1
|
Racine L, Parmentier R, Niphadkar S, Chhun J, Martignoles JA, Delhommeau F, Laxman S, Paldi A. Metabolic adaptation pilots the differentiation of human hematopoietic cells. Life Sci Alliance 2024; 7:e202402747. [PMID: 38802246 PMCID: PMC11130395 DOI: 10.26508/lsa.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.
Collapse
Affiliation(s)
- Laëtitia Racine
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- https://ror.org/046b3cj80 Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Romuald Parmentier
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- https://ror.org/046b3cj80 Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Julie Chhun
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- https://ror.org/046b3cj80 Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Jean-Alain Martignoles
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| | - François Delhommeau
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Andras Paldi
- https://ror.org/02en5vm52 Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- https://ror.org/046b3cj80 Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
- AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
2
|
Bramwell G, DeGregori J, Thomas F, Ujvari B. Transmissible cancers, the genomes that do not melt down. Evolution 2024; 78:1205-1211. [PMID: 38656785 DOI: 10.1093/evolut/qpae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Evolutionary theory predicts that the accumulation of deleterious mutations in asexually reproducing organisms should lead to genomic decay. Clonally reproducing cell lines, i.e., transmissible cancers, when cells are transmitted as allografts/xenografts, break these rules and survive for centuries and millennia. The currently known 11 transmissible cancer lineages occur in dogs (canine venereal tumour disease), in Tasmanian devils (devil facial tumor diseases, DFT1 and DFT2), and in bivalves (bivalve transmissible neoplasia). Despite the mutation loads of these cell lines being much higher than observed in human cancers, they have not been eliminated in space and time. Here, we provide potential explanations for how these fascinating cell lines may have overcome the fitness decline due to the progressive accumulation of deleterious mutations and propose that the high mutation load may carry an indirect positive fitness outcome. We offer ideas on how these host-pathogen systems could be used to answer outstanding questions in evolutionary biology. The recent studies on the evolution of these clonal pathogens reveal key mechanistic insight into transmissible cancer genomes, information that is essential for future studies investigating how these contagious cancer cell lines can repeatedly evade immune recognition, evolve, and survive in the landscape of highly diverse hosts.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
4
|
Conte L, Gonella F, Giansanti A, Kleidon A, Romano A. Modeling cell populations metabolism and competition under maximum power constraints. PLoS Comput Biol 2023; 19:e1011607. [PMID: 37939139 PMCID: PMC10659174 DOI: 10.1371/journal.pcbi.1011607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Ecological interactions are fundamental at the cellular scale, addressing the possibility of a description of cellular systems that uses language and principles of ecology. In this work, we use a minimal ecological approach that encompasses growth, adaptation and survival of cell populations to model cell metabolisms and competition under energetic constraints. As a proof-of-concept, we apply this general formulation to study the dynamics of the onset of a specific blood cancer-called Multiple Myeloma. We show that a minimal model describing antagonist cell populations competing for limited resources, as regulated by microenvironmental factors and internal cellular structures, reproduces patterns of Multiple Myeloma evolution, due to the uncontrolled proliferation of cancerous plasma cells within the bone marrow. The model is characterized by a class of regime shifts to more dissipative states for selectively advantaged malignant plasma cells, reflecting a breakdown of self-regulation in the bone marrow. The transition times obtained from the simulations range from years to decades consistently with clinical observations of survival times of patients. This irreversible dynamical behavior represents a possible description of the incurable nature of myelomas based on the ecological interactions between plasma cells and the microenvironment, embedded in a larger complex system. The use of ATP equivalent energy units in defining stocks and flows is a key to constructing an ecological model which reproduces the onset of myelomas as transitions between states of a system which reflects the energetics of plasma cells. This work provides a basis to construct more complex models representing myelomas, which can be compared with model ecosystems.
