1
|
Zhou Z, Shao G, Shen Y, He F, Tu X, Ji J, Ao J, Chen X. Extreme-Phenotype Genome-Wide Association Analysis for Growth Traits in Spotted Sea Bass ( Lateolabrax maculatus) Using Whole-Genome Resequencing. Animals (Basel) 2024; 14:2995. [PMID: 39457925 PMCID: PMC11503831 DOI: 10.3390/ani14202995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Spotted sea bass (Lateolabrax maculatus) is an important marine economic fish in China, ranking third in annual production among marine fish. However, a declined growth rate caused by germplasm degradation has severely increased production costs and reduced economic benefits. There is an urgent need to develop the fast-growing varieties of L. maculatus and elucidate the genetic mechanisms underlying growth traits. Here, whole-genome resequencing technology combined with extreme phenotype genome-wide association analysis (XP-GWAS) was used to identify candidate markers and genes associated with growth traits in L. maculatus. Two groups of L. maculatus, consisting of 100 fast-growing and 100 slow-growing individuals with significant differences in body weight, body length, and carcass weight, underwent whole-genome resequencing. A total of 4,528,936 high-quality single nucleotide polymorphisms (SNPs) were used for XP-GWAS. These SNPs were evenly distributed across all chromosomes without large gaps, and the average distance between SNPs was only 175.8 bp. XP-GWAS based on the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (Blink) and Fixed and random model Circulating Probability Unification (FarmCPU) identified 50 growth-related markers, of which 17 were related to body length, 19 to body weight, and 23 to carcass weight. The highest phenotypic variance explained (PVE) reached 15.82%. Furthermore, significant differences were observed in body weight, body length, and carcass weight among individuals with different genotypes. For example, there were highly significant differences in body weight among individuals with different genotypes for four SNPs located on chromosome 16: chr16:13133726, chr16:13209537, chr16:14468078, and chr16:18537358. Additionally, 47 growth-associated genes were annotated. These genes are mainly related to the metabolism of energy, glucose, and lipids and the development of musculoskeletal and nervous systems, which may regulate the growth of L. maculatus. Our study identified growth-related markers and candidate genes, which will help to develop the fast-growing varieties of L. maculatus through marker-assisted breeding and elucidate the genetic mechanisms underlying the growth traits.
Collapse
Affiliation(s)
- Zhaolong Zhou
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Guangming Shao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Yibo Shen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Fengjiao He
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xiaomei Tu
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jiawen Ji
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jingqun Ao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xinhua Chen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
2
|
Zhu Y, Qin J, Wu W, Cai L. Development and validation of a novel high-performance liquid chromatography (HPLC) method for the detection of related substances of pralsetinib, a new anti-lung cancer drug. Front Chem 2024; 12:1450692. [PMID: 39233920 PMCID: PMC11371568 DOI: 10.3389/fchem.2024.1450692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Background Pralsetinib, a targeted inhibitor of the RET enzyme, plays a critical role in the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) characterized by RET gene fusion mutations following platinum-based chemotherapy. Nevertheless, impurities resulting from the manufacturing and degradation of pralsetinib have the potential to impact its therapeutic effectiveness and safety profile. Methods To address this issue, a liquid chromatography method was developed and validated for the specific identification of pralsetinib and its related impurities. The separation of pralsetinib and its related impurities was achieved via a Waters X Bridge C18 column with dimensions of 4.6 mm × 250 mm and a particle size of 5 μm. Mobile phase A was composed of 20 mmol/L potassium dihydrogen phosphate (KH2PO4) and acetonitrile (ACN) at a volume ratio of 19:1, while mobile phase B consisted solely of ACN, utilizing a gradient elution technique. Detection was performed at a wavelength of 260 nm, with an injection volume of 10 μL and a flow rate of 1.0 mL/min. Results The chromatographic method established in this study was validated according to the ICH Q2 (R1) guidelines. The method demonstrated excellent linearity over a specific concentration range (imp-A: 0.035-10.21 μg/mL; imp-B: 0.09-10.16 μg/mL; imp-C: 0.15-10.19 μg/mL; pralsetinib: 0.04-10.32 μg/mL). Additionally, the method possesses high sensitivity, with detection limits for impurities A, B, C, and pralsetinib of 0.01, 0.03, 0.015, and 0.013 μg/mL, respectively, and quantification limits of 0.035, 0.09, 0.05, and 0.04 μg/mL, respectively. In terms of specificity, stability, repeatability, accuracy, and robustness, the method met the validation acceptance criteria. Overall, the chromatographic technique established in this study can effectively separate pralsetinib and its impurities, providing reliable assurance for the accurate detection and quantification of impurities. Conclusion The chromatographic method developed in this study can be utilized for the detection of pralsetinib and its impurities, offering a crucial reference for research on the quality of pralsetinib.
