1
|
Sun Y, Peng Y, Su Z, So KKH, Lu Q, Lyu M, Zuo J, Huang Y, Guan Z, Cheung KMC, Zheng Z, Zhang X, Leung VYL. Fibrocyte enrichment and myofibroblastic adaptation causes nucleus pulposus fibrosis and associates with disc degeneration severity. Bone Res 2025; 13:10. [PMID: 39828732 PMCID: PMC11743603 DOI: 10.1038/s41413-024-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 01/22/2025] Open
Abstract
Fibrotic remodeling of nucleus pulposus (NP) leads to structural and mechanical anomalies of intervertebral discs that prone to degeneration, leading to low back pain incidence and disability. Emergence of fibroblastic cells in disc degeneration has been reported, yet their nature and origin remain elusive. In this study, we performed an integrative analysis of multiple single-cell RNA sequencing datasets to interrogate the cellular heterogeneity and fibroblast-like entities in degenerative human NP specimens. We found that disc degeneration severity is associated with an enrichment of fibrocyte phenotype, characterized by CD45 and collagen I dual positivity, and expression of myofibroblast marker α-smooth muscle actin. Refined clustering and classification distinguished the fibrocyte-like populations as subtypes in the NP cells - and immunocytes-clusters, expressing disc degeneration markers HTRA1 and ANGPTL4 and genes related to response to TGF-β. In injury-induced mouse disc degeneration model, fibrocytes were found recruited into the NP undergoing fibrosis and adopted a myofibroblast phenotype. Depleting the fibrocytes in CD11b-DTR mice in which myeloid-derived lineages were ablated by diphtheria toxin could markedly attenuate fibrous modeling and myofibroblast formation in the NP of the degenerative discs, and prevent disc height loss and histomorphological abnormalities. Marker analysis supports that disc degeneration progression is dependent on a function of CD45+COL1A1+ and αSMA+ cells. Our findings reveal that myeloid-derived fibrocytes play a pivotal role in NP fibrosis and may therefore be a target for modifying disc degeneration and promoting its repair.
Collapse
Affiliation(s)
- Yi Sun
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zezhuo Su
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Kyle K H So
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiuji Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Maojiang Lyu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongcan Huang
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiping Guan
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaomin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Coquelet P, Da Cal S, El Hage G, Tastet O, Balthazard R, Chaumont H, Yuh SJ, Shedid D, Arbour N. Specific plasma biomarker signatures associated with patients undergoing surgery for back pain. Spine J 2025; 25:32-44. [PMID: 39276871 DOI: 10.1016/j.spinee.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) affects numerous people worldwide. The role of inflammation is increasingly recognized but remains incompletely resolved. Peripheral molecules could access neovascularized degenerated discs and contribute to the ongoing pathology. PURPOSE To assess a large array of plasma molecules in patients with IDD to identify biomarkers associated with specific spinal pathologies and prognostic biomarkers for the surgery outcome. DESIGN Prospective observational study combining clinical data and plasma measures. PATIENT SAMPLE Plasma samples were collected just before surgery. Extensive clinical data (age, sex, smoking status, Modic score, glomerular filtration rate, etc.) were extracted from clinical files from 83 patients with IDD undergoing spine surgery. OUTCOME MEASURES Recovery 2 months postsurgery as assessed by the treating neurosurgeon. METHODS Over 40 biological molecules were measured in patients' plasma using multiplex assays. Statistical analyses were performed to identify associations between biological and clinical characteristics (age, sex, Body Mass Index (BMI), smoking status, herniated disc, radiculopathy, myelopathy, stenosis, MODIC score, etc.) and plasma levels of biological molecules. RESULTS Plasma levels of Neurofilament Light chain (NfL) were significantly elevated in patients with myelopathy and spinal stenosis compared to herniated disc. Plasma levels of C- reactive protein (CRP), Neurofilament Light chain (NfL), and Serum Amyloid A (SAA) were negatively associated, while CCL22 levels were positively associated with an efficient recovery 2 months postsurgery. CONCLUSIONS Our results show that CRP and CCL22 plasma levels combined with the age of the IDD patient can predict the 2-month postsurgery recovery (Area Under the Curve [AUC]=0.883). Moreover, NfL could become a valuable monitoring tool for patients with spinal cord injuries.
