1
|
Pan WW, Wubben TJ, Zacks DN. Promising therapeutic targets for neuroprotection in retinal disease. Curr Opin Ophthalmol 2025:00055735-990000000-00224. [PMID: 39927457 DOI: 10.1097/icu.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Neurodegeneration is a common endpoint of various blinding retinal diseases. Yet, despite exciting advances in disease treatment, there continues to exist a critical need for the development of neuroprotective strategies to prevent retinal cell death. Here, we summarize the recent advances in neuroprotective strategies. RECENT FINDINGS From laboratory deciphering of the mechanisms involved in disease, many novel neuroprotective strategies have emerged and are currently under investigation for the treatment of various retinal and ocular diseases such as inherited retinal degeneration, retinal detachment, diabetic retinopathy, age-related macular degeneration, macular telangiectasia type 2, and glaucoma. These strategies include gene therapies, Fas inhibition, and targeting inflammatory, metabolic and reduction-oxidation abnormalities. Interestingly, investigation of several treatments across different diseases suggests shared neuroprotection mechanisms that can be targeted regardless of the particular disease. SUMMARY Retinal neuroprotection can improve treatment of different retinal diseases. Fortunately, the current landscape, with a plethora of novel neuroprotective therapies, portends a better future for patients.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
2
|
Dizhoor AM, Sato S, Luo Z, Tan L, Levin FE, Olshevskaya EV, Peshenko IV, Kefalov VJ. Phosphodiesterase 5 expression in photoreceptors rescues retinal degeneration induced by deregulation of membrane guanylyl cyclase. J Biol Chem 2025; 301:108265. [PMID: 39909376 DOI: 10.1016/j.jbc.2025.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Mutations in retinal membrane guanylyl cyclase 1 (RetGC1) and its calcium-sensor protein (guanylyl cyclase activating protein 1, GCAP1) cause congenital dominant retinopathies by elevation of cGMP synthesis in photoreceptors in the dark. We explored counteracting the elevated cGMP synthesis causing photoreceptor degeneration using ectopic expression of a nonphotoreceptor cGMP phosphodiesterase (PDE) isozyme PDE5. PDE5 primary structure was modified to direct the delivery of the recombinant PDE5 (PDE5r) to rod outer segments, by placing a C-terminal fragment derived from a cone-specific alpha-subunit of PDE6C at the C terminus of the PDE5, which allowed PDE5r expressed under control of mouse rod opsin promoter to accumulate in rod outer segments. Expression of PDE5r did not affect calcium-sensitivity of RetGC regulation in PDE5rTg transgenic retinas, but increased cGMP hydrolysis in the dark, which partially desensitized PDR5rTg rods in the dark via an "equivalent light" effect, analogous to exposure to a constant dim light of ∼20 to 40 photons μm-2 sec-1. The calcium-sensitivity of RetGC regulation remained drastically shifted outside the normal physiological range in hybrid R838STgPDE5rTg rods expressing both PDE5r and R838S RetGC1, the mutant causing GUCY2D dominant retinopathy, but the hybrid rods demonstrated a dramatic rescue from degeneration caused by the R838S RetGC1. In a similar fashion, PDE5r expression rescued degeneration of rods harboring Y99C GCAP1, one of the GCAP1 mutants most frequently causing GUCA1A dominant retinopathy. Our results open a possibility that ectopic expression of PDE5 can be used as an approach to rescue presently incurable dominant GUCY2D and GUCA1A retinopathies at the expense of a moderate reduction in rod light-sensitivity.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania, United States.
| | - Shinya Sato
- Gavin Herbert Eye Institute, Department of Ophthalmology and Center for Translational Vision Research, University of California, Irvine, California, United States
| | - Zhuokai Luo
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Lyuqi Tan
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States; Graduate Program in Biomedicine, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Fay E Levin
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, United States
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute, Department of Ophthalmology and Center for Translational Vision Research, University of California, Irvine, California, United States; Department of Physiology and Biophysics, University of California, Irvine, California, United States
| |
Collapse
|
3