Collapse
Affiliation(s)
- Luigi Conte
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venezia Mestre, Italy
- Department of Physics, Sapienza University of Rome, Roma, Italy
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
| | - Francesco Gonella
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy
- THE NEW INSTITUTE Centre for Environmental Humanities (NICHE), Venezia, Italy
| | - Andrea Giansanti
- Department of Physics, Sapienza University of Rome, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Roma, Italy
| | - Axel Kleidon
- Biospheric Theory and Modeling Group, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Alessandra Romano
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Capp J, Thomas F, Marusyk A, M. Dujon A, Tissot S, Gatenby R, Roche B, Ujvari B, DeGregori J, Brown JS, Nedelcu AM. The paradox of cooperation among selfish cancer cells. Evol Appl 2023; 16:1239-1256. [PMID: 37492150 PMCID: PMC10363833 DOI: 10.1111/eva.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
It is traditionally assumed that during cancer development, tumor cells abort their initially cooperative behavior (i.e., cheat) in favor of evolutionary strategies designed solely to enhance their own fitness (i.e., a "selfish" life style) at the expense of that of the multicellular organism. However, the growth and progress of solid tumors can also involve cooperation among these presumed selfish cells (which, by definition, should be noncooperative) and with stromal cells. The ultimate and proximate reasons behind this paradox are not fully understood. Here, in the light of current theories on the evolution of cooperation, we discuss the possible evolutionary mechanisms that could explain the apparent cooperative behaviors among selfish malignant cells. In addition to the most classical explanations for cooperation in cancer and in general (by-product mutualism, kin selection, direct reciprocity, indirect reciprocity, network reciprocity, group selection), we propose the idea that "greenbeard" effects are relevant to explaining some cooperative behaviors in cancer. Also, we discuss the possibility that malignant cooperative cells express or co-opt cooperative traits normally expressed by healthy cells. We provide examples where considerations of these processes could help understand tumorigenesis and metastasis and argue that this framework provides novel insights into cancer biology and potential strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC, MIVEGECUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Andriy Marusyk
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Antoine M. Dujon
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Sophie Tissot
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert Gatenby
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Benjamin Roche
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joel S. Brown
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Aurora M. Nedelcu
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| |
Collapse
|
6
|
Duneau D, Buchon N. Gut cancer increases the risk of Drosophila being preyed upon by hunting spiders. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
8
|
Capp JP, Thomas F. From developmental to atavistic bet-hedging: How cancer cells pervert the exploitation of random single-cell phenotypic fluctuations. Bioessays 2022; 44:e2200048. [PMID: 35839471 DOI: 10.1002/bies.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Stochastic gene expression plays a leading developmental role through its contribution to cell differentiation. It is also proposed to promote phenotypic diversification in malignant cells. However, it remains unclear if these two forms of cellular bet-hedging are identical or rather display distinct features. Here we argue that bet-hedging phenomena in cancer cells are more similar to those occurring in unicellular organisms than to those of normal metazoan cells. We further propose that the atavistic bet-hedging strategies in cancer originate from a hijacking of the normal developmental bet-hedging of metazoans. Finally, we discuss the constraints that may shape the atavistic bet-hedging strategies of cancer cells.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA / University of Toulouse, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Dujon AM, Vittecoq M, Bramwell G, Thomas F, Ujvari B. Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine M. Dujon
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Marion Vittecoq
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
- Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands Arles France
| | - Georgina Bramwell
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
| | - Beata Ujvari
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| |
Collapse
|
10
|
Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021; 10:pathogens10101295. [PMID: 34684244 PMCID: PMC8540842 DOI: 10.3390/pathogens10101295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Several cancer risk factors (exposure to ultraviolet-B, pollution, toxins and pathogens) have been identified for wildlife, to form a “cancer risk landscape.” However, information remains limited on how the spatiotemporal variability of these factors impacts the prevalence of cancer in wildlife. Here, we evaluated the cancer risk landscape at 49 foraging sites of the globally distributed green turtle (Chelonia mydas), a species affected by fibropapillomatosis, by integrating data from a global meta-analysis of 31 publications (1994–2019). Evaluated risk factors included ultraviolet light exposure, eutrophication, toxic phytoplanktonic blooms, sea surface temperature, and the presence of mechanical vectors (parasites and symbiotic species). Prevalence was highest in areas where nutrient concentrations facilitated the emergence of toxic phytoplankton blooms. In contrast, ultraviolet light exposure and the presence of parasitic and/or symbiotic species did not appear to impact disease prevalence. Our results indicate that, to counter outbreaks of fibropapillomatosis, management actions that reduce eutrophication in foraging areas should be implemented.
