1
|
Zaheer A, Komel A, Abu Bakr MB, Singh AK, Saji AS, Kharal MM, Ahsan A, Khan MH, Akbar A. Potential for and challenges of menstrual blood as a non-invasive diagnostic specimen: current status and future directions. Ann Med Surg (Lond) 2024; 86:4591-4600. [PMID: 39118774 PMCID: PMC11305704 DOI: 10.1097/ms9.0000000000002261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024] Open
Abstract
Menstrual blood, which is often discarded as a waste product, has emerged as a valuable source of health information. The components of menstrual blood, such as endometrial cells, immune cells, proteins, and microbial signatures, provide insights into health. Studies have shown encouraging results for using menstrual blood to diagnose a variety of conditions, including hormonal imbalances, cervical cancer, endometriosis, chlamydia, diabetes, and other endocrine disorders. This review examines the potential of menstrual blood as a non-invasive diagnostic specimen, exploring its composition, promising applications, and recent advances. This review also discusses challenges to utilizing menstrual blood testing, including ethical considerations, the lack of standardized collection protocols, extensive validation studies, and the societal stigma around menstruation. Overcoming these challenges will open new avenues for personalized medicine and revolutionize healthcare for individuals who menstruate.
Collapse
Affiliation(s)
- Amna Zaheer
- Liaquat National Hospital and Medical College
| | - Aqsa Komel
- Department of Internal Medicine, Nishtar Medical University, Multan
| | | | | | - Alen Sam Saji
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | - Areeba Ahsan
- Foundation University Medical College, Islamabad
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Cordeiro MR, Laranjeiro B, Figueiredo-Dias M. The Concept behind the Suitability of Menstrual Blood-Derived Stem Cells for the Management of Vaginal Atrophy among BRCA Mutation Carriers after RRSO. Int J Mol Sci 2024; 25:1025. [PMID: 38256099 PMCID: PMC10816163 DOI: 10.3390/ijms25021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Risk-reducing bilateral salpingo-oophorectomy (RRSO) is recommended for breast cancer gene 1 (BRCA1) and 2 (BRCA2) mutation carriers. A major consequence of RRSO is surgical menopause associated with severe menopausal symptoms, mostly genitourinary complaints. Due to the inherent breast cancer risk, estrogen-based therapies are generally avoided in these patients. So far, the non-hormonal approaches available are not efficient to successfully treat the disabling vaginal atrophy-related symptoms. In regenerative medicine, mesenchymal stem cells (MSC) are the most frequently used cell type due to their remarkable and regenerative characteristics. Therapies based on MSC have revealed positive outcomes regarding symptoms and signs associated with vaginal atrophy by promoting angiogenesis, vaginal restoration, and the proliferation of vaginal mucosa cells. Menstrual blood-derived stem cells (MenSC) are a novel source of MSC, with promising therapeutic potential directly linked to their high proliferative rates; low immunogenicity; non-invasive, easy, and periodic acquisition; and almost no associated ethical issues. In this review, we update the current knowledge and research regarding the potential value of previously preserved MenSC in the therapy of vaginal atrophy among BRCA mutation carriers subjected to RRSO.
Collapse
Affiliation(s)
- Mariana Robalo Cordeiro
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (M.F.-D.)
- Gynecology Department, Hospital University Centre of Coimbra, 3004-561 Coimbra, Portugal
| | - Bárbara Laranjeiro
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (M.F.-D.)
- Gynecology Department, Hospital University Centre of Coimbra, 3004-561 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (M.F.-D.)