Collapse
Affiliation(s)
- Perrine Coquelet
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Gilles El Hage
- Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Hugo Chaumont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sung-Joo Yuh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Shedid
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
3
|
Gu H, Li Q, Liu Z, Li Y, Liu K, Kong X, Zhang Y, Meng Q, Song K, Xie Q, Gao Y, Cheng L. SPP1-ITGα5/β1 Accelerates Calcification of Nucleus Pulposus Cells by Inhibiting Mitophagy via Ubiquitin-Dependent PINK1/PARKIN Pathway Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411162. [PMID: 39721032 DOI: 10.1002/advs.202411162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition. Here, a novel function of SPP1 is reported, namely that it can aggravate nucleus pulposus cells (NPs) degeneration by negatively regulating extracellular matrix homeostasis. The degenerated NPs have a higher mineralization potential, which is achieved by SPP1. Mechanistically, SPP1 can accelerate the degeneration of nucleus pulposus cells by activating integrin α5β1 (ITGα5/β1), aggravating mitochondrial damage and inhibiting mitophagy. SPP1-ITGα5/β1 axis inhibits mitophagy by PINK1/PARKIN pathway blockade. In conclusion, SPP1 activates ITGα5/β1 to inhibit mitophagy, accelerates NPs degeneration, and induces calcification, thereby leading to intervertebral disc degeneration (IVDD) and calcification, identifying the potentially unknown mechanism and relationship between IVDD and calcification. Important insights are provided into the role of SPP1 in nucleus pulposus calcification in IVDD by inducing nucleus pulposus cell senescence through inhibition of mitophagy and may help develop potential new strategies for IVDD treatment.
Collapse
Affiliation(s)
- Hanwen Gu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhenchuan Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yanlin Li
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kaiwen Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiangzhen Kong
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuanqiang Zhang
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qunbo Meng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kangle Song
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qing Xie
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuan Gao
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lei Cheng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Tao C, Lin S, Shi Y, Gong W, Chen M, Li J, Zhang P, Yao Q, Qian D, Ling Z, Xiao G. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine 2024; 7:e70006. [PMID: 39391171 PMCID: PMC11461905 DOI: 10.1002/jsp2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and μCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Chu Tao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Yujia Shi
- School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Jianglong Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Orthopaedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Dongyang Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
5
|
Zhan J, Cui Y, Zhang P, Du Y, Hecker P, Zhou S, Liang Y, Zhang W, Jin Z, Wang Y, Gao W, Moroz O, Zhu L, Zhang X, Zhao K. Cartilage Endplate-Targeted Engineered Exosome Releasing and Acid Neutralizing Hydrogel Reverses Intervertebral Disc Degeneration. Adv Healthc Mater 2024:e2403315. [PMID: 39555665 DOI: 10.1002/adhm.202403315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ping Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuxuan Du
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Prisca Hecker
- Department of Cognitive Science, University of California, La Jolla, San Diego, California, 92093, USA
| | - Shuaiqi Zhou
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yupeng Liang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weiye Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Zhefeng Jin
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuan Wang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weihang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Oleksandr Moroz
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiaoguang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ke Zhao
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| |
Collapse
|
6
|
Zhao Y, Mu Y, Zou Y, Lei X, Ji R, Wei B, Wei T, Lu T, He Z, Wang X, Li W, Gao B. Integrated analysis of single-cell transcriptome and structural biology approach reveals the dynamics changes of NP subtypes and roles of Menaquinone in attenuating intervertebral disc degeneration. J Biomol Struct Dyn 2024; 42:9439-9462. [PMID: 37902557 DOI: 10.1080/07391102.2023.2275172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 10/31/2023]
Abstract
Intervertebral disc degeneration (IDD) is a progressive and chronic disease, the mechanisms have been studied extensively as a whole, while the cellular heterogeneity of cells in nucleus pulposus (NP) tissues remained controversial for a long time. This study conducted integrated analysis through single-cell sequencing analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis, to systematically decipher the longitudinal alterations of distinct NP subtypes, and also analyzed the most essential genes in the development of IDD. Then, this study further conducted structural biology method to discover the potential lead compounds through a suite of advanced approaches like high-throughput screening (HTVS), pharmaceutical characteristics assessment, CDOCKER module as well as molecular dynamics simulation, etc., aiming to ameliorate the progression of IDD. Totally 5 NP subpopulations were identified with