1
|
Lee SB, Lee KL, Kim SW, Jung WJ, Park DS, Lee S, Giri SS, Kim SG, Jo SJ, Park JH, Hwang MH, Park EJ, Seo JP, Kim BY, Park SC. Novel Gammaherpesvirus Infections in Narrow-Ridged Finless Porpoise ( Neophocaena asiaeorientalis) and False Killer Whales ( Pseudorca crassidens) in the Republic of Korea. Viruses 2024; 16:1234. [PMID: 39205209 PMCID: PMC11359890 DOI: 10.3390/v16081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
A female narrow-ridged finless porpoise (Neophocaena asiaeorientalis) stranded on a beach on Jeju Island showed epithelial proliferative skin lesions on its body. Two false killer whales (Pseudorca crassidens), caught using nets near Gangneung and Samcheok, respectively, had multiple plaques on their penile epidermis. Histological examination of the epidermis revealed that all the lesions had common features, including accentuated rete pegs, ballooning changes, and eosinophilic intranuclear inclusion (INI) bodies. Based on the histopathological results, herpesvirus infection was suspected, and thus further analysis was conducted using herpesvirus-specific primers. Based on nested polymerase chain reaction (PCR) tests using the herpesvirus-detectable primers, the PCR products demonstrated two fragments: a 222-base-pair (bp) sequence of the DNA polymerase gene, SNUABM_CeHV01, showing 96.4% identity with a bottlenose dolphin herpesvirus from the Jeju narrow-ridged finless porpoise; and a 222 bp sequence of the DNA polymerase gene, SNUABM_CeHV02, showing 95.95% identity with the same bottlenose dolphin herpesvirus from the Gangneung and Samcheok false killer whales. The significance of this study lies in its ability to demonstrate the existence of novel cetacean herpesviruses in South Korean seawater, representing an important step forward in studying potentially harmful pathogens that affect endangered whale and dolphin populations.
Collapse
Affiliation(s)
- Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Kyung Lee Lee
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan 44780, Republic of Korea;
| | - Sang Wha Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Da Sol Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Seyoung Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Eun Jae Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Byung Yeop Kim
- Department of Marine Industry and Maritime Police, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| |
Collapse
|
2
|
Pavulraj S, Azab W. Editorial: Herpesviruses of animals: recent advances and updates. Front Vet Sci 2023; 10:1326282. [PMID: 38026625 PMCID: PMC10660278 DOI: 10.3389/fvets.2023.1326282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Selvaraj Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Hussey GS, Giessler KS. Contribution of the immune response to the pathogenesis of equine herpesvirus-1 (EHV-1): Are there immune correlates that predict increased risk or protection from EHV-1 myeloencephalopathy? Vet J 2022; 282:105827. [PMID: 35405348 DOI: 10.1016/j.tvjl.2022.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/06/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
Equine herpesvirus-1 (EHV-1) myeloencephalopathy (EHM) is a devastating consequence of EHV-1 infection that has significant economic consequences. However, clinical EHM is relatively rare and occurs in only approximately 10% of infected horses. While there is a positive correlation between the duration and magnitude of viremia and incidence of EHM, it is likely that a combination of host and viral factors determine whether EHM occurs. The identification of these factors is of high interest for the equine community and has been the topic of much research for vaccine development and to predict which horses might be most at risk for developing EHM. The aim of this review is to highlight host immunity contributions to EHM pathogenesis at different sites of EHV-1 infection to shed light on the different aspects and interdependence of the response to EHV-1 in the time course of infection.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing MI 48824, USA.
| | - Kim S Giessler
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing MI 48824, USA
| |
Collapse
|
4
|
El-Sayed A, Aleya L, Kamel M. COVID-19: a new emerging respiratory disease from the neurological perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40445-40459. [PMID: 33590398 PMCID: PMC7884096 DOI: 10.1007/s11356-021-12969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 04/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a challenging public health catastrophe worldwide. The newly emerged disease spread in almost all countries and infected 100 million persons worldwide. The infection is not limited to the respiratory system but involves various body systems and may lead to multiple organ failure. Tissue degenerative changes result from direct viral invasion, indirect consequences, or through an uncontrolled immune response. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads to the brain via hematogenous and neural routes accompanied with dysfunction of the blood-brain barrier. The involvement of the central nervous system is now suspected to be among the main causes of death. The present review discusses the historical background of coronaviruses, their role in previous and ongoing pandemics, the way they escape the immune system, why they are able to spread despite all undertaken measures, in addition to the neurological manifestations, long-term consequences of the disease, and various routes of viral introduction to the CNS.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Laval K, Poelaert KCK, Van Cleemput J, Zhao J, Vandekerckhove AP, Gryspeerdt AC, Garré B, van der Meulen K, Baghi HB, Dubale HN, Zarak I, Van Crombrugge E, Nauwynck HJ. The Pathogenesis and Immune Evasive Mechanisms of Equine Herpesvirus Type 1. Front Microbiol 2021; 12:662686. [PMID: 33746936 PMCID: PMC7970122 DOI: 10.3389/fmicb.2021.662686] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus related to pseudorabies virus (PRV) and varicella-zoster virus (VZV). This virus is one of the major pathogens affecting horses worldwide. EHV-1 is responsible for respiratory disorders, abortion, neonatal foal death and equine herpes myeloencephalopathy (EHM). Over the last decade, EHV-1 has received growing attention due to the frequent outbreaks of abortions and/or EHM causing serious economical losses to the horse industry worldwide. To date, there are no effective antiviral drugs and current vaccines do not provide full protection against EHV-1-associated diseases. Therefore, there is an urgent need to gain a better understanding of the pathogenesis of EHV-1 in order to develop effective therapies. The main objective of this review is to provide state-of-the-art information on the pathogenesis of EHV-1. We also highlight recent findings on EHV-1 immune evasive strategies at the level of the upper respiratory tract, blood circulation and endothelium of target organs allowing the virus to disseminate undetected in the host. Finally, we discuss novel approaches for drug development based on our current knowledge of the pathogenesis of EHV-1.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Division of Virology, Department Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jolien Van Cleemput
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | | | | | | | | | - Hossein B Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haileleul N Dubale
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Ines Zarak
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eline Van Crombrugge
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|