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2025; 20:291-304. [PMID: 39707712 PMCID: PMC11792828 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Gong X, Hertle RW. Infantile Nystagmus Syndrome-Associated Inherited Retinal Diseases: Perspectives from Gene Therapy Clinical Trials. Life (Basel) 2024; 14:1356. [PMID: 39598155 PMCID: PMC11595273 DOI: 10.3390/life14111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically diverse group of progressive degenerative disorders that can result in severe visual impairment or complete blindness. Despite their predominantly monogenic inheritance patterns, the genetic complexity of over 300 identified disease-causing genes presents a significant challenge in correlating clinical phenotypes with genotypes. Achieving a molecular diagnosis is crucial for providing patients with definitive diagnostic clarity and facilitating access to emerging gene-based therapies and ongoing clinical trials. Recent advances in next-generation sequencing technologies have markedly enhanced our ability to identify genes and genetic defects leading to IRDs, thereby propelling the development of gene-based therapies. The clinical success of voretigene neparvovec (Luxturna), the first approved retinal gene therapy for RPE65-associated Leber congenital amaurosis (LCA), has spurred considerable research and development in gene-based therapies, highlighting the importance of reviewing the current status of gene therapy for IRDs, particularly those utilizing adeno-associated virus (AAV)-based therapies. As novel disease-causing mutations continue to be discovered and more targeted gene therapies are developed, integrating these treatment opportunities into the standard care for IRD patients becomes increasingly critical. This review provides an update on the diverse phenotypic-genotypic landscape of IRDs, with a specific focus on recent advances in the understanding of IRDs in children with infantile nystagmus syndrome (INS). We highlight the complexities of the genotypic-phenotypic landscape of INS-associated IRDs, including conditions such as achromatopsia, LCA, congenital stationary night blindness, and subtypes of retinitis pigmentosa. Additionally, we provide an updated overview of AAV-based gene therapies for these diseases and discuss the potential of gene-based therapies for underlying IRDs that lead to INS, offering a valuable resource for pediatric patients potentially eligible for ongoing clinical trials.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| | - Richard W. Hertle
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
5
|
Yang P, Pardon LP, Ho AC, Lauer AK, Yoon D, Boye SE, Boye SL, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Swider M, Viarbitskaya I, Aleman TS, Pennesi ME, Kay CN, Fujita KP, Cideciyan AV. Safety and efficacy of ATSN-101 in patients with Leber congenital amaurosis caused by biallelic mutations in GUCY2D: a phase 1/2, multicentre, open-label, unilateral dose escalation study. Lancet 2024; 404:962-970. [PMID: 39244273 DOI: 10.1016/s0140-6736(24)01447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Leber congenital amaurosis 1 (LCA1), caused by mutations in GUCY2D, is a rare inherited retinal disease that typically causes blindness in early childhood. The aim of this study was to evaluate the safety and preliminary efficacy of ascending doses of ATSN-101, a subretinal AAV5 gene therapy for LCA1. METHODS 15 patients with genetically confirmed biallelic mutations in GUCY2D were included in this phase 1/2 study. All patients received unilateral subretinal injections of ATSN-101. In the dose-escalation phase, three adult cohorts (n=3 each) were treated with three ascending doses: 1·0 × 1010 vg/eye (low dose), 3·0 × 1010 vg/eye (middle dose), and 1·0 × 1011 vg/eye (high dose). In the dose-expansion phase, one adult cohort (n=3) and one paediatric cohort (n=3) were treated at the high dose. The primary endpoint was the incidence of treatment-emergent adverse events (TEAEs), and secondary endpoints included full-field stimulus test (FST) and best-corrected visual acuity (BCVA). A multi-luminance mobility test (MLMT) was also done. Data through the 12-month main study period are reported. FINDINGS Patients were enrolled between Sept 12, 2019, and May 5, 2022. A total of 68 TEAEs were observed, 56 of which were related to the surgical procedure. No serious TEAE was related to the study drug. Ocular inflammation was mild and reversible with steroid treatment. For patients who received the high dose, mean change in dark-adapted FST was 20·3 decibels (dB; 95% CI 6·6 to 34·0) for treated eyes and 1·1 dB (-3·7 to 5·9) for untreated eyes at month 12 (white stimulus); improvements were first observed at day 28 and persisted over 12 months (p=0·012). Modest improvements in BCVA were also observed (p=0·10). Three of six patients who received the high dose and did the MLMT achieved the maximum score in the treated eye. INTERPRETATION ATSN-101 is well tolerated 12 months after treatment, with no drug-related serious adverse events. Clinically significant improvements in retinal sensitivity were sustained in patients receiving the high dose. FUNDING Atsena Therapeutics.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Allen C Ho
- Wills Eye Hospital, Philadelphia, PA, USA
| | - Andreas K Lauer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dan Yoon
- Atsena Therapeutics, Durham, NC, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Alejandro J Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Wu
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iryna Viarbitskaya
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | | | | | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, Rashid A, Jaskolka MC, Myers RL, Lam BL, Bailey ST, Comander JI, Lauer AK, Maguire AM, Pennesi ME. Gene Editing for CEP290-Associated Retinal Degeneration. N Engl J Med 2024; 390:1972-1984. [PMID: 38709228 PMCID: PMC11389875 DOI: 10.1056/nejmoa2309915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
BACKGROUND CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).
