1
|
Pan Z, Puente-Urbina A, Batool SR, Bodi A, Wu X, Zhang Z, van Bokhoven JA, Hemberger P. Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis. Nat Commun 2023; 14:4512. [PMID: 37500623 PMCID: PMC10374901 DOI: 10.1038/s41467-023-40179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Syeda Rabia Batool
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Zihao Zhang
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Patrick Hemberger
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
| |
Collapse
|
2
|
Yim H, Valizadeh S, Park YK. Hydrogen production from hazardous petroleum sludge gasification over nickel-loaded porous ZSM-5 and Al 2O 3 catalysts under air condition. ENVIRONMENTAL RESEARCH 2023; 225:115586. [PMID: 36858303 DOI: 10.1016/j.envres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, the potential of petroleum sludge (PS) for hydrogen production via the gasification process was evaluated. For this purpose, nickel (Ni)-loaded ZSM-5 and γ-Al2O3 (Ni-ZS and Ni-Al) catalysts were prepared and employed for PS gasification in air condition. The effects of different supports, Ni loading content, and reaction temperatures on the production of hydrogen-rich syngas along with the stability and reusability of the best catalyst were investigated. Applying 5%Ni-ZS obtained more gas yield (68.09 wt%) and hydrogen selectivity (25.04 vol%) compared to those obtained by 5%Ni-Al mostly owing to weak metal-support interactions which led to the dominance of well-dispersed metallic Ni. At various Ni loading percentages, 10%Ni-ZS showed the highest catalytic efficiency, which increased both gas yield (70.92 wt%) and hydrogen selectivity (30.74 vol%). However, excessive Ni content (especially 20%) significantly reduced the gas yield and hydrogen selectivity because of limited accessibility of support's active sites, poor dispersion of Ni, and inappropriate acidity. Increasing the temperature promoted the gas yield and produced hydrogen, where the highest gas yield (73.18 wt%) and hydrogen selectivity (33.15 vol%) were obtained at 850 °C due to the endothermic nature of gasification reactions. The 10%Ni-ZS catalyst showed proper stability during three consecutive experiments at 850 °C. The spent catalyst was successfully regenerated without a significant reduction in activity or selectivity.
Collapse
Affiliation(s)
- Hoesuk Yim
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Y-K Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
3
|
Hakimian H, Valizadeh S, Kim YM, Park YK. Production of valuable chemicals through the catalytic pyrolysis of harmful oil sludge over metal-loaded HZSM-5 catalysts. ENVIRONMENTAL RESEARCH 2022; 214:113911. [PMID: 35863449 DOI: 10.1016/j.envres.2022.113911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This research studied the catalytic pyrolysis of oil sludge (OS) over metal-loaded HZSM-5 catalysts, an eco-friendly and cost-effective technology to produce value-added aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEXs). In particular, it evaluated the respective effects of the experimental parameters: the type and amount of the metal loaded, the reaction temperature, and the OS/catalyst ratio, on the BTEXs yield sequentially to achieve optimum conditions. This evaluation showed that the highest yields of the BTEXs (6.61 wt%) and other aromatics were achieved when Ni was incorporated into the HZSM-5 (Ni/HZSM-5) followed by the corresponding yields of Ga/HZSM-5 and Fe/HZSM-5, due to a better distribution of Ni on the support surface and an enhanced acidity strength of this catalyst. Further, increase in Ni loading (up to 10 wt% Ni/HZSM-5) increased the BTEXs yield to 13.48 wt%. However, the excessive Ni loading (15 wt% Ni/HZSM-5) resulted in a reduced BTEXs yield due to the blockage of the zeolite channels. Next, an increase in the reaction temperature from 500 °C to 600 °C increased the yield of the BTEXs and other aromatics. However, a further increase in the reaction temperature to 650 °C decreased slightly their yield because of the stimulating secondary reactions at high temperatures. The increase of catalyst amount (OS/catalyst of 1/3) also maximized the BTEXs yield (30.50 wt%).