Collapse
Affiliation(s)
- Yonghong Zhu
- Department of Pharmacy, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Jisu Qin
- Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong, China
| | - Wenyi Wu
- Department of Quality Inspection, Sinopharm Holding Nantong Ltd., Nantong, China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Marks BA, Pipia IM, Mukai C, Horibata S, Rice EJ, Danko CG, Coonrod SA. GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer 2023; 23:138. [PMID: 36765275 PMCID: PMC9912664 DOI: 10.1186/s12885-023-10559-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Rearranged during transfection (RET) tyrosine kinase signaling has been previously implicated in endocrine resistant breast cancer, however the mechanism by which this signaling cascade promotes resistance is currently not well described. We recently reported that glial cell-derived neurotrophic factor (GDNF)-RET signaling appears to promote a positive feedback loop with the transcription factor early growth response 1 (EGR1). Here we investigate the mechanism behind this feedback loop and test the hypothesis that GDNF-RET signaling forms a regulatory loop with EGR1 to upregulate cyclin D1 (CCND1) transcription, leading to cell cycle progression and tamoxifen resistance. METHODS To gain a better understanding of the GDNF-RET-EGR1 resistance mechanism, we studied the GDNF-EGR1 positive feedback loop and the role of GDNF and EGR1 in endocrine resistance by modulating their transcription levels using CRISPR-dCAS9 in tamoxifen sensitive (TamS) and tamoxifen resistant (TamR) MCF-7 cells. Additionally, we performed kinetic studies using recombinant GDNF (rGDNF) treatment of TamS cells. Finally, we performed cell proliferation assays using rGDNF, tamoxifen (TAM), and Palbociclib treatments in TamS cells. Statistical significance for qPCR and chromatin immunoprecipitation (ChIP)-qPCR experiments were determined using a student's paired t-test and statistical significance for the cell viability assay was a one-way ANOVA. RESULTS GDNF-RET signaling formed a positive feedback loop with EGR1 and also downregulated estrogen receptor 1 (ESR1) transcription. Upregulation of GDNF and EGR1 promoted tamoxifen resistance in TamS cells and downregulation of GDNF promoted tamoxifen sensitivity in TamR cells. Additionally, we show that rGDNF treatment activated GDNF-RET signaling in TamS cells, leading to recruitment of phospho-ELK-1 to the EGR1 promoter, upregulation of EGR1 mRNA and protein, binding of EGR1 to the GDNF and CCND1 promoters, increased GDNF protein expression, and subsequent upregulation of CCND1 mRNA levels. We also show that inhibition of cyclin D1 with Palbociclib, in the presence of rGDNF, decreases cell proliferation and resensitizes cells to TAM. CONCLUSION Outcomes from these studies support the hypotheses that GDNF-RET signaling forms a positive feedback loop with the transcription factor EGR1, and that GDNF-RET-EGR1 signaling promotes endocrine resistance via signaling to cyclin D1. Inhibition of components of this signaling pathway could lead to therapeutic insights into the treatment of endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Brooke A Marks
- Department of Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Ilissa M Pipia
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Sachi Horibata
- Department of Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Charles G Danko
- Department of Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Scott A Coonrod
- Department of Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA.
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, USA.
| |
Collapse
|
4
|
Siepe DH, Henneberg LT, Wilson SC, Hess GT, Bassik MC, Zinn K, Garcia KC. Identification of orphan ligand-receptor relationships using a cell-based CRISPRa enrichment screening platform. eLife 2022; 11:e81398. [PMID: 36178190 PMCID: PMC9578707 DOI: 10.7554/elife.81398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Secreted proteins, which include cytokines, hormones, and growth factors, are extracellular ligands that control key signaling pathways mediating cell-cell communication within and between tissues and organs. Many drugs target secreted ligands and their cell surface receptors. Still, there are hundreds of secreted human proteins that either have no identified receptors ('orphans') or are likely to act through cell surface receptors that have not yet been characterized. Discovery of secreted ligand-receptor interactions by high-throughput screening has been problematic, because the most commonly used high-throughput methods for protein-protein interaction (PPI) screening are not optimized for extracellular interactions. Cell-based screening is a promising technology for the deorphanization of ligand-receptor interactions, because multimerized ligands can enrich for cells expressing low affinity cell surface receptors, and such methods do not require purification of receptor extracellular domains. Here, we present a proteo-genomic cell-based CRISPR activation (CRISPRa) enrichment screening platform employing customized pooled cell surface receptor sgRNA libraries in combination with a magnetic bead selection-based enrichment workflow for rapid, parallel ligand-receptor deorphanization. We curated 80 potentially high-value orphan secreted proteins and ultimately screened 20 secreted ligands against two cell sgRNA libraries with targeted expression of all single-pass (TM1) or multi-pass transmembrane (TM2+) receptors by CRISPRa. We identified previously unknown interactions in 12 of these screens, and validated several of them using surface plasmon resonance and/or cell binding assays. The newly deorphanized ligands include three receptor protein tyrosine phosphatase (RPTP) ligands and a chemokine-like protein that binds to killer immunoglobulin-like receptors (KIRs). These new interactions provide a resource for future investigations of interactions between the human-secreted and membrane proteomes.