Collapse
Affiliation(s)
- Eric A Pierce
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Tomas S Aleman
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Kanishka T Jayasundera
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Bright S Ashimatey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Keunpyo Kim
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Alia Rashid
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Michael C Jaskolka
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Rene L Myers
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Byron L Lam
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Steven T Bailey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Jason I Comander
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Andreas K Lauer
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Albert M Maguire
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Mark E Pennesi
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| |
Collapse
|
7
|
Moaveni AK, Amiri M, Shademan B, Farhadi A, Behroozi J, Nourazarian A. Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update. Front Mol Biosci 2024; 11:1382190. [PMID: 38836106 PMCID: PMC11149429 DOI: 10.3389/fmolb.2024.1382190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Pediatric cancers represent a tragic but also promising area for gene therapy. Although conventional treatments have improved survival rates, there is still a need for targeted and less toxic interventions. This article critically analyzes recent advances in gene therapy for pediatric malignancies and discusses the challenges that remain. We explore the innovative vectors and delivery systems that have emerged, such as adeno-associated viruses and non-viral platforms, which show promise in addressing the unique pathophysiology of pediatric tumors. Specifically, we examine the field of chimeric antigen receptor (CAR) T-cell therapies and their adaptation for solid tumors, which historically have been more challenging to treat than hematologic malignancies. We also discuss the genetic and epigenetic complexities inherent to pediatric cancers, such as tumor heterogeneity and the dynamic tumor microenvironment, which pose significant hurdles for gene therapy. Ethical considerations specific to pediatric populations, including consent and long-term follow-up, are also analyzed. Additionally, we scrutinize the translation of research from preclinical models that often fail to mimic pediatric cancer biology to the regulatory landscapes that can either support or hinder innovation. In summary, this article provides an up-to-date overview of gene therapy in pediatric oncology, highlighting both the rapid scientific progress and the substantial obstacles that need to be addressed. Through this lens, we propose a roadmap for future research that prioritizes the safety, efficacy, and complex ethical considerations involved in treating pediatric patients. Our ultimate goal is to move from incremental advancements to transformative therapies.
Collapse
Affiliation(s)
- Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
8
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Reith M, Stingl K, Kühlewein L, Kempf M, Stingl K, Langrova H. Comparison of Full-Field Stimulus Threshold Measurements in Patients With Retinitis Pigmentosa and Healthy Subjects With Dilated and Nondilated Pupil. Transl Vis Sci Technol 2024; 13:23. [PMID: 38630470 PMCID: PMC11033600 DOI: 10.1167/tvst.13.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose The common protocol of full-field stimulus threshold (FST) testing recommends pupil dilation. The aim of this study is to investigate the difference between FST measurements with dilated and nondilated pupils in healthy subjects and patients with retinitis pigmentosa (RP). Methods Twenty healthy subjects and 20 RP patients were selected. One pupil of each subject was dilated; the other eye was measured in physiological width of the pupil. The FST was conducted using Diagnosys Espion E2/E3 with white, blue, and red stimuli. Statistical analysis was conducted with a mixed-model analysis of variance and a paired t-test. Results The statistical analysis revealed a significant difference between measurements of dilated and nondilated pupils with the following: blue stimuli for all subjects and groups except those with highly progressed RP; white stimuli for all tested subjects in total, for RP patients with better-preserved visual field (VF), and rod-mediated FST response; and red stimuli for RP patients with better-preserved VF and rod-mediated FST response. On average, the difference between the FST values for RP patients were -3.2 ± 3 dB for blue, -2.3 ± 2.9 dB for white, and -0.83 ± 3 dB for red stimuli. The correlation between the FST values of dilated and nondilated pupils with all three stimuli was linear. Conclusions Current recommendations are to perform FST with dilated pupils. However, based on this study's findings, pupil dilation can be omitted for clinical diagnostics or rough follow-ups. Translational Relevance Our data provide useful information for the clinical use of FST.
Collapse
Affiliation(s)
- Milda Reith
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Hana Langrova
- Charles University, Medical Faculty in Hradec Kralove and Faculty Hospital, Department of Ophthalmology, Czech Republic
| |
Collapse
|
10
|
Sakai D, Maeda T, Yamamoto M, Yokota S, Maeda A, Hirami Y, Nakamura M, Kurimoto Y, Mandai M. Relationship between residual visual field and full-field stimulus testing in patients with late-stage retinal degenerative diseases. Sci Rep 2024; 14:2793. [PMID: 38307956 PMCID: PMC10837419 DOI: 10.1038/s41598-024-53474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
This study aimed to investigate how the extent and central/peripheral location of the residual visual field (VF) in patients with late-stage inherited retinal diseases (IRDs) are related to retinal sensitivity detected using full-field stimulus testing (FST). We reviewed the results of Goldmann perimetry and FST from the medical records of patients with IRDs whose VF represents central (within 10°) and/or peripheral islands, or undetectable. In total, 19 patients (19 eyes) were analyzed in this study. The median value of residual VF area was 1.38%. The median values of rod and cone sensitivities were - 14.9 dB and 7.4 dB, respectively. Patients with only the peripheral island (- 33.9 dB) had better median rod sensitivity than other groups (only central, - 18.9 dB; both, - 3.6 dB). VF area significantly correlated with rod sensitivity (r = - 0.943, p = 0.005) in patients with only peripheral island, but not with cone sensitivity. Peripheral VF islands were significant contributors to FST results, especially rod sensitivity. With reduced or loss of central vision, the extent of residual peripheral VF significantly affected rod sensitivity, suggesting that FST can be useful in quantitatively estimating the overall remaining vision in patients with late-stage IRD.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan.
