1
|
Danieli MG, Antonelli E, Longhi E, Gangemi S, Allegra A. The role of microbiota and oxidative stress axis and the impact of intravenous immunoglobulin in systemic lupus erythematosus. Autoimmun Rev 2024; 23:103607. [PMID: 39187222 DOI: 10.1016/j.autrev.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 08/28/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation affecting various organs. This review discusses the role of oxidative stress and gut microbiota in the pathogenesis of SLE and evaluates the therapeutic potential of intravenous immunoglobulins (IVIg). Oxidative stress contributes to SLE by causing impairment in the function of mitochondria, resulting in reactive oxygen species production, which triggers autoantigenicity and proinflammatory cytokines. Gut microbiota also plays a significant role in SLE. Dysbiosis has been associated to disease's onset and progression. Moreover, dysbiosis exacerbates SLE symptoms and influences systemic immunity, leading to a breakdown in bacterial tolerance and an increase in inflammatory responses. High-dose IVIg has emerged as a promising treatment for refractory cases of SLE. The beneficial effects of IVIg are partly due to its antioxidant property, reducing oxidative stress markers and modulating the immune responses. Additionally, IVIg can normalize the gut flora, as demonstrated in a case of severe intestinal pseudo-obstruction. In summary, both oxidative stress and dysregulation of microbiota are pivotal in the pathogenesis of SLE. The use of IVIg may improve the disease's outcome. Future research should be directed to elucidating the precise mechanisms by which oxidative stress and microbiota are linked with autoimmunity in SLE in developing targeted therapies.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, 60126 Ancona, Italy; SOS Immunologia delle Malattie rare e dei Trapianti, AOU delle Marche, Ancona, Italy.
| | - Eleonora Antonelli
- Postgraduate School of Internal Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Eleonora Longhi
- Postgraduate School in Clinical Pathology and Clinical Biochemistry, Università G. D'Annunzio Chieti -Pescara, 66100 Chieti, Italy.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
2
|
Hisada R, Kono M. Potential therapies targeting metabolic pathways in systemic lupus erythematosus. Clin Immunol 2024; 263:110224. [PMID: 38648959 DOI: 10.1016/j.clim.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The pathophysiology of systemic lupus erythematosus (SLE) is multifactorial and involves alterations in metabolic pathways, including glycolysis, lipid metabolism, amino acid metabolism, and mitochondrial dysfunction. Increased glycolysis in SLE T cells, which is associated with elevated glucose transporter 1 expression, suggests targeting glucose transporters and hexokinase as potential treatments. Abnormalities in lipid metabolism, particularly in lipid rafts and enzymes, present new therapeutic targets. This review discusses how changes in glutaminolysis and tryptophan metabolism affect T-cell function, suggesting new therapeutic interventions, as well as mitochondrial dysfunction in SLE, which increases reactive oxygen species. The review also emphasizes that modulating metabolic pathways in immune cells is a promising approach for SLE treatment, and can facilitate personalized therapies based on individual metabolic profiles of patients with SLE. The review provides novel insights into strategies for managing SLE.
Collapse
Affiliation(s)
- Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
3
|
Ashique S, Mishra N, Garg A, Garg S, Farid A, Rai S, Gupta G, Dua K, Paudel KR, Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am J Med 2024:S0002-9343(24)00133-5. [PMID: 38485111 DOI: 10.1016/j.amjmed.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The world is currently grappling with the potentially life-threatening coronavirus disease 2019 (COVID-19), marking it as the most severe health crisis in the modern era. COVID-19 has led to a pandemic, with the World Health Organization (WHO) predicting that individuals with diabetes are at a higher risk of contracting the virus compared to the general population. This review aims to provide a practical summary of the long-term impacts of COVID-19 on patients with diabetes. Specifically, it focuses on the effects of SARS-CoV-2 on different types of diabetic patients, the associated mortality rate, the underlying mechanisms, related complications, and the role of vitamin D and zinc in therapeutic and preventive approaches. METHODS Relevant literature was identified through searches on PubMed, Web of Science, and Science Direct in English, up to April 2023. RESULTS COVID-19 can lead to distressing symptoms and pose a significant challenge for individuals living with diabetes. Older individuals and those with pre-existing conditions such as diabetes, coronary illness, and asthma are more susceptible to COVID-19 infection. Managing COVID-19 in individuals with diabetes presents challenges, as it not only complicates the fight against the infection but also potentially prolongs the recovery time. Moreover, the virus may thrive in individuals with high blood glucose levels. Various therapeutic approaches, including antidiabetic drugs, are available to help prevent COVID-19 in diabetic patients. CONCLUSIONS Diabetes increases the morbidity and mortality risk for patients with COVID-19. Efforts are globally underway to explore therapeutic interventions aimed at reducing the impact of diabetes on COVID-19.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh, India