distinct biological functions based on their unique gene expression patterns. The predominant dynamics changes mainly involved RegNPs and EffNPs, the RegNPs were mainly aggregated in normal NP tissues and drastically decreased in degenerative NP, while EffNPs, as pathogenic subtype, exhibited opposite phenomenon. Importantly, this study further reported the essential roles of Menaquinone in alleviating degenerative NP cells for the first time, which could provide solid evidence for the application of nutritional therapy in the treatment of IDD. This study combined scRNA-seq, bulk-RNA seq and HTVS techniques to systematically decipher the longitudinal changes of NP subtypes during IDD. EffNPs were considered to be 'chief culprit' in IDD progression, while the novel natural drug Menaquinone could reverse this phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yujia Zou
- China-Japan Union Hospital, Jilin University, Jilin, China
- Department of Cardiology, Xinhua Hospital Affiliated to School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xin Lei
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Rui Ji
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bingqian Wei
- Basic Medical College, Air Force Medical University, Xi'an, China
| | - Tianyu Wei
- Basic Medical College, Air Force Medical University, Xi'an, China
| | - Tianxing Lu
- Zonglian College, Xi'an Jiaotong University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Xinhui Wang
- Department of Oncology, The Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
7
|
Zhang TL, Chen WK, Huang XP, Zheng BW, Wu PF, Zheng BY, Jiang LX, Escobar D, Li J, Lv GH, Huang W, Zhou H, Xu Z, Zou MX. Single-cell RNA sequencing reveals the MIF/ACKR3 receptor-ligand interaction between neutrophils and nucleus pulposus cells in intervertebral disc degeneration. Transl Res 2024; 272:1-18. [PMID: 38823438 DOI: 10.1016/j.trsl.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES To unravel the heterogeneity and function of microenvironmental neutrophils during intervertebral disc degeneration (IDD). METHODS Single-cell RNA sequencing (scRNA-seq) was utilized to dissect the cellular landscape of neutrophils in intervertebral disc (IVD) tissues and their crosstalk with nucleus pulposus cells (NPCs). The expression levels of macrophage migration inhibitory factor (MIF) and ACKR3 in IVD tissues were detected. The MIF/ACKR3 axis was identified and its effects on IDD were investigated in vitro and in vivo. RESULTS We sequenced here 71520 single cells from 5 control and 9 degenerated IVD samples using scRNA-seq. We identified a unique cluster of neutrophils abundant in degenerated IVD tissues that highly expressed MIF and was functionally enriched in extracellular matrix organization (ECMO). Cell-to-cell communication analyses showed that this ECMO-neutrophil subpopulation was closely interacted with an effector NPCs subtype, which displayed high expression of ACKR3. Further analyses revealed that MIF was positively correlated with ACKR3 and functioned via directly binding to ACKR3 on effector NPCs. MIF inhibition attenuated degenerative changes of NPCs and extracellular matrix, which could be partially reversed by ACKR3 overexpression. Clinically, a significant correlation of high MIF/ACKR3 expression with advanced IDD grade was observed. Furthermore, we also found a positive association between MIF+ ECMO-neutrophil counts and ACKR3+ effector NPCs density as well as higher expression of the MIF/ACKR3 signaling in areas where these two cell types were neighbors. CONCLUSIONS These data suggest that ECMO-neutrophil promotes IDD progression by their communication with NPCs via the MIF/ACKR3 axis, which may shed light on therapeutic strategies.
Collapse
Affiliation(s)
- Tao-Lan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wen-Kang Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xian-Peng Huang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bo-Wen Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Peng-Fei Wu
- Department of Genetics and Endocrinology, National Children's Medical Center for South Central Region, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Bo-Yv Zheng
- Department of Orthopedics Surgery, General Hospital of the Central Theater Command, Wuhan 430061, China
| | - Ling-Xiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202 USA
| | - David Escobar
- Department of Cancer Biology, University of Toledo, College of Medicine & Life Sciences, Toledo, Ohio 43614, USA
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Health Management Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhun Xu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
9
|
Liu P, Ren X, Zhang B, Guo S, Fu Q. Investigating the characteristics of mild intervertebral disc degeneration at various age stages using single-cell genomics. Front Cell Dev Biol 2024; 12:1409287. [PMID: 39015652 PMCID: PMC11250600 DOI: 10.3389/fcell.2024.1409287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction: Intervertebral disc degeneration often occurs in the elderly population, but in recent years, there has been an increasing incidence of disc degeneration in younger individuals, primarily with mild degeneration. Methods: In order to explore the underlying mechanisms of disc degeneration in both young and aging individuals, we collected four types of nucleus pulposus (NP) single-cell sequencing samples for analysis based on Pfirrmann grading: normal-young (NY) (Grade I), normal-old (NO) (Grade I), mild degenerative-young (MY) (Grade II-III), and mild degenerative-old (MO) (Grade II-III). Results: We found that most NP cells in NO and MY samples exhibited oxidative stress, which may be important pathogenic factors in NO and MY groups. On the other hand, NP cells in MO group exhibited endoplasmic reticulum stress. In terms of inflammation, myeloid cells were mainly present in the degenerative group, with the MY group showing a stronger immune response compared to the MO group. Interestingly, dendritic cells in the myeloid lineage played a critical role in the process of mild degeneration. Discussion: Our study investigated the molecular mechanisms of intervertebral disc degeneration from an age perspective, providing insights for improving treatment strategies for patients with disc degeneration at different age groups.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Beiting Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Song Guo