Collapse
Affiliation(s)
- Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Steven C Wilson
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Gaelen T Hess
- Stanford ChEM-H, Department of Genetics, Stanford UniversityStanfordUnited States
| | - Michael C Bassik
- Stanford ChEM-H, Department of Genetics, Stanford UniversityStanfordUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
5
|
Mesa-Infante V, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Barroso-Chinea P. Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 118:103684. [PMID: 34826608 DOI: 10.1016/j.mcn.2021.103684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes differentiation, proliferation, and survival in different cell types, including dopaminergic neurons. Thus, GDNF has been proposed as a promising neuroprotective therapy in Parkinson's disease. Although findings from cellular and animal models of Parkinson's disease were encouraging, results emerging from clinical trials were not as good as expected, probably due to the inappropriate administration protocols. Despite the growing information on GDNF action mechanisms, many aspects of its pharmacological effects are still unclear and data from different studies are still contradictory. Considering that GDNF action mechanisms are mediated by its receptor tyrosine kinase Ret, which activates PI3K/AKT and MAPK/ERK signaling pathways, we aimed to investigate Ret activation and its effect over both signaling pathways in midbrain cell cultures treated with GDNF at different doses (0.3, 1, and 10 ng/ml) and times (15 min, 24 h, 24 h (7 days), and 7 continuous days). The results showed that short-term or acute (15 min, 24 h, and 24 h (7 days)) GDNF treatment in rat midbrain neurons increases Tyrosine hydroxylase (TH) expression and the phosphorylation levels of Ret (Tyr 1062), AKT (Ser 473), ERK1/2 (Thr202/Tyr204), S6 (Ser 235/236), and GSK3-β (Ser 9). However, the phosphorylation level of these kinases, TH expression, and dopamine uptake, decreased below basal levels after long-term or prolonged treatment with 1 and 10 ng/ml GDNF (7 continuous days). Our data suggest that long-term GDNF treatment inactivates the receptor by an unknown mechanism, affecting its neuroprotective capacity against degeneration caused by 6-OHDA or rotenone, while short-term exposure to GDNF promoted dopaminergic cell survival. These findings highlight the need to find new and more effective long-acting therapeutic approaches for disorders in which GDNF plays a beneficial role, including Parkinson's disease. In this regard, it is necessary to propose new GDNF treatment guidelines to regulate and control its long-term expression levels and optimize the clinical use of this trophic factor in patients with Parkinson's disease.
Collapse
Affiliation(s)
- V Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - D Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| | - J Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - J Rodríguez-Núñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - P Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Viisanen H, Nuotio U, Kambur O, Mahato AK, Jokinen V, Lilius T, Li W, Santos HA, Karelson M, Rauhala P, Kalso E, Sidorova YA. Novel RET agonist for the treatment of experimental neuropathies. Mol Pain 2021; 16:1744806920950866. [PMID: 32811276 PMCID: PMC7440726 DOI: 10.1177/1744806920950866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.
Collapse
Affiliation(s)
- Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulpukka Nuotio
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Oleg Kambur
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arun Kumar Mahato
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Viljami Jokinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wei Li
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, Tartu University, Tartu, Estonia
| | - Pekka Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Renko JM, Voutilainen MH, Visnapuu T, Sidorova YA, Saarma M, Tuominen RK. GDNF Receptor Agonist Alleviates Motor Imbalance in Unilateral 6-Hydroxydopamine Model of Parkinson's Disease. FRONTIERS IN NEUROLOGY AND NEUROSCIENCE RESEARCH 2020; 1:100004. [PMID: 33479704 PMCID: PMC7116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting up to 10 million people in the world. Diagnostic motor symptoms of PD appear as a result of progressive degeneration and death of nigrostriatal dopamine neurons. Current PD treatments only relieve symptoms without halting the progression of the disease, and their use is complicated by severe adverse effects emerging as the disease progresses. Therefore, there is an urgent need for new therapies for PD management. We developed a small molecule compound, BT13, targeting receptor tyrosine kinase RET. RET is the signalling receptor for a known survival factor for dopamine neurons called glial cell line-derived neurotrophic factor (GDNF). Previously we showed that BT13 prevents the death of cultured dopamine neurons, stimulates dopamine release and activates pro-survival signalling cascades in naïve rodent brain. In the present study, we evaluate the effects of BT13 on motor imbalance and nigrostriatal dopamine neurons in a unilateral 6-hydroxydopamine rat model of PD. We show that BT13 alleviates motor dysfunction in experimental animals. Further studies are needed to make a conclusion whether BT13 can protect the integrity of the nigrostriatal dopamine system since even the positive control, GDNF protein, was unable to produce a clear neuroprotective effect in the model used in the present work. In contrast to GDNF, BT13 is able to cross the blood-brain barrier, which together with the ability to reduce motor symptoms of the disease makes it a valuable lead for further development as a potential disease-modifying agent to treat PD.
