivity. To fabricate electrodes in the desired geometry, a sufficient volume of ink is distributed on the surface by applying appropriate voltage amplitude. Single and multilayer overprints are incorporated as bottom contacts in bottom gate organic field-effect transistors (OFETs) with a semiconducting polymer as active layer. The multilayer electrodes result in significantly higher electrical parameters than single layer contacts, confirming the importance of a careful design of the printed tracks for reliable device performance. The results provide important design guidelines for precise fabrication of electrodes in electronic devices by electrohydrodynamic inkjet printing.
Collapse
Affiliation(s)
- Piotr Sleczkowski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Michal Borkowski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Hanna Zajaczkowska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Jacek Ulanski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
| | - Wojciech Pisula
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.B.); (H.Z.); (J.U.); (W.P.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
37
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
38
|
|
39
|
Pan J, Zhang Z, Jiang C, Zhang L, Tong L. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. NANOSCALE 2020; 12:17538-17544. [PMID: 32812610 DOI: 10.1039/d0nr03446k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multifunctional skin-like sensors play an important role in next-generation healthcare, robotics, and bioelectronics. Here, we report a skin-like wearable optical sensor (SLWOS) enabled by a stretchable, flexible, and attachable patch embedded with an optical micro-/nanofibre (MNF), which is highly compatible with human skin, a curved surface, or cloth. Based on the transition from radiation modes into guided modes around the bending area of the MNF, the SLWOS embedded with a wavy MNF is highly sensitive to weak strain, achieving a gauge factor as large as 675 (strain <1%). The flexible SLWOS is also capable of monitoring the bending angle in a broad dynamic range with tunable sensitivity. In addition, temperature measurements in the range of -20 to 130 °C are realized by taking advantage of PDMS's large negative thermo-optic coefficient. The superior sensing performance together with mechanical flexibility enables the real-time monitoring of respiration, arm motion, and body temperature. This SLWOS will have great potential in wearable optical devices ranging from ultrasensitive sensors to photonic healthcare devices.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
40
|
Xu Y, Zhang Z, Tang Y, Pan J, Zhang L, Wang P, Tong L. Bio-inspired flow rate sensor based on optical microfiber embedded soft film. OPTICS EXPRESS 2020; 28:21359-21367. [PMID: 32752415 DOI: 10.1364/oe.394051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Inspired by superficial neuromasts in the lateral line of fish for the sensing of flow rate, we report a bionic optical microfiber flow rate sensor by embedding a U-shaped microfiber into a thin PDMS film. When immersed into liquid, the PDMS film is deflected by the flowing liquid, resulting in a bending-dependent transmittance change of the embedded microfiber which is directly related to the flow rate of the liquid. The flow rate sensor exhibits a low detection limit (< 0.05 L/min), a high resolution (0.005 L/min), and a fast response time (12 ms). In addition, the sensitivity and working range of the sensor are tunable in a wide range via adjusting the thickness of PDMS film, the microfiber diameter, and/or the working wavelength.
Collapse
|
41
|
Tuning of Classical Electromagnetically Induced Reflectance in Babinet Chalcogenide Metamaterials. iScience 2020; 23:101367. [PMID: 32738612 PMCID: PMC7394773 DOI: 10.1016/j.isci.2020.101367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/12/2020] [Indexed: 11/23/2022] Open
Abstract
Metamaterials analog of electromagnetically induced reflectance (EIR) has attracted intense attentions since they can provide various applications for novel photonic devices such as optical detectors with a high sensitivity and slow-light devices with a low loss. The development of dynamic photonic devices desires a tunable EIR feature in metamaterials. However, most metamaterials-induced EIR is not spectrally controllable particularly for the near-infrared (NIR) region. Herein, a tuning of EIR is illustrated in Babinet chalcogenide metamaterials in the NIR region. The EIR response is created by weak hybridization of two dipolar (bright) modes of the paired Au slots. Such a mode interference can be engineered through non-volatile phase transition to the refractive index of the Ge2Sb2Te5 (GST), resulting in an active controlling of the reflection window. A 15% spectral tuning of the reflectance peak is observed experimentally in the NIR region as switching the GST state between amorphous and crystalline.
Collapse
|
42
|
Ercan E, Liu CL, Chen WC. Nano-Micro Dimensional Structures of Fiber-Shaped Luminous Halide Perovskite Composites for Photonic and Optoelectronic Applications. Macromol Rapid Commun 2020; 41:e2000157. [PMID: 32608544 DOI: 10.1002/marc.202000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Indexed: 12/27/2022]
Abstract
Perovskite nanomaterials have been revealed as highly luminescent structures regarding their dimensional confinement. In particular, their promising potential lies behind remarkable luminescent properties, including color tunability, high photoluminescence quantum yield, and the narrow emission band of halide perovskite (HP) nanostructures for optoelectronic and photonic applications such as lightning and displaying operations. However, HP nanomaterials possess such drawbacks, including oxygen, moisture, temperature, or UV lights, which limit their practical applications. Recently, HP-containing polymer composite fibers have gained much attention owing to the spatial distribution and alignment of HPs with high mechanical strength and ambient stability in addition to their remarkable optical properties comparable to that of nanocrystals. In this review, the fabrication methods for preparing nano-microdimensional HP composite fiber structures are described. Various advantages of the luminescent composite nanofibers are also described, followed by their applications for photonic and optoelectronic devices including sensors, polarizers, waveguides, lasers, light-down converters, light-emitting diode operations, etc. Finally, future directions and remaining challenges of HP-based nanofibers are presented.
Collapse
Affiliation(s)
- Ender Ercan
- Department of Chemical Engineering and Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 32001, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering and Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
43
|
Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115892] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|