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Penolazzi L, Chierici A, Notarangelo MP, Dallan B, Lisignoli G, Lambertini E, Greco P, Piva R, Nastruzzi C. Wharton's jelly-derived multifunctional hydrogels: New tools to promote intervertebral disc regeneration in vitro and ex vivo. J Biomed Mater Res A 2024; 112:973-987. [PMID: 38308554 DOI: 10.1002/jbm.a.37683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Chierici
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Obstetrics and Gynecology Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Xie H, Lu F, Li X, Wang E, Mo J, Liang W. Silencing of secreted phosphoprotein 1 attenuates sciatic nerve injury-induced neuropathic pain: Regulating extracellular signal-regulated kinase and neuroinflammatory signaling pathways. Immun Inflamm Dis 2024; 12:e1132. [PMID: 38415922 PMCID: PMC10836034 DOI: 10.1002/iid3.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a chronic pathological pain that affects the quality of life and is a huge medical burden for affected patients. In this study, we aimed to explore the effects of secreted phosphoprotein 1 (SPP1) on NP. METHODS We established a chronic constriction injury (CCI) rat model, knocked down SPP1 via an intrathecal injection, and/or activated the extracellular signal-regulated kinase (ERK) pathway with insulin-like growth factor 1 (IGF-1) treatment. Pain behaviors, including paw withdrawal threshold (PWT), paw withdrawal latency (PWL), lifting number, and frequency, were assessed. After sacrificing rats, the L4-L5 dorsal root ganglion was collected. Then, SPP1 levels were determined using quantitative polymerase chain reaction (qPCR) and western blot analysis. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were determined using qPCR and enzyme-linked immunosorbent assay. The levels of ERK pathway factors were determined via western blot analysis. RESULTS We found that CCI decreased PWT and PWL, increased the lifting number and frequency, and upregulated SPP1 levels. The loss of SPP1 reversed these CCI-induced effects. Additionally, CCI upregulated IL-1β, TNF-α, IL-6, EGF, and VEGF levels, downregulated TGF-β levels, and activated the ERK pathway, while silencing of SPP1 abrogated these CCI-induced effects. Moreover, IGF-1 treatment reversed the effects of SPP1 loss. CONCLUSIONS The data indicate that silencing SPP1 attenuates NP via inactivation of the ERK pathway, suggesting that SPP1 may be a promising target for NP treatment.
Collapse
Affiliation(s)
- Haiyu Xie
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Feng Lu
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Xiaoling Li
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Enfu Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Jiao Mo
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| |
Collapse
|
12
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Embersics C, Bannasch D, Batcher K, Boudreau EC, Church M, Miller A, Platt S, Koehler J, Olby N, Rossmeisl J, Rissi D, Grahn R, Donner J, Dickinson PJ. Association of the FGF4L2 retrogene with fibrocartilaginous embolic myelopathy in dogs. J Vet Intern Med 2024; 38:258-267. [PMID: 37916855 PMCID: PMC10800192 DOI: 10.1111/jvim.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Fibrocartilaginous embolic myelopathy (FCE) is a well-documented condition in dogs although rarely reported in chondrodystrophic breeds. Genetic associations have not been defined. OBJECTIVES Define the association of the chondrodystrophy-associated FGF4L2 retrogene with histopathologically confirmed cases of FCE. ANIMALS Ninety-eight dogs with a histopathologic diagnosis of FCE. METHODS Retrospective multicenter study. Dogs were genotyped for the FGF4L2 and FGF4L1 retrogenes using DNA extracted from formalin-fixed, paraffin-embedded tissue. Associations between breed, FCE and retrogene status were investigated with reference to a hospital population and known breed and general population allele frequencies. RESULTS FGF4L2 genotype was defined in 89 FCE cases. Fibrocartilaginous embolic myelopathy was present in 22 dogs from FGF4L2-segregating breeds with allele frequencies of ≥5%; however, all dogs were wild type. Two Labrador retrievers with FCE carried FGF4L2 alleles. Frequency of the FGF4L2 allele was significantly (P < .001) and negatively associated with FCE relative to predicted hospital-population dogs. FCE was overrepresented in Boxer, Great Dane, Yorkshire Terrier, Bernese Mountain Dog, Miniature Schnauzer, Rottweiler, and Shetland Sheepdog breeds. CONCLUSIONS AND CLINICAL IMPORTANCE Study data based on genotypically and histopathologically defined cases support the historical observation that FCE is uncommon in chondrodystrophic dog breeds. FGF4 plays an important role in angiogenesis and vascular integrity; anatomical studies comparing chondrodystrophic and non-chondrodystrophic dogs might provide insight into the pathogenesis of FCE.