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Tadao Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Midori Yamamoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
11
|
Cideciyan AV, Jacobson SG, Ho AC, Swider M, Sumaroka A, Roman AJ, Wu V, Russell RC, Viarbitskaya I, Garafalo AV, Schwartz MR, Girach A. Durable vision improvement after a single intravitreal treatment with antisense oligonucleotide in CEP290-LCA: Replication in two eyes. Am J Ophthalmol Case Rep 2023; 32:101873. [PMID: 37388818 PMCID: PMC10302566 DOI: 10.1016/j.ajoc.2023.101873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose An intravitreally injected antisense oligonucleotide, sepofarsen, was designed to modulate splicing within retinas of patients with severe vision loss due to deep intronic c.2991 + 1655A > G variant in the CEP290 gene. A previous report showed vision improvements following a single injection in one eye with unexpected durability lasting at least 15 months. The current study evaluated durability of efficacy beyond 15 months in the previously treated left eye. In addition, peak efficacy and durability were evaluated in the treatment-naive right eye, and re-injection of the left eye 4 years after the first injection. Observations Visual function was evaluated with best corrected standard and low-luminance visual acuities, microperimetry, dark-adapted chromatic perimetry, and full-field sensitivity testing. Retinal structure was evaluated with OCT imaging. At the fovea, all visual function measures and IS/OS intensity of the OCT showed transient improvements peaking at 3-6 months, remaining better than baseline at ∼2 years, and returning to baseline by 3-4 years after each single injection. Conclusions and Importance These results suggest that sepofarsen reinjection intervals may need to be longer than 2 years.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
12
|
Scopelliti AJ, Jamieson RV, Barnes EH, Nash B, Rajagopalan S, Cornish EL, Grigg JR. A natural history study of autosomal dominant GUCY2D-associated cone-rod dystrophy. Doc Ophthalmol 2023; 147:189-201. [PMID: 37775646 PMCID: PMC10638150 DOI: 10.1007/s10633-023-09954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE To describe the natural history of autosomal dominant (AD) GUCY2D-associated cone-rod dystrophies (CRDs), and evaluate associated structural and functional biomarkers. METHODS Retrospective analysis was conducted on 16 patients with AD GUCY2D-CRDs across two sites. Assessments included central macular thickness (CMT) and length of disruption to the ellipsoid zone (EZ) via optical coherence tomography (OCT), electroretinography (ERG) parameters, best corrected visual acuity (BCVA), and fundus autofluorescence (FAF). RESULTS At first visit, with a mean age of 30 years (range 5-70 years), 12 patients had a BCVA below Australian driving standard (LogMAR ≥ 0.3 bilaterally), and 1 patient was legally blind (LogMAR ≥ 1). Longitudinal analysis demonstrated a deterioration of LogMAR by - 0.019 per year (p < 0.001). This accompanied a reduction in CMT of - 1.4 µm per year (p < 0.0001), lengthened EZ disruption by 42 µm per year (p = < 0.0001) and increased area of FAF by 0.05 mm2 per year (p = 0.027). Similarly, cone function decreased with increasing age, as demonstrated by decreasing b-wave amplitude of the light-adapted 30 Hz flicker and fused flicker (p = 0.005 and p = 0.018, respectively). Reduction in CMT and increased EZ disruption on OCT were associated with functional changes including poorer BCVA and decreased cone function on ERG. CONCLUSION We have described the natural long-term decline in vision and cone function associated with mutations in GUCY2D and identified a set of functional and structural biomarkers that may be useful as outcome parameters for future therapeutic clinical trials.
Collapse
Affiliation(s)
- Amanda J Scopelliti
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Benjamin Nash
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, NSW, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Locked Bag 7103, Liverpool, NSW, Australia
| | - Elisa L Cornish
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - John R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Ajgaonkar BS, Kumaran A, Kumar S, Jain RD, Dandekar PP. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev Rep 2023; 19:2650-2682. [PMID: 37704835 DOI: 10.1007/s12015-023-10623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Maintenance of the visual function is the desired outcome of ophthalmologic therapies. The shortcomings of the current treatment options, like partial recovery, post-operation failure, rigorous post-operative care, complications, etc., which are usually encountered with the conventional treatment options has warranted newer treatment options that may eliminate the root cause of diseases and minimize the side effects. Cell therapies, a class of regenerative medicines, have emerged as cutting-edge treatment option. The corneal and retinal dystrophies during the ocular disorders are the major cause of blindness, worldwide. Corneal disorders are mainly categorized mainly into corneal epithelial, stromal, and endothelial disorders. On the other hand, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, Stargardt Disease, choroideremia, Leber congenital amaurosis are then major retinal degenerative disorders. In this manuscript, we have presented a detailed overview of the development of cell-based therapies, using embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, dental pulp stem cells, induced pluripotent stem cells, limbal stem cells, corneal epithelial, stromal and endothelial, embryonic stem cell-derived differentiated cells (like retinal pigment epithelium or RPE), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells etc. The manuscript highlights their efficiency, drawbacks and the strategies that have been explored to regain visual function in the preclinical and clinical state associated with them which can be considered for their potential application in the development of treatment.
