1
|
Golden TN, Garifallou JP, Conine CC, Simmons RA. The effect of intrauterine growth restriction on the developing pancreatic immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613902. [PMID: 39386426 PMCID: PMC11463653 DOI: 10.1101/2024.09.19.613902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Immune cells in the pancreas are known to participate in organ development. However, the resident pancreatic immune system has yet to be fully defined. Immune cells also play a role in pathology and are implicated in diseases such as diabetes induced by intrauterine growth restriction (IUGR). We hypothesized that the resident immune system is established during neonatal development and disrupted by IUGR. Using single cell RNAseq and flow cytometry we identified many immune cell populations in the near-term fetus (at embryologic day 22) and neonatal (postnatal day 1, 7, &14) islets, non-endocrine pancreas, and the spleen in the rat. Using flow cytometry, we observed the resident immune system is established during neonatal development in the pancreas and spleen. We identified 9 distinct immune populations in the pancreatic islets and 8 distinct immune populations in the spleen by single cell RNAseq. There were no sex-specific differences in the relative proportion of immune cells in the pancreas or spleen. Finally, we tested if IUGR disrupted the neonatal immune system using bilateral uterine artery ligation. We found significant changes to the percentage of CD11B+ HIS48- and CD8+ T cells in the islets and non-endocrine pancreas and in the spleen. IUGR-induced alterations were influenced by the tissue environment and the sex of the offspring. Future research to define the role of these immune cells in pancreatic development may identify disrupted pathways that contribute to the development of diabetes following IUGR.
Collapse
Affiliation(s)
- Thea N. Golden
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania
- Center for Women’s Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | - Colin C. Conine
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania
- Center for Women’s Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Neonatology, Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, USA
- Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, USA
- Department of Genetics-Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, USA
| | - Rebecca A. Simmons
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania
- Center for Women’s Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Neonatology, Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, USA
| |
Collapse
|
2
|
Xu HK, Liu JX, Zhou ZK, Zheng CX, Sui BD, Yuan Y, Kong L, Jin Y, Chen J. Osteoporosis under psychological stress: mechanisms and therapeutics. LIFE MEDICINE 2024; 3:lnae009. [PMID: 39872391 PMCID: PMC11749647 DOI: 10.1093/lifemedi/lnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 01/30/2025]
Abstract
Psychological stress has been associated with the onset of several diseases, including osteoporosis. However, the underlying pathogenic mechanism remains unknown, and effective therapeutic strategies are still unavailable. Growing evidence suggests that the sympathetic nervous system regulates bone homeostasis and vascular function under psychological stress, as well as the coupling of osteogenesis and angiogenesis in bone development, remodeling, and regeneration. Furthermore, extracellular vesicles (EVs), particularly mesenchymal stem cell extracellular vesicles (MSC-EVs), have emerged as prospecting therapies for stimulating angiogenesis and bone regeneration. We summarize the role of sympathetic regulation in bone homeostasis and vascular function in response to psychological stress and emphasize the relationship between vessels and bone. Finally, we suggest using MSC-EVs as a promising therapeutic method for treating osteoporosis in psychological stress.
Collapse
Affiliation(s)
- Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ze-Kai Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Exercise Immunology Center, Wuhan Sports University, Wuhan 430079, China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
3
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
4
|
Racine JJ, Chapman HD, Doty R, Cairns BM, Hines TJ, Tadenev ALD, Anderson LC, Green T, Dyer ME, Wotton JM, Bichler Z, White JK, Ettinger R, Burgess RW, Serreze DV. T Cells from NOD- PerIg Mice Target Both Pancreatic and Neuronal Tissue. THE JOURNAL OF IMMUNOLOGY 2020; 205:2026-2038. [PMID: 32938729 DOI: 10.4049/jimmunol.2000114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022]
Abstract
It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zoë Bichler
- The Jackson Laboratory, Bar Harbor, ME 04609
| | | | - Rachel Ettinger
- Viela Bio, Gaithersburg, MD 20878; and.,Respiratory, Inflammation, and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878
| | | | | |
Collapse
|
5
|
Fernández-Cabezudo MJ, George JA, Bashir G, Mohamed YA, Al-Mansori A, Qureshi MM, Lorke DE, Petroianu G, Al-Ramadi BK. Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes. Front Immunol 2019; 10:1038. [PMID: 31156627 PMCID: PMC6529936 DOI: 10.3389/fimmu.2019.01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Type I diabetes (T1D) is a T cell-driven autoimmune disease that results in the killing of pancreatic β-cells and, consequently, loss of insulin production. Using the multiple low-dose streptozotocin (MLD-STZ) model of experimental autoimmune diabetes, we previously reported that pretreatment with a specific acetylcholinesterase inhibitor (AChEI), paraoxon, prevented the development of hyperglycemia in C57BL/6 mice. This correlated with an inhibition of T cell infiltration into the pancreatic islets and a reduction in pro-inflammatory cytokines. The cholinergic anti-inflammatory pathway utilizes nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs, respectively) expressed on a variety of cell types. In this study, we carried out a comparative analysis of the effect of specific antagonists of nAChRs or mAChRs on the development of autoimmune diabetes. Co-administration of mecamylamine, a non-selective antagonist of nAChRs maintained the protective effect of AChEI on the development of hyperglycemia. In contrast, co-administration of atropine, a non-selective antagonist of mAChRs, mitigated AChEI-mediated protection. Mice pretreated with mecamylamine had an improved response in glucose tolerance test (GTT) than mice pretreated with atropine. These differential effects of nAChR and mAChR antagonists correlated with the extent of islet cell infiltration and with the structure and functionality of the β-cells. Taken together, our data suggest that mAChRs are essential for the protective effect of cholinergic stimulation in autoimmune diabetes.