Collapse
Affiliation(s)
- Colleen Embersics
- Veterinary Medical Teaching Hospital, UC Davis School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Danika Bannasch
- Department of Population Health and ReproductionUniversity of California, DavisDavisCaliforniaUSA
| | - Kevin Batcher
- Department of Population Health and ReproductionUniversity of California, DavisDavisCaliforniaUSA
| | - Elizabeth C. Boudreau
- Department of Small Animal Clinical SciencesTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Molly Church
- Department of PathobiologyUniversity of Pennsylvania, School of Veterinary MedicinePhiladelphiaPennsylvaniaUSA
| | - Andrew Miller
- Department of Biomedical SciencesCornell University College of Veterinary MedicineIthicaNew YorkUSA
| | | | - Jey Koehler
- Department of PathobiologyAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Natasha Olby
- Department of Clinical SciencesNorth Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - John Rossmeisl
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Daniel Rissi
- Department of PathologyUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Robert Grahn
- Veterinary Genetics LaboratoryUniversity of California, DavisDavisCaliforniaUSA
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom PanelHelsinkiFinland
| | - Peter J. Dickinson
- Department of Surgical and Radiological SciencesUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
14
|
Chen K, Tian Z, Wang H, Qin L, Enomoto-Iwamoto M, Zhang Y. Gene Expression Profiles Perturbed by Injury to the Mouse Intervertebral Disc. Am J Phys Med Rehabil 2024; 104:45-50. [PMID: 38984547 PMCID: PMC11647451 DOI: 10.1097/phm.0000000000002541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
OBJECTIVES Back pain subsequent to intervertebral disc injury is a common clinical problem. Previous work examining early molecular changes post injury mainly used a candidate marker approach. In this study, gene expression in the injured and intact mouse tail intervertebral discs was determined with a nonbiased whole transcriptome approach. DESIGN Mouse tail intervertebral disc injury was induced by a needle puncture. Whole murine transcriptome was determined by RNASeq. Transcriptomes of injured intervertebral discs were compared with those of intact controls by bioinformatic methods. RESULTS Among the 18,078 murine genes examined, 592 genes were differentially expressed ( P.adj < 0.01). Novel genes upregulated in injured compared with intact intervertebral discs included Chl1, Lum , etc. Ontology study of upregulated genes revealed that leukocyte migration was the most enriched biological process, and network analysis showed that Tnfa had the most protein-protein interactions. Novel downregulated genes in the injured intervertebral discs included 4833412C05Rik , Myoc , etc . The most enriched downregulated pathways were related to cytoskeletal organization. CONCLUSIONS Novel genes highly regulated after disc injury were identified with an unbiased approach; they may serve as biomarkers of injury and response to treatments in future experiments. Enriched biological pathways and molecules with high numbers of connections may be targets for treatments after injury.
Collapse
Affiliation(s)
- Ken Chen
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
- Department of Orthopedics, Xiangya Hospital, Central South
University, Changsha, Hunan, P.R. China 410008
| | - Zuozhen Tian
- Department of Physical Medicine & Rehabilitation,
University of Pennsylvania, Philadelphia, PA, 19146
| | - Huan Wang
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
- Department of Orthopedics, Xiangya Hospital, Central South
University, Changsha, Hunan, P.R. China 410008
| | - Ling Qin
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
| | - Motomi Enomoto-Iwamoto
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201
| | - Yejia Zhang
- Department of Physical Medicine & Rehabilitation,
University of Pennsylvania, Philadelphia, PA, 19146
- Section of Rehabilitation Medicine, Corporal Michael J.
Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 10104
| |
Collapse
|