- Gynecology Department, Hospital University Centre of Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
3
|
Zafardoust S, Kazemnejad S, Fathi-Kazerooni M, Darzi M, Sadeghi MR, Sadeghi Tabar A, Sehat Z. The effects of intraovarian injection of autologous menstrual blood-derived mesenchymal stromal cells on pregnancy outcomes in women with poor ovarian response. Stem Cell Res Ther 2023; 14:332. [PMID: 37968668 PMCID: PMC10647057 DOI: 10.1186/s13287-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Assisted reproduction faces a significant obstacle in the form of poor ovarian response (POR) to controlled ovarian stimulation. To address this challenge, mesenchymal stem cell therapy has been proposed as a potential treatment for female infertility and/or restoration of ovarian function in POR women. Our previous research has demonstrated that menstrual blood-derived-mesenchymal stromal cells (MenSCs) injected into the ovaries of women with POR can increase pregnancy rates. The objective of this study was to examine whether MenSC therapy could enhance ovarian reserve parameters and pregnancy outcomes in a larger population of individuals with POR. METHOD This study consisted of 180 infertile individuals with POR who declined oocyte donation. Participants were divided into two groups: those who received bilateral MenSCs intraovarian injection and those who received no intervention. Our primary aim was to compare the rates of spontaneous pregnancy between the two groups, followed by an investigation of any alterations in the ovarian reserve parameters, such as serum FSH, AMH, and AFC levels, as well as the ICSI/IVF outcomes, in both groups of participants. RESULTS The MenSC therapy exhibited a favourable tolerability profile and did not raise any safety concerns. Following the 2-month follow-up period, women who received MenSC treatment demonstrated a significantly higher rate of spontaneous pregnancy (P < 0.005) and an improvement in anti-Müllerian hormone (AMH) levels (P = 0.0007) and antral follicle count (AFC) (P < 0.001), whereas the control group demonstrated a considerable decline in these parameters (Both P < 0.001). The MenSC therapy led to a greater number of mature oocytes and embryos among women who underwent ICSI/IVF. Our age subgroup analysis demonstrated a significant difference in the number of spontaneous pregnancies and ICSI/IVF outcomes between the treatment and control groups only among individuals below 40 years of age. CONCLUSION The results of our study indicate that MenSCs treatment may be a viable option for treating women experiencing POR. However, in order to be widely implemented in clinical practice, the clinical effectiveness of MenSCs therapy will need to be established through rigorous prospective randomized clinical trials. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05703308. Registered 01/26/2023, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05703308 . IRCT, IRCT20180619040147N4. Registered 08/01/2020.
Collapse
Affiliation(s)
- Simin Zafardoust
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Maryam Darzi
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Sadeghi Tabar
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Sehat
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Hosoya S, Yokomizo R, Kishigami H, Fujiki Y, Kaneko E, Amita M, Saito T, Kishi H, Sago H, Okamoto A, Umezawa A. Novel therapeutic strategies for injured endometrium: intrauterine transplantation of menstrual blood‑derived cells from infertile patients. Stem Cell Res Ther 2023; 14:297. [PMID: 37840125 PMCID: PMC10577920 DOI: 10.1186/s13287-023-03524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Menstrual blood-derived cells show regenerative potential as a mesenchymal stem cell and may therefore be a novel stem cell source of treatment for refractory infertility with injured endometrium. However, there have been few pre-clinical studies using cells from infertile patients, which need to be addressed before establishing an autologous transplantation. Herein, we aimed to investigate the therapeutic capacity of menstrual blood-derived cells from infertile patients on endometrial infertility. METHODS We collected menstrual blood-derived cells from volunteers and infertile patients and confirmed their mesenchymal stem cell phenotype by flow cytometry and induction of tri-lineage differentiation. We compared the proliferative and paracrine capacities of these cells. Furthermore, we also investigated the regenerative potential and safety concerns of the intrauterine transplantation of infertile patient-derived cells using a mouse model with mechanically injured endometrium. RESULTS Menstrual blood-derived cells from both infertile patients and volunteers showed phenotypic characteristics of mesenchymal stem cells. In vitro proliferative and paracrine capacities for wound healing and angiogenesis were equal for both samples. Furthermore, the transplantation of infertile patient-derived cells into uterine horns of the mouse model ameliorated endometrial thickness, prevented fibrosis, and improved fertility outcomes without any apparent complications. CONCLUSIONS In our pre-clinical study, intrauterine transplantation of menstrual blood-derived cells may be a novel and attractive stem cell source for the curative and prophylactic therapy for injured endometrium. Further studies will be warranted for future clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoya
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Ryo Yokomizo
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Harue Kishigami
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yukiko Fujiki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Erika Kaneko
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mitsuyoshi Amita
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Takakazu Saito