Collapse
|
11
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
12
|
Does Cancer Biology Rely on Parrondo's Principles? Cancers (Basel) 2021; 13:cancers13092197. [PMID: 34063648 PMCID: PMC8125342 DOI: 10.3390/cancers13092197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Parrondo’s paradox, whereby losing strategies or deleterious effects can combine to provide a winning outcome, has been increasingly applied by biologists to explain complex adaptations in many living systems. Here, we suggest that considering this paradox in oncology, particularly in relation to the phenotypic diversity of malignant cells, could also be a promising approach to understand several puzzling aspects of cancer biology. For example, the high genetic and epigenetic instability of cancer cells, their metastatic behavior and their capacity to enter dormancy could be explained by Parrondo’s theory. We also discuss the relevance of Parrondo’s paradox in a therapeutical framework using different examples. This work provides a compelling argument that the traditional separation between medicine and other disciplines remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood. Abstract Many aspects of cancer biology remain puzzling, including the proliferative and survival success of malignant cells in spite of their high genetic and epigenetic instability as well as their ability to express migrating phenotypes and/or enter dormancy despite possible fitness loss. Understanding the potential adaptive value of these phenotypic traits is confounded by the fact that, when considered separately, they seem to be rather detrimental at the cell level, at least in the short term. Here, we argue that cancer’s biology and success could frequently be governed by processes underlying Parrondo’s paradox, whereby combinations of intrinsically losing strategies may result in winning outcomes. Oncogenic selection would favor Parrondo’s dynamics because, given the environmental adversity in which malignant cells emerge and evolve, alternating between various less optimal strategies would represent the sole viable option to counteract the changing and deleterious environments cells are exposed to during tumorigenesis. We suggest that malignant processes could be viewed through this lens, and we discuss how Parrondo’s principles are also important when designing therapies against cancer.
Collapse
|
13
|
Dujon AM, Aktipis A, Alix‐Panabières C, Amend SR, Boddy AM, Brown JS, Capp J, DeGregori J, Ewald P, Gatenby R, Gerlinger M, Giraudeau M, Hamede RK, Hansen E, Kareva I, Maley CC, Marusyk A, McGranahan N, Metzger MJ, Nedelcu AM, Noble R, Nunney L, Pienta KJ, Polyak K, Pujol P, Read AF, Roche B, Sebens S, Solary E, Staňková K, Swain Ewald H, Thomas F, Ujvari B. Identifying key questions in the ecology and evolution of cancer. Evol Appl 2021; 14:877-892. [PMID: 33897809 PMCID: PMC8061275 DOI: 10.1111/eva.13190] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
The application of evolutionary and ecological principles to cancer prevention and treatment, as well as recognizing cancer as a selection force in nature, has gained impetus over the last 50 years. Following the initial theoretical approaches that combined knowledge from interdisciplinary fields, it became clear that using the eco-evolutionary framework is of key importance to understand cancer. We are now at a pivotal point where accumulating evidence starts to steer the future directions of the discipline and allows us to underpin the key challenges that remain to be addressed. Here, we aim to assess current advancements in the field and to suggest future directions for research. First, we summarize cancer research areas that, so far, have assimilated ecological and evolutionary principles into their approaches and illustrate their key importance. Then, we assembled 33 experts and identified 84 key questions, organized around nine major themes, to pave the foundations for research to come. We highlight the urgent need for broadening the portfolio of research directions to stimulate novel approaches at the interface of oncology and ecological and evolutionary sciences. We conclude that progressive and efficient cross-disciplinary collaborations that draw on the expertise of the fields of ecology, evolution and cancer are essential in order to efficiently address current and future questions about cancer.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Athena Aktipis