Collapse
Affiliation(s)
- Hanie Hakimian
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
4
|
Lu X, Gu X. A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:106. [PMID: 36221137 PMCID: PMC9552425 DOI: 10.1186/s13068-022-02203-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Lignin is a promising alternative to traditional fossil resources for producing biofuels due to its aromaticity and renewability. Pyrolysis is an efficient technology to convert lignin to valuable chemicals, which is beneficial for improving lignin valorization. In this review, pyrolytic behaviors of various lignin were included, as well as the pyrolytic mechanism consisting of initial, primary, and charring stages were also introduced. Several parallel reactions, such as demethoxylation, demethylation, decarboxylation, and decarbonylation of lignin side chains to form light gases, major lignin structure decomposition to generate phenolic compounds, and polymerization of active lignin intermediates to yield char, can be observed through the whole pyrolysis process. Several parameters, such as pyrolytic temperature, time, lignin type, and functional groups (hydroxyl, methoxy), were also investigated to figure out their effects on lignin pyrolysis. On the other hand, zeolite-driven lignin catalytic pyrolysis and lignin co-pyrolysis with other hydrogen-rich co-feedings were also introduced for improving process efficiency to produce more aromatic hydrocarbons (AHs). During the pyrolysis process, phenolic compounds and/or AHs can be produced, showing promising applications in biochemical intermediates and biofuel additives. Finally, some challenges and future perspectives for lignin pyrolysis have been discussed.
Collapse
Affiliation(s)
- Xinyu Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Abdullah NHB, Mijan NA, Taufiq-Yap YH, Ong HC, Lee HV. Environment-friendly deoxygenation of non-edible Ceiba oil to liquid hydrocarbon biofuel: process parameters and optimization study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51143-51152. [PMID: 35075565 DOI: 10.1007/s11356-022-18508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Non-edible Ceiba oil has the potential to be a sustainable biofuel resource in tropical countries that can replace a portion of today's fossil fuels. Catalytic deoxygenation of the Ceiba oil (high O/C ratio) was conducted to produce hydrocarbon biofuel (high H/C ratio) over NiO-CaO5/SiO2-Al2O3 catalyst with aims of high diesel selectivity and catalyst reusability. In the present study, response surface methodology (RSM) technique with Box-Behnken experimental designs (BBD) was used to evaluate and optimize liquid hydrocarbon yield by considering the following deoxygenation parameters: catalyst loading (1-9 wt. %), reaction temperature (300-380 °C) and reaction time (30-180 min). According to the RSM results, the maximum yield for liquid hydrocarbon n-(C8-C20) was found to be 77% at 340 °C within 105 min and 5 wt. % catalyst loading. In addition, the deoxygenation model showed that the catalyst loading-reaction time interaction has a major impact on the deoxygenation activity. Based on the product analysis, oxygenated species from Ceiba oil were successfully removed in the form of CO2/CO via decarboxylation/decarbonylation (deCOx) pathways. The NiO-CaO5/SiO2-Al2O3 catalyst rendered stable reusability for five consecutive runs with liquid hydrocarbon yield within the range of 66-75% with n-(C15 + C17) selectivity of 64-72%. Despite this, coke deposition was observed after several times of catalyst usage, which is due to the high deoxygenation temperature (> 300 °C) that resulted in unfavourable polymerization side reaction.
Collapse
Affiliation(s)
- Nur Hafawati Binti Abdullah
- Nanotechnology and Catalysis Research Centre (NanoCat), Institute of Advances Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Asikin Mijan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre (PutraCAT), Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Chancellery Office, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Hwei Voon Lee
- Nanotechnology and Catalysis Research Centre (NanoCat), Institute of Advances Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Abstract
Continuous urbanization and modernization have increased the burning of fossil fuels to meet energy needs across the globe, emanating environmental pollution and depleting fossil fuels. Therefore, a shift towards sustainable and renewable energy is necessary. Several techniques to exploit biomass to yield energy are trending, with pyrolysis one of them. Usually, a single feedstock is employed in pyrolysis for anoxygenic generation of biochar together with bio-oil at elevated temperatures (350–600 °C). Bio-oil produced through pyrolysis can be upgraded to crude oil after some modification. However, these modifications of bio-oil are one of the major drawbacks for its large-scale adoption, as upgradation increases the overall cost. Therefore, in recent years the scientific community has been researching co-pyrolysis technology that involves the pyrolysis of lignocellulosic biomass waste with non-biodegradable waste. Co-pyrolysis reduces the need for post-modification of bio-oil, unlike pyrolysis of a single feedstock. This review article discusses the recent advancements and technological challenges in waste biomass co-pyrolysis, the mechanism of co-pyrolysis, and factors that affect co-pyrolysis. The current study critically analyzes different recent research articles presented in databases such as PubMed, MDPI, ScienceDirect, Springer, etc. Hence, this review is one-of-a-kind in that it attempts to explain each and every aspect of the co-pyrolysis process and its current progress in the scientific field. Consequently, this review also compiles the remarkable achievements in co-pyrolysis and recommendations for the future.