| | - Ashish Garg
- Drug Delivery and Nanotechnology Laboratories, Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Kukrikheda, Barela, Jabalpur, Madhya Pradesh, India
| | - Sweta Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Shweta Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Gyan Vihar Marg, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Gajić M, Schröder-Heurich B, Mayer-Pickel K. Deciphering the immunological interactions: targeting preeclampsia with Hydroxychloroquine's biological mechanisms. Front Pharmacol 2024; 15:1298928. [PMID: 38375029 PMCID: PMC10875033 DOI: 10.3389/fphar.2024.1298928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Preeclampsia (PE) is a complex pregnancy-related disorder characterized by hypertension, followed by organ dysfunction and uteroplacental abnormalities. It remains a major cause of maternal and neonatal morbidity and mortality worldwide. Although the pathophysiology of PE has not been fully elucidated, a two-stage model has been proposed. In this model, a poorly perfused placenta releases various factors into the maternal circulation during the first stage, including pro-inflammatory cytokines, anti-angiogenic factors, and damage-associated molecular patterns into the maternal circulation. In the second stage, these factors lead to a systemic vascular dysfunction with consecutive clinical maternal and/or fetal manifestations. Despite advances in feto-maternal management, effective prophylactic and therapeutic options for PE are still lacking. Since termination of pregnancy is the only curative therapy, regardless of gestational age, new treatment/prophylactic options are urgently needed. Hydroxychloroquine (HCQ) is mainly used to treat malaria as well as certain autoimmune conditions such as systemic lupus and rheumatoid arthritis. The exact mechanism of action of HCQ is not fully understood, but several mechanisms of action have been proposed based on its pharmacological properties. Interestingly, many of them might counteract the proposed processes involved in the development of PE. Therefore, based on a literature review, we aimed to investigate the interrelated biological processes of HCQ and PE and to identify potential molecular targets in these processes.
Collapse
Affiliation(s)
- Maja Gajić
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
5
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
6
|
In 't Veld AE, Grievink HW, van der Plas JL, Eveleens Maarse BC, van Kraaij SJW, Woutman TD, Schoonakker M, Klarenbeek NB, de Kam ML, Kamerling IMC, Jansen MAA, Moerland M. Immunosuppression by hydroxychloroquine: mechanistic proof in in vitro experiments but limited systemic activity in a randomized placebo-controlled clinical pharmacology study. Immunol Res 2023; 71:617-627. [PMID: 36811819 PMCID: PMC9945836 DOI: 10.1007/s12026-023-09367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Based on its wide range of immunosuppressive properties, hydroxychloroquine (HCQ) is used for the treatment of several autoimmune diseases. Limited literature is available on the relationship between HCQ concentration and its immunosuppressive effect. To gain insight in this relationship, we performed in vitro experiments in human PBMCs and explored the effect of HCQ on T and B cell proliferation and Toll-like receptor (TLR)3/TLR7/TLR9/RIG-I-induced cytokine production. In a placebo-controlled clinical study, these same endpoints were evaluated in healthy volunteers that were treated with a cumulative dose of 2400 mg HCQ over 5 days. In vitro, HCQ inhibited TLR responses with IC50s > 100 ng/mL and reaching 100% inhibition. In the clinical study, maximal HCQ plasma concentrations ranged from 75 to 200 ng/mL. No ex vivo HCQ effects were found on RIG-I-mediated cytokine release, but there was significant suppression of TLR7 responses and mild suppression of TLR3 and TLR9 responses. Moreover, HCQ treatment did not affect B cell and T cell proliferation. These investigations show that HCQ has clear immunosuppressive effects on human PBMCs, but the effective concentrations exceed the circulating HCQ concentrations under conventional clinical use. Of note, based on HCQ's physicochemical properties, tissue drug concentrations may be higher, potentially resulting in significant local immunosuppression. This trial is registered in the International Clinical Trials Registry Platform (ICTRP) under study number NL8726.
Collapse
Affiliation(s)
- Aliede E In 't Veld
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrika W Grievink
- Centre for Human Drug Research, Leiden, The Netherlands
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan L van der Plas
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.
- Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
7
|
Wu Q, Ross AJ, Ipek T, Thompson GH, Johnson RD, Wu C, Camelliti P. Hydroxychloroquine and azithromycin alter the contractility of living porcine heart slices. Front Pharmacol 2023; 14:1127388. [PMID: 37214466 PMCID: PMC10196358 DOI: 10.3389/fphar.2023.1127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The cardiotoxicity risk of hydroxychloroquine (HCQ) and azithromycin (AZM) has been the subject of intensive research triggered by safety concerns in COVID-19 patients. HCQ and AZM have been associated with QT interval prolongation and drug-induced arrhythmias, however other cardiotoxicity mechanisms remain largely unexplored. Our group has pioneered the living heart slice preparation, an ex-vivo platform that maintains native cardiac tissue architecture and physiological electrical and contractile properties. Here, we evaluated the cardiotoxic effect of HCQ and AZM applied alone or in combination on cardiac contractility by measuring contractile force and contraction kinetics in heart slices prepared from porcine hearts. Our results show that clinically relevant concentrations of HCQ monotherapy (1-10 µM) reduced contractile force and contraction kinetics in porcine slices in a dose-dependent manner. However, AZM monotherapy decreased contractile force and contraction kinetics only at higher concentrations (30 µM). Combination of HCQ and AZM induced a dose-dependent effect similar to HCQ alone. Furthermore, pre-treating porcine heart slices with the L-type calcium channel agonist Bay K8644 prevented the effect of both drugs, while administration of Bay K8644 after drugs interventions largely reversed the effects, suggesting a mechanism involving inhibition of L-type calcium channels. These findings indicate that HCQ and AZM alter cardiac function beyond QT prolongation with significant contractile dysfunction in intact cardiac tissue. Our porcine heart slices provide a powerful platform to investigate mechanisms of drug cardiotoxicity.
Collapse
Affiliation(s)
- Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Abigail J. Ross
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tugce Ipek
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Georgina H. Thompson
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Robert D. Johnson
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
8
|
Zhao L, Hu X, Xiao F, Zhang X, Zhao L, Wang M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:929520. [PMID: 35958572 PMCID: PMC9358979 DOI: 10.3389/fimmu.2022.929520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid autoantibodies, increase type I interferon (IFN-α) levels, and immune cell hyperactivation are hallmarks of systemic lupus erythematosus (SLE). Notably, immune cell activation requires high level of cellular energy that is predominately generated by the mitochondria. Mitochondrial reactive oxygen species (mROS), the byproduct of mitochondrial energy generation, serves as an essential mediator to control the activation and differentiation of cells and regulate the antigenicity of oxidized nucleoids within the mitochondria. Recently, clinical trials on normalization of mitochondrial redox imbalance by mROS scavengers and those investigating the recovery of defective mitophagy have provided novel insights into SLE prophylaxis and therapy. However, the precise mechanism underlying the role of oxidative stress-related mitochondrial molecules in skewing the cell fate at the molecular level remains unclear. This review outlines distinctive mitochondrial functions and pathways that are involved in immune responses and systematically delineates how mitochondrial dysfunction contributes to SLE pathogenesis. In addition, we provide a comprehensive overview of damaged mitochondrial function and impaired metabolic pathways in adaptive and innate immune cells and lupus-induced organ tissues. Furthermore, we summarize the potential of current mitochondria-targeting drugs for SLE treatment. Developing novel therapeutic approaches to regulate mitochondrial oxidative stress is a promising endeavor in the search for effective treatments for systemic autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| |
Collapse
|
9
|
Jeong J, Choi YJ, Lee HK. The Role of Autophagy in the Function of CD4 + T Cells and the Development of Chronic Inflammatory Diseases. Front Pharmacol 2022; 13:860146. [PMID: 35392563 PMCID: PMC8981087 DOI: 10.3389/fphar.2022.860146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Uncontrolled acute inflammation progresses to persistent inflammation that leads to various chronic inflammatory diseases, including asthma, Crohn’s disease, rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus. CD4+ T cells are key immune cells that determine the development of these chronic inflammatory diseases. CD4+ T cells orchestrate adaptive immune responses by producing cytokines and effector molecules. These functional roles of T cells vary depending on the surrounding inflammatory or anatomical environment. Autophagy is an important process that can regulate the function of CD4+ T cells. By lysosomal degradation of cytoplasmic materials, autophagy mediates CD4+ T cell-mediated immune responses, including cytokine production, proliferation, and differentiation. Furthermore, through canonical processes involving autophagy machinery, autophagy also contributes to the development of chronic inflammatory diseases. Therefore, a targeted intervention of autophagy processes could be used to treat chronic inflammatory diseases. This review focuses on the role of autophagy via CD4+ T cells in the pathogenesis and treatment of such diseases. In particular, we explore the underlying mechanisms of autophagy in the regulation of CD4+ T cell metabolism, survival, development, proliferation, differentiation, and aging. Furthermore, we suggest that autophagy-mediated modulation of CD4+ T cells is a promising therapeutic target for treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|