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Uzieliene I, Bialaglovyte P, Miksiunas R, Lebedis I, Pachaleva J, Vaiciuleviciute R, Ramanaviciene A, Kvederas G, Bernotiene E. Menstrual Blood-Derived Stem Cell Paracrine Factors Possess Stimulatory Effects on Chondrogenesis In Vitro and Diminish the Degradation of Articular Cartilage during Osteoarthritis. Bioengineering (Basel) 2023; 10:1001. [PMID: 37760103 PMCID: PMC10525204 DOI: 10.3390/bioengineering10091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Articular cartilage is an avascular tissue with a limited capacity for self-regeneration, leading the tissue to osteoarthritis (OA). Mesenchymal stem cells (MSCs) are promising for cartilage tissue engineering, as they are capable of differentiating into chondrocyte-like cells and secreting a number of active molecules that are important for cartilage extracellular matrix (ECM) synthesis. The aim of this study was to evaluate the potential of easily accessible menstrual blood-derived MSC (MenSC) paracrine factors in stimulating bone marrow MSC (BMMSCs) chondrogenic differentiation and to investigate their role in protecting cartilage from degradation in vitro. MenSCs and BMMSCs chondrogenic differentiation was induced using four different growth factors: TGF-β3, activin A, BMP-2, and IGF-1. The chondrogenic differentiation of BMMSCs was stimulated in co-cultures with MenSCs and cartilage explants co-cultured with MenSCs for 21 days. The chondrogenic capacity of BMMSCs was analyzed by the secretion of four growth factors and cartilage oligomeric matrix protein, as well as the release and synthesis of cartilage ECM proteins, and chondrogenic gene expression in cartilage explants. Our results suggest that MenSCs stimulate chondrogenic response in BMMSCs by secreting activin A and TGF-β3 and may have protective effects on cartilage tissue ECM by decreasing the release of GAGs, most likely through the modulation of activin A related molecular pathway. In conclusion, paracrine factors secreted by MenSCs may turn out to be a promising therapeutical approach for cartilage tissue protection and repair.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Paulina Bialaglovyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Ignas Lebedis
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania;
- NanoTechnas—Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Giedrius Kvederas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, VilniusTech, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
6
|
Jain M, Mladova E, Shichanina A, Kirillova K, Povarova A, Scherbakova L, Samokhodskaya L, Panina O. Microbiological and Cytokine Profiling of Menstrual Blood for the Assessment of Endometrial Receptivity: A Pilot Study. Biomedicines 2023; 11:biomedicines11051284. [PMID: 37238954 DOI: 10.3390/biomedicines11051284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Endometrial receptivity (ER) is a key factor required for the successful implantation of the embryo. However, the evaluation of ER is challenging, as a nondisruptive sampling of endometrial biomaterial by conventional methods is only possible outside of the embryo transfer (ET) cycle. We propose a novel approach for the assessment of ER-microbiological and cytokine profiling of menstrual blood aspirated directly from the uterine cavity at the beginning of the cryo-ET cycle. The aim of the pilot study was to evaluate its prognostic potential regarding the outcome of the in vitro fertilization procedure. Samples collected from a cohort of 42 patients undergoing cryo-ET were analyzed by a multiplex immunoassay (48 various cytokines, chemokines, and growth factors) and a real-time PCR assay (28 relevant microbial taxa and 3 members of the Herpesviridae family). Significant differences between groups of patients who achieved and did not achieve pregnancy were observed for G-CSF, GRO-α, IL-6, IL-9, MCP-1, M-CSF, SDF-1α, TNF-β, TRAIL, SCF, IP-10, and MIG (p < 0.05), whereas microbial profiles were not associated with the outcome of cryo-ET. It appeared that levels of IP-10 and SCGF-β were significantly lower (p < 0.05), in patients with endometriosis. Menstrual blood may provide great opportunities to noninvasively investigate various parameters of the endometrium.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Mladova
- Institute of Reproductive Medicine "REMEDI", 123100 Moscow, Russia
| | - Anna Shichanina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Karina Kirillova
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Povarova
- Institute of Reproductive Medicine "REMEDI", 123100 Moscow, Russia
| | - Liya Scherbakova
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga Panina
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
The Emerging Role of Menstrual-Blood-Derived Stem Cells in Endometriosis. Biomedicines 2022; 11:biomedicines11010039. [PMID: 36672546 PMCID: PMC9856091 DOI: 10.3390/biomedicines11010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The human endometrium has a complex cellular composition that is capable of promoting cyclic regeneration, where endometrial stem cells play a critical role. Menstrual blood-derived stem cells (MenSC) were first discovered in 2007 and described as exhibiting mesenchymal stem cell properties, setting them in the spotlight for endometriosis research. The stem cell theory for endometriosis pathogenesis, supported by the consensual mechanism of retrograde menstruation, highlights the recognized importance that MenSC have gained by potentially being directly related to the genesis, development and maintenance of ectopic endometriotic lesions. Meanwhile, the differences observed between MenSC in patients with endometriosis and in healthy women underlines the applicability of these cells as a putative biomarker for the early diagnosis of endometriosis, as well as for the development of targeted therapies. It is expected that in the near future MenSC will have the potential to change the way we manage this complex disease, once their long-term safety and effectiveness are assessed.