Collapse
|
7
|
Sudarsanam P, Gupta NK, Mallesham B, Singh N, Kalbande PN, Reddy BM, Sels BF. Supported MoO x and WO x Solid Acids for Biomass Valorization: Interplay of Coordination Chemistry, Acidity, and Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Putla Sudarsanam
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Baithy Mallesham
- Chemical Engineering Department, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Pavan Narayan Kalbande
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Benjaram M. Reddy
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
8
|
Tian M, Liu M. The exploration of deoxygenation reactions for alcohols and derivatives using earth-abundant reagents. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In Earth matter evolution, the deoxygenation process plays a central role as plant and animal remains, which are composed by highly oxygenated molecules, were gradually deoxygenated into hydrocarbons to give fossil fuels deep in the Earth crust. The understanding of this process is becoming crucial to the entire world and to the sustainable development of mankind. This review provides a brief summary of the extensive deoxygenation research under mild, potentially sustainable conditions. We also summarize some challenges and opportunities for potential deoxygenation reactions in the future.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University , Shenyang , Liaoning , 110034 , China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Department of Chemistry and FRQNT Centre in Green Chemistry and Catalysis , McGill University , 801 Sherbrooke Ouest , Montreal , QC , H3A 0B8 , Canada
| |
Collapse
|
9
|
de Sousa Castro K, Fernando de Medeiros Costa L, Fernandes VJ, de Oliveira Lima R, Mabel de Morais Araújo A, Sousa de Sant'Anna MC, Albuquerque Dos Santos N, Gondim AD. Catalytic pyrolysis (Ni/Al-MCM-41) of palm ( Elaeis guineensis) oil to obtain renewable hydrocarbons. RSC Adv 2020; 11:555-564. [PMID: 35423027 PMCID: PMC8691114 DOI: 10.1039/d0ra06122k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
The present work aims to evaluate the potential of Al-MCM-41 and Ni/Al-MCM-41 catalysts for the production of renewable hydrocarbons through the fast pyrolysis of palm oil. Al-MCM-41 mesoporous material was synthesized by the hydrothermal route. The Ni/Al-MCM-41 catalyst was obtained by the wet impregnation method of the Al-MCM-41 material (support) previously synthesized with 2.3% metal in relation to the support mass. The thermal pyrolysis of palm oil yielded many oxygenated compounds with a very high molecular mass. The pyrolysis of the oil under the action of Al-MCM-41 presented greater selectivity when compared to thermal pyrolysis, obtaining 63% of hydrocarbons in the C11-C15 region. The catalytic pyrolysis of the oil with Ni/Al-MCM-41 showed a high deoxygenation rate, obtaining a hydrocarbon percentage equal to 78%, in addition to obtaining a percentage of hydrocarbons equal to 46% in the region of interest, viz., C11-C15, demonstrating the potential of the Ni/Al-MCM-41 catalyst for renewable hydrocarbons production (bio-jet fuel) from palm oil.
Collapse
Affiliation(s)
- Karoline de Sousa Castro
- Federal University of Rio Grande do Norte, Sciences and Petroleum Engineering Graduate Program Natal RN 59078-970 Brazil
| | | | - Valter José Fernandes
- Federal University of Rio Grande do Norte, Institute of Chemistry Natal RN 59078-970 Brazil
| | | | | | | | | | - Amanda Duarte Gondim
- Federal University of Rio Grande do Norte, Sciences and Petroleum Engineering Graduate Program Natal RN 59078-970 Brazil
- Federal University of Rio Grande do Norte, Institute of Chemistry Natal RN 59078-970 Brazil
| |
Collapse
|