- Biodesign InstituteDepartment of PsychologyArizona State UniversityTempeAZUSA
| | - Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
| | - Sarah R. Amend
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Amy M. Boddy
- Department of AnthropologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Joel S. Brown
- Department of Integrated MathematicsMoffitt Cancer CenterTampaFLUSA
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSA/University of ToulouseCNRSINRAEToulouseFrance
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsIntegrated Department of ImmunologyDepartment of PaediatricsDepartment of Medicine (Section of Hematology)University of Colorado School of MedicineAuroraCOUSA
| | - Paul Ewald
- Department of BiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Robert Gatenby
- Department of RadiologyH. Lee Moffitt Cancer Center & Research InstituteTampaFLUSA
| | - Marco Gerlinger
- Translational Oncogenomics LabThe Institute of Cancer ResearchLondonUK
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Littoral Environnement et Sociétés (LIENSs)UMR 7266CNRS‐Université de La RochelleLa RochelleFrance
| | | | - Elsa Hansen
- Center for Infectious Disease Dynamics, Biology DepartmentPennsylvania State UniversityUniversity ParkPAUSA
| | - Irina Kareva
- Mathematical and Computational Sciences CenterSchool of Human Evolution and Social ChangeArizona State UniversityTempeAZUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyH Lee Moffitt Cancer Centre and Research InstituteTampaFLUSA
| | - Nicholas McGranahan
- Translational Cancer Therapeutics LaboratoryThe Francis Crick InstituteLondonUK
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
| | | | | | - Robert Noble
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| | - Kenneth J. Pienta
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Kornelia Polyak
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Pascal Pujol
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Centre Hospitalier Universitaire Arnaud de VilleneuveMontpellierFrance
| | - Andrew F. Read
- Center for Infectious Disease DynamicsHuck Institutes of the Life SciencesDepartments of Biology and EntomologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Unité Mixte Internationale de Modélisation Mathématique et Informatique des Systèmes ComplexesUMI IRD/Sorbonne UniversitéUMMISCOBondyFrance
| | - Susanne Sebens
- Institute for Experimental Cancer Research Kiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Eric Solary
- INSERM U1287Gustave RoussyVillejuifFrance
- Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Kateřina Staňková
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
- Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
| |
Collapse
|
14
|
Capp JP, Thomas F. Tissue-disruption-induced cellular stochasticity and epigenetic drift: Common origins of aging and cancer? Bioessays 2020; 43:e2000140. [PMID: 33118188 DOI: 10.1002/bies.202000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Age-related and cancer-related epigenomic modifications have been associated with enhanced cell-to-cell gene expression variability that characterizes increased cellular stochasticity. Since gene expression variability appears to be highly reduced by-and epigenetic and phenotypic stability acquired through-direct or long-range cellular interactions during cell differentiation, we propose a common origin for aging and cancer in the failure to control cellular stochasticity by cell-cell interactions. Tissue-disruption-induced cellular stochasticity associated with epigenetic drift would be at the origin of organ dysfunction because of an increase in phenotypic variation among cells, ultimately leading to cell death and organ failure through a loss of coordination in cellular functions, and eventually to cancerization. We propose mechanistic research perspectives to corroborate this hypothesis and explore its evolutionary consequences, highlighting a positive correlation between the median age of mass loss onset (a proxy for the onset of organ aging) and the median age at cancer diagnosis.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC (CREES), UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|