Collapse
|
8
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
9
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Fathi-Kazerooni M, Fattah-Ghazi S, Darzi M, Makarem J, Nasiri R, Salahshour F, Dehghan-Manshadi SA, Kazemnejad S. Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat severe COVID-19 patients: clinical trial phase I & II. Stem Cell Res Ther 2022; 13:96. [PMID: 35255966 PMCID: PMC8899458 DOI: 10.1186/s13287-022-02771-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cell-free Mesenchymal stromal cells (MSCs) have been considered due to their capacity to modulate the immune system and suppress cytokine storms caused by SARS-CoV-2. This prospective randomized double-blind placebo-controlled clinical trial aimed to assess the safety and efficacy of secretome derived from allogeneic menstrual blood stromal cells (MenSCs) as a treatment in patients with severe COVID-19. METHODS Patients with severe COVID-19 were randomized (1:1) to either MenSC-derived secretome treatment or the control group. Subjects received five intravenous infusions of 5 mL secretome or the same volume of placebo for five days and were monitored for safety and efficacy for 28 days after treatment. Adverse events, laboratory parameters, duration of hospitalization, clinical symptom improvement, dynamic of O2 saturation, lymphocyte number, and serial chest imaging were analyzed. RESULTS All safety endpoints were observed without adverse events after 72 h of secretome injection. Within 28 days after enrollment, 7 patients (50%) were intubated in the treated group versus 12 patients (80%) in the control group. Overall, 64% of patients had improved oxygen levels within 5 days of starting treatment (P < 0.0001) and there was a survival rate of 57% in the treatment group compared to 28% in the control group was (P < 0.0001). Laboratory values revealed that significant acute phase reactants declined, with mean C-reactive protein, ferritin, and D-dimer reduction of 77% (P < 0.001), 43% (P < 0.001), and 42% (P < 0.05), respectively. Significant improvement in lymphopenia was associated with an increase in mean CD4+ and CD8+ lymphocyte counts of 20% (P = 0.06) and 15% (P < 0.05), respectively. Following treatment, percentage of pulmonary involvement showed a significant improvement in the secretome group (P < 0.0001). This improvement differed significantly between survivors and those who were dying (P < 0.005). CONCLUSIONS For the first time, this study demonstrated that in hospitalized patients with severe COVID-19, therapy with MenSCs-derived secretome leads to reversal of hypoxia, immune reconstitution, and downregulation of cytokine storm, with no adverse effects attributable to the treatment. Given these outcomes, it may be possible to use this type of treatment for serious inflammatory lung disease with a mechanism similar to COVID-19 in the future. However, it is necessary to evaluate the safety and efficacy of MenSCs-derived secretome therapy in clinical trials on a larger population of patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05019287. Registered 24AGUEST 2021, retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05019287 . IRCT, IRCT20180619040147N6. Registered 04/01/2021.
Collapse
Affiliation(s)
- Mina Fathi-Kazerooni
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samrand Fattah-Ghazi
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jalil Makarem
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Nasiri
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Faeze Salahshour
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.,Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Dehghan-Manshadi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|