Collapse
Affiliation(s)
- Bhargavi Suryakant Ajgaonkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Akash Kumaran
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Salil Kumar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
15
|
Rodilla C, Martín-Merida I, Blanco-Kelly F, Trujillo-Tiebas MJ, Avila-Fernandez A, Riveiro-Alvarez R, Del Pozo-Valero M, Perea-Romero I, Swafiri ST, Zurita O, Villaverde C, López MÁ, Romero R, Iancu IF, Núñez-Moreno G, Jiménez-Rolando B, Martin-Gutierrez MP, Carreño E, Minguez P, García-Sandoval B, Ayuso C, Corton M. Comprehensive Genotyping and Phenotyping Analysis of GUCY2D-Associated Rod- and Cone-Dominated Dystrophies. Am J Ophthalmol 2023; 254:87-103. [PMID: 37327959 DOI: 10.1016/j.ajo.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To describe the genetic and clinical spectrum of GUCY2D-associated retinopathies and to accurately establish their prevalence in a large cohort of patients. DESIGN Retrospective case series. METHODS Institutional study of 47 patients from 27 unrelated families with retinal dystrophies carrying disease-causing GUCY2D variants from the Fundación Jiménez Díaz hospital dataset of 8000 patients. Patients underwent ophthalmological examination and molecular testing by Sanger or exome sequencing approaches. Statistical and principal component analyses were performed to determine genotype-phenotype correlations. RESULTS Four clinically different associated phenotypes were identified: 66.7% of families with cone/cone-rod dystrophy, 22.2% with Leber congenital amaurosis, 7.4% with early-onset retinitis pigmentosa, and 3.7% with congenital night blindness. Twenty-three disease-causing GUCY2D variants were identified, including 6 novel variants. Biallelic variants accounted for 28% of patients, whereas most carried dominant alleles associated with cone/cone-rod dystrophy. The disease onset had statistically significant differences according to the functional variant effect. Patients carrying GUCY2D variants were projected into 3 subgroups by allelic combination, disease onset, and presence of nystagmus or night blindness. In contrast to patients with the most severe phenotype of Leber congenital amaurosis, 7 patients with biallelic GUCY2D had a later and milder rod form with night blindness in infancy as the first symptom. CONCLUSIONS This study represents the largest GUCY2D cohort in which 4 distinctly different phenotypes were identified, including rare intermediate presentations of rod-dominated retinopathies. We established that GUCY2D is linked to about 1% of approximately 3000 molecularly characterized families of our cohort. All of these findings are critical for defining cohorts for inclusion in future clinical trials.
Collapse
Affiliation(s)
- Cristina Rodilla
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Inmaculada Martín-Merida
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Fiona Blanco-Kelly
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - María José Trujillo-Tiebas
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Almudena Avila-Fernandez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Rosa Riveiro-Alvarez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Marta Del Pozo-Valero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Irene Perea-Romero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Saoud Tahsin Swafiri
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Olga Zurita
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Cristina Villaverde
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Miguel Ángel López
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.)
| | - Raquel Romero
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Ionut Florin Iancu
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Gonzalo Núñez-Moreno
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Belén Jiménez-Rolando
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - María Pilar Martin-Gutierrez
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Ester Carreño
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Pablo Minguez
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.); Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (R.R., I.F.I., G.N.-M., P.M.)
| | - Blanca García-Sandoval
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.J.-R., M.P.M.-G., E.C., B.G.-S.)
| | - Carmen Ayuso
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.).
| | - Marta Corton
- From the Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I., G.N.-M., P.M., C.A., M.C.; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain (C.R., I.M.-M., F.B.-K., M.J.T.-T., A.A.-F., R.R.-A., M.d.P.V., I.P.-R., S.T.S., O.Z., C.V., M.A.L., R.R., I.F.I, G.N.-M., P.M., C.A., M.C.).
| |
Collapse
|
16
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
17
|
Periasamy R, Patel DD, Boye SL, Boye SE, Lipinski DM. Improving retinal vascular endothelial cell tropism through rational rAAV capsid design. PLoS One 2023; 18:e0285370. [PMID: 37167304 PMCID: PMC10174500 DOI: 10.1371/journal.pone.0285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Vascular endothelial cells (VEC) are essential for retinal homeostasis and their dysfunction underlies pathogenesis in diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD). Studies have shown that recombinant adeno-associated virus (rAAV) vectors are effective at delivering new genetic material to neural and glial cells within the retina, but targeting VECs remains challenging. To overcome this limitation, herein we developed rAAV capsid mutant vectors with improved tropism towards retinal VEC. rAAV2/2, 2/2[QuadYF-TV], and rAAV2/9 serotype vectors (n = 9, capsid mutants per serotype) expressing GFP were generated by inserting heptameric peptides (7AA) designed to increase endothelial targeting at positions 588 (2/2 and 2/2[QuadYF-TV] or 589 (2/9) of the virus protein (VP 1-3). The packaging and transduction efficiency of the vectors were assessed in HEK293T and bovine VECs using Fluorescence microscopy and flow cytometry, leading to the identification of one mutant, termed EC5, that showed improved endothelial tropism when inserted into all three capsid serotypes. Intra-ocular and intravenous administration of EC5 mutants in C57Bl/6j mice demonstrated moderately improved transduction of the retinal vasculature, particularly surrounding the optic nerve head, and evidence of sinusoidal endothelial cell transduction in the liver. Most notably, intravenous administration of the rAAV2/2[QuadYF-TV] EC5 mutant led to a dramatic and unexpected increase in cardiac muscle transduction.