Collapse
Affiliation(s)
- Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Merja H. Voutilainen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland,Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Finland
| | - Tanel Visnapuu
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Yulia A. Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Finland,Corresponding authors: Raimo K. Tuominen, Professor, Division of Pharmacology and Pharmacotherapy, Viikinkaari 5E, 00014 University of Helsinki, Helsinki, Finland; , Mart Saarma, Research Director, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland; , Yulia A, Sidorova, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland;
| | - Mart Saarma
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Finland,Corresponding authors: Raimo K. Tuominen, Professor, Division of Pharmacology and Pharmacotherapy, Viikinkaari 5E, 00014 University of Helsinki, Helsinki, Finland; , Mart Saarma, Research Director, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland; , Yulia A, Sidorova, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland;
| | - Raimo K. Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland,Corresponding authors: Raimo K. Tuominen, Professor, Division of Pharmacology and Pharmacotherapy, Viikinkaari 5E, 00014 University of Helsinki, Helsinki, Finland; , Mart Saarma, Research Director, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland; , Yulia A, Sidorova, Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, Viikinkaari 5D, 00014 University of Helsinki, Helsinki, Finland;
| |
Collapse
|
8
|
Sidorova YA, Saarma M. Can Growth Factors Cure Parkinson's Disease? Trends Pharmacol Sci 2020; 41:909-922. [PMID: 33198924 DOI: 10.1016/j.tips.2020.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential ofGFsin PD management.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
10
|
Mahato AK, Sidorova YA. RET Receptor Tyrosine Kinase: Role in Neurodegeneration, Obesity, and Cancer. Int J Mol Sci 2020; 21:ijms21197108. [PMID: 32993133 PMCID: PMC7583994 DOI: 10.3390/ijms21197108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Rearranged during transfection (RET) is the tyrosine kinase receptor that under normal circumstances interacts with ligand at the cell surface and mediates various essential roles in a variety of cellular processes such as proliferation, differentiation, survival, migration, and metabolism. RET plays a pivotal role in the development of both peripheral and central nervous systems. RET is expressed from early stages of embryogenesis and remains expressed throughout all life stages. Mutations either activating or inhibiting RET result in several aggressive diseases, namely cancer and Hirschsprung disease. However, the physiological ligand-dependent activation of RET receptor is important for the survival and maintenance of several neuronal populations, appetite, and weight gain control, thus providing an opportunity for the development of disease-modifying therapeutics against neurodegeneration and obesity. In this review, we describe the structure of RET, its signaling, and its role in both normal conditions as well as in several disorders. We highlight the differences in the signaling and outcomes of constitutive and ligand-induced RET activation. Finally, we review the data on recently developed small molecular weight RET agonists and their potential for the treatment of various diseases.
Collapse
|
11
|
Small Molecules and Peptides Targeting Glial Cell Line-Derived Neurotrophic Factor Receptors for the Treatment of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186575. [PMID: 32911810 PMCID: PMC7554781 DOI: 10.3390/ijms21186575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are able to promote the survival of multiple neuronal populations in the body and, therefore, hold considerable promise for disease-modifying treatments of diseases and conditions caused by neurodegeneration. Available data reveal the potential of GFLs for the therapy of Parkinson's disease, neuropathic pain and diseases caused by retinal degeneration but, also, amyotrophic lateral sclerosis and, possibly, Alzheimer's disease. Despite promising data collected in preclinical models, clinical translation of GFLs is yet to be conducted. The main reasons for the limited success of GFLs clinical development are the poor pharmacological characteristics of GFL proteins, such as the inability of GFLs to cross tissue barriers, poor diffusion in tissues, biphasic dose-response and activation of several receptors in the organism in different cell types, along with ethical limitations on patients' selection in clinical trials. The development of small molecules selectively targeting particular GFL receptors with improved pharmacokinetic properties can overcome many of the difficulties and limitations associated with the clinical use of GFL proteins. The current review lists several strategies to target the GFL receptor complex with drug-like molecules, discusses their advantages, provides an overview of available chemical scaffolds and peptides able to activate GFL receptors and describes the effects of these molecules in cultured cells and animal models.
Collapse
|