Collapse
Affiliation(s)
- Ramesh Periasamy
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dwani D. Patel
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Daniel M. Lipinski
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
18
|
Boye SL, O’Riordan C, Morris J, Lukason M, Compton D, Baek R, Elmore DM, Peterson J, Fajardo D, McCullough KT, Scaria A, McVie-Wylie A, Boye SE. Preclinical studies in support of phase I/II clinical trials to treat GUCY2D-associated Leber congenital amaurosis. Mol Ther Methods Clin Dev 2023; 28:129-145. [PMID: 36654798 PMCID: PMC9830033 DOI: 10.1016/j.omtm.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mutations in GUCY2D are associated with severe early-onset retinal dystrophy, Leber congenital amaurosis type 1 (LCA1), a leading cause of blindness in children. Despite a high degree of visual disturbance stemming from photoreceptor dysfunction, patients with LCA1 largely retain normal photoreceptor structure, suggesting that they are good candidates for gene replacement therapy. The purpose of this study was to conduct the preclinical and IND-enabling experiments required to support clinical application of AAV5-hGRK1-GUCY2D in patients harboring biallelic recessive mutations in GUCY2D. Preclinical studies were conducted in mice to evaluate the effect of vector manufacturing platforms and transgene species on the therapeutic response. Dose-ranging studies were conducted in cynomolgus monkeys to establish the minimum dose required for efficient photoreceptor transduction. Good laboratory practice (GLP) studies evaluated systemic biodistribution in rats and toxicology in non-human primates (NHPs). These results expanded our knowledge of dose response for an AAV5-vectored transgene under control of the human rhodopsin kinase (hGRK1) promoter in NHPs with respect to photoreceptor transduction and safety and, in combination with the rat biodistribution and mouse efficacy studies, informed the design of a first-in-human clinical study in patients with LCA1.
Collapse
Affiliation(s)
- Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Ngo WK, Jenny LA, Kim AH, Kolesnikova M, Greenstein VC, Tsang SH. Correlations of Full-Field Stimulus Threshold With Functional and Anatomical Outcome Measurements in Advanced Retinitis Pigmentosa. Am J Ophthalmol 2023; 245:155-163. [PMID: 35870488 PMCID: PMC11149455 DOI: 10.1016/j.ajo.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To compare full-field stimulus (FST) threshold values to conventional functional and anatomical measures commonly used in clinical practice. DESIGN Cross-sectional study. METHODS Patients with retinitis pigmentosa with nondetectable electroretinogram rod-mediated responses and light-adapted 3.0 cd·s·m2 30-Hz flicker (LA 3.0 flicker) amplitudes of 15 mV or less were included in this study. The threshold values for blue, white, and red stimuli on FST were correlated with best-corrected visual acuity, LA 3.0 flicker amplitude and implicit times, length of the ellipsoid zone (EZ) band and thickness of outer nuclear layer measurements on optical coherence tomography, and the vertical and horizontal diameters of the autofluorescent ring on autofluorescence imaging. RESULTS Forty-two eyes of 21 patients were included in the study. The mean FST thresholds were -22.5 ± 15.5 dB, -17.6 ± 11.5 dB, and -12.7 ± 6.0 dB for the blue, white, and red stimuli, respectively. The threshold values for the 3 FST stimuli were significantly correlated with selected functional and anatomical outcome measures. Specifically, they were strongly correlated with LA 3.0 flicker amplitude and EZ band length measured on optical coherence tomography. Using linear regression, blue and white stimulus values on FST were found to be predictive of EZ band length (R2 = 0.579 and 0.491, respectively), and the vertical (R2 = 0.694 and 0.532, respectively) and horizontal (R2 = 0.626 and 0.400, respectively) diameters of the hyperautofluorescent ring. CONCLUSIONS The significant correlations between FST and other clinical outcome measures highlight its potential as an adjunct outcome measure.
Collapse
Affiliation(s)
- Wei Kiong Ngo
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Laura A Jenny
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Angela H Kim
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn
| | - Masha Kolesnikova
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn
| | - Vivienne C Greenstein
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephen H Tsang
- From the Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA; Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, Columbia University, New York, New York, USA.
| |
Collapse
|
20
|
Li S, Jakobs TC. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep 2022; 41:111880. [PMID: 36577373 PMCID: PMC9847489 DOI: 10.1016/j.celrep.2022.111880] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Aging causes an irreversible, cumulative decline in neuronal function. Using the visual system as a model, we show that astrocytes play a critical role in maintaining retinal ganglion cell health and that deletion of SPP1 (secreted phosphoprotein 1, or osteopontin) from astrocytes leads to increased vulnerability of ganglion cells to age, elevated intraocular pressure, and traumatic optic nerve damage. Overexpression of SPP1 slows the age-related decline in ganglion cell numbers and is highly protective of visual function in a mouse model of glaucoma. SPP1 acts by promoting phagocytosis and secretion of neurotrophic factors while inhibiting production of neurotoxic and pro-inflammatory factors. SPP1 up-regulates transcription of genes related to oxidative phosphorylation, functionally enhances mitochondrial respiration, and promotes the integrity of mitochondrial microstructure. SPP1 increases intracellular ATP concentration via up-regulation of VDAC1.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Jacobson SG, Cideciyan AV, Ho AC, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Krishnan AK, Swider M, Mascio AA, Kay CN, Yoon D, Fujita KP, Boye SL, Peshenko IV, Dizhoor AM, Boye SE. Night vision restored in days after decades of congenital blindness. iScience 2022; 25:105274. [PMID: 36274938 PMCID: PMC9579015 DOI: 10.1016/j.isci.2022.105274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.
Collapse
Affiliation(s)
- Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dan Yoon
- Atsena Therapeutics, Inc., Durham, NC 27709, USA
| | | | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32601, USA
| | - Igor V. Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | | | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
23
|
Hahn LC, Georgiou M, Almushattat H, van Schooneveld MJ, de Carvalho ER, Wesseling NL, Ten Brink JB, Florijn RJ, Lissenberg-Witte BI, Strubbe I, van Cauwenbergh C, de Zaeytijd J, Walraedt S, de Baere E, Mukherjee R, McKibbin M, Meester-Smoor MA, Thiadens AAHJ, Al-Khuzaei S, Akyol E, Lotery AJ, van Genderen MM, Ossewaarde-van Norel J, van den Born LI, Hoyng CB, Klaver CCW, Downes SM, Bergen AA, Leroy BP, Michaelides M, Boon CJF. The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene. Ophthalmol Retina 2022; 6:711-722. [PMID: 35314386 DOI: 10.1016/j.oret.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene and to identify potential end points and optimal patient selection for future therapeutic trials. DESIGN International, multicenter, retrospective cohort study. SUBJECTS Eighty-two patients with GUCY2D-associated LCA or CORD from 54 families. METHODS Medical records were reviewed for medical history, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain OCT [SD-OCT], fundus autofluorescence). MAIN OUTCOMES MEASURES Age of onset, evolution of BCVA, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up times were 5.2 years (interquartile range [IQR] 2.6-8.8 years) for LCA and 7.2 years (IQR 2.2-14.2 years) for CORD. Generally, LCA presented in the first year of life. The BCVA in patients with LCA ranged from no light perception to 1.00 logarithm of the minimum angle of resolution (logMAR) and remained relatively stable during follow-up. Imaging for LCA was limited but showed little to no structural degeneration. In patients with CORD, progressive vision loss started around the second decade of life. The BCVA declined annually by 0.022 logMAR (P < 0.001) with no difference between patients with the c.2513G>A and the c.2512C>T GUCY2D variants (P = 0.798). At the age of 40 years, the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and that of the external limiting membrane (ELM) on SD-OCT correlated significantly with BCVA (Spearman ρ = 0.744, P = 0.001, and ρ = 0.712, P < 0.001, respectively) in those with CORD. CONCLUSIONS Leber congenital amaurosis associated with GUCY2D caused severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence, with a progressive loss of vision, and culminated in severe visual impairment during mid-to-late adulthood. The integrity of the ELM and EZ may be suitable structural end points for therapeutic studies of GUCY2D-associated CORD.
Collapse
Affiliation(s)
- Leo C Hahn
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michalis Georgiou
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Emanuel R de Carvalho
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Caroline van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Julie de Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Elfride de Baere
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Rajarshi Mukherjee
- Department of Ophthalmology, St James's University Hospital, Leeds, United Kingdom
| | - Martin McKibbin
- Department of Ophthalmology, St James's University Hospital, Leeds, United Kingdom
| | | | | | - Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals National Health Service Foundation Trust, & Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Engin Akyol
- Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals National Health Service Foundation Trust, & Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michel Michaelides
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Cideciyan AV, Jacobson SG, Ho AC, Krishnan AK, Roman AJ, Garafalo AV, Wu V, Swider M, Sumaroka A, Van Cauwenbergh C, Russell SR, Drack AV, Leroy BP, Schwartz MR, Girach A. Restoration of Cone Sensitivity to Individuals with Congenital Photoreceptor Blindness within the Phase 1/2 Sepofarsen Trial. OPHTHALMOLOGY SCIENCE 2022; 2:100133. [PMID: 36249682 PMCID: PMC9562351 DOI: 10.1016/j.xops.2022.100133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15–41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention Participants received a single intravitreal injection of sepofarsen (160 or 320 μg) into the study eye. Main Outcome Measures Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of –1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence: Artur V. Cideciyan, PhD, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 51 North 39th Street, Philadelphia, PA 19104.
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Arlene V. Drack
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
25
|
Genetic characteristics of 234 Italian patients with macular and cone/cone-rod dystrophy. Sci Rep 2022; 12:3774. [PMID: 35260635 PMCID: PMC8904500 DOI: 10.1038/s41598-022-07618-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
Two-hundred and thirty-four Italian patients with a clinical diagnosis of macular, cone and cone-rod dystrophies (MD, CD, and CRD) were examined using next-generation sequencing (NGS) and gene sequencing panels targeting a specific set of genes, Sanger sequencing and—when necessary—multiplex ligation-dependent probe amplification (MLPA) to diagnose the molecular cause of the aforementioned diseases. When possible, segregation analysis was performed in order to confirm unsolved cases. Each patient’s retinal phenotypic characteristics were determined using focal and full-field ERGs, perimetry, spectral domain optical coherence tomography and fundus autofluorescence. We identified 236 potentially causative variants in 136 patients representing the 58.1% of the total cohort, 43 of which were unpublished. After stratifying the patients according to their clinical suspicion, the diagnostic yield was 62.5% and 53.8% for patients with MD and for those with CD/CRD, respectively. The mode of inheritance of all cases confirmed by genetic analysis was 70% autosomal recessive, 26% dominant, and 4% X-linked. The main cause (59%) of both MD and CD/CRD cases was the presence of variants in the ABCA4 gene, followed by variants in PRPH2 (9%) and BEST1 (6%). A careful morpho-functional evaluation of the phenotype, together with genetic counselling, resulted in an acceptable diagnostic yield in a large cohort of Italian patients. Our study emphasizes the role of targeted NGS to diagnose MDs, CDs, and CRDs, as well as the clinical usefulness of segregation analysis for patients with unsolved diagnosis.
Collapse
|
26
|
Lani-Louzada R, Marra C, Dias MS, de Araújo VG, Abreu CA, Ribas VT, Adesse D, Allodi S, Chiodo V, Hauswirth W, Petrs-Silva H, Linden R. Neuroprotective Gene Therapy by Overexpression of the Transcription Factor MAX in Rat Models of Glaucomatous Neurodegeneration. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35103748 PMCID: PMC8819487 DOI: 10.1167/iovs.63.2.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Based on our preview evidence that reduced nuclear content of the transcription factor Myc-associated protein X (MAX) is an early event associated with degeneration of retinal ganglion cells (RGCs), in the present study, our purpose was to test whether the overexpression of human MAX had a neuroprotective effect against RGC injury. Methods Overexpression of either MAX or green fluorescent protein (GFP) in the retina was achieved by intravitreal injections of recombinant adenovirus-associated viruses (rAAVs). Lister Hooded rats were used in three models of RGC degeneration: (1) cultures of retinal explants for 30 hours ex vivo from the eyes of 14-day-old rats that had received intravitreal injections of rAAV2-MAX or the control vector rAAV2-GFP at birth; (2) an optic nerve crush model, in which 1-month-old rats received intravitreal injection of either rAAV2-MAX or rAAV2-GFP and, 4 weeks later, were operated on; and (3) an ocular hypertension (OHT) glaucoma model, in which 1-month-old rats received intravitreal injection of either rAAV2-MAX or rAAV2-GFP and, 4 weeks later, were subject to cauterization of the limbal plexus. Cell death was estimated by detection of pyknotic nuclei and TUNEL technique and correlated with MAX immunocontent in an ex vivo model of retinal explants. MAX expression was detected by quantitative RT-PCR. In the OHT model, survival of RGCs was quantified by retrograde labeling with DiI or immunostaining for BRN3a at 14 days after in vivo injury. Functional integrity of RGCs was analyzed through pattern electroretinography, and damage to the optic nerve was examined in semithin sections. Results In all three models of RGC insult, gene therapy by overexpression of MAX prevented RGC death. Also, ON degeneration and electrophysiologic deficits were prevented in the OHT model. Conclusions Our experiments offer proof of concept for a novel neuroprotective gene therapy for glaucomatous neurodegeneration based on overexpression of MAX.
Collapse
Affiliation(s)
- Rafael Lani-Louzada
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Marra
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Santana Dias
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Guedes de Araújo
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Andreia Abreu
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Adesse
- Laboratory of Structural Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratory of Comparative and Developmental Neurobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vince Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States
| | - William Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States
| | - Hilda Petrs-Silva
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
28
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Roman AJ, Cideciyan AV, Wu V, Garafalo AV, Jacobson SG. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog Retin Eye Res 2021; 87:101000. [PMID: 34464742 DOI: 10.1016/j.preteyeres.2021.101000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Disease mechanisms have become better understood in previously incurable forms of early-onset severe retinal dystrophy, such as Leber congenital amaurosis (LCA). This has led to novel treatments and clinical trials that have shown some success. Standard methods to measure vision were difficult if not impossible to perform in severely affected patients with low vision and nystagmus. To meet the need for visual assays, we devised a psychophysical method, which we named full-field stimulus testing (FST). From early versions based on an automated perimeter, we advanced FST to a more available light-emitting diode platform. The journey from invention to use of such a technique in our inherited retinal degeneration clinic is reviewed and many of the lessons learned over the 15 years of application of FST are explained. Although the original purpose and application of FST was to quantify visual thresholds in LCA, there are rare opportunities for FST also to be used beyond LCA to measure aspects of vision in other inherited retinal degenerations; examples are given. The main goal of the current review, however, remains to enable investigators studying and treating LCA to understand how to best use FST and how to reduce artefact and confounding complexities so the test results become more valuable to the understanding of LCA diseases and results of novel interventions.
Collapse
Affiliation(s)
- Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|