Collapse
Affiliation(s)
- Maria J Fernández-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Junu A George
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alreem Al-Mansori
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed M Qureshi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Dietrich E Lorke
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Georg Petroianu
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Gupta D, Lacayo AA, Greene SM, Leahy JL, Jetton TL. β-Cell mass restoration by α7 nicotinic acetylcholine receptor activation. J Biol Chem 2018; 293:20295-20306. [PMID: 30397183 DOI: 10.1074/jbc.ra118.004617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although it is well-established how nutrients, growth factors, and hormones impact functional β-cell mass (BCM), the influence of the central nervous system in this regard, and especially in the context of islet immune modulation, has been understudied. Here we investigated the expression and activity of pancreatic islet α7 nicotinic acetylcholine receptor (α7nAChR) in islet anti-inflammatory and prosurvival signaling. Systemic administration of α7nAChR agonists in mice improved glucose tolerance and curtailed streptozotocin-induced hyperglycemia by retaining BCM, in part through maintaining Pdx1 and MafA expression and reducing apoptosis. α7nAChR activation of mouse islets ex vivo led to reduced inflammatory drive through a JAK2-STAT3 pathway that couples with CREB/Irs2/Akt survival signaling. Because the vagus nerve conveys anti-inflammatory signals to immune cells of the spleen and other nonneural tissues in the viscera by activating α7nAChR agonists, our study suggests a novel role for β-cell α7nAChR that functions to maintain β-cell survival and mass homeostasis through modulating islet cytokine and phosphatidylinositol 3-kinase-dependent signaling pathways. Exploiting these pathways may have therapeutic potential for the treatment of autoimmune diabetes.
Collapse
Affiliation(s)
- Dhananjay Gupta
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Adam A Lacayo
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Shane M Greene
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - John L Leahy
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Thomas L Jetton
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446.
| |
Collapse
|
7
|
Umholtz M, Nader ND. Anesthetic Immunomodulation of the Neuroinflammation in Postoperative Cognitive Dysfunction. Immunol Invest 2018; 46:805-815. [PMID: 29058541 DOI: 10.1080/08820139.2017.1373898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Postoperative delirium and cognitive dysfunction are phenomena that are associated with increases in morbidity, mortality, and resource utilization after surgery. This review scrutinized a number of studies in order to better characterize the biochemical basis for associated cognitive dysfunction and delirium, with particular focus paid to the interactions of the cholinergic system with innate immunity and how the modulation of the immune system contributes to associated neuroinflammation. Despite the clinical impact of postoperative cognitive dysfunction, evidence-based protocols for the prevention and treatment of these disorders are still lacking. Several previous trials have attempted to prevent or treat clinical manifestation by modulation of the cholinergic system with acetylcholinesterase inhibitors, the results of which have been largely ambiguous at best. As the biochemical basis of postoperative cognitive dysfunction becomes more clearly defined, future research into therapeutics based on immune modulation and treatment of neuroinflammation may prove to be very promising.
Collapse
Affiliation(s)
- Matthew Umholtz
- a Department of Anesthesiology , Brandon Regional Hospital , Tampa , FL
| | - Nader D Nader
- b Anesthesiology and Surgery, University at Buffalo , Buffalo , NY.,c Pathology and Anatomical Sciences, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
8
|
Jung N, Um J, Kim DY, Dubon MJ, Byeon Y, Kim D, Son Y, Park KS. Substance P preserves pancreatic β-cells in streptozotocin-induced type 1 diabetic mice. Biochem Biophys Res Commun 2017; 491:958-965. [PMID: 28754588 DOI: 10.1016/j.bbrc.2017.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
Preservation of the pancreatic β-cell population is required for the development of therapies for diabetes, which is caused by a decrease in β-cells. Here, we demonstrate the antidiabetic effects of substance P (SP) in type 1 diabetes (T1D) mice induced with streptozotocin. SP enhanced the compensatory proliferation of β-cells in order to restore β-cells in response to acute injury induced by a single high-dose of streptozotocin. However, SP affected neither the basal proliferation of β-cells nor their apoptosis. In vitro studies by using the INS-1 pancreatic β-cell line showed that SP mediated the increase in the proliferation of β-cells via the activation of Akt. Chronic systemic treatment with SP restored the mass of β-cells and inhibited insulitis in T1D mice induced with multiple low-doses of streptozotocin. Therefore, systemic treatment with SP may be a promising therapeutic strategy for treating diabetes in patients with loss of functional β-cells.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Insulin-Secreting Cells/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Pancreatitis/chemically induced
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Streptozocin/administration & dosage
- Structure-Activity Relationship
- Substance P/pharmacology
Collapse
Affiliation(s)
- Nunggum Jung
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Jihyun Um
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Do Yeon Kim
- St. Peter's Hospital and R&D Center, Cell & Bio Inc., Seoul 06286, South Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Yeji Byeon
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Dongjin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea.
| | - Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea; College of Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
9
|
Parekh PJ, Nayi VR, Johnson DA, Vinik AI. The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus. Front Endocrinol (Lausanne) 2016; 7:55. [PMID: 27375553 PMCID: PMC4896924 DOI: 10.3389/fendo.2016.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
The obesity epidemic has drastically impacted the state of health care in the United States. Paralleling this epidemic is the incidence of diabetes mellitus, with a notable shift toward a much younger age of onset. While central to the pathogenesis of diabetes associated with obesity is the role of inflammation attributed to "adiposopathy." Emerging data suggest that changes in sympathetic/parasympathetic balance regulated by the brain precede changes in the inflammatory cascade. It has now been established that the gut microflora contributes significantly to the activation and inhibition of autonomic control and impact the set of the neuroinflammatory inhibitory reflex mediated by the cholinergic nervous system. There has been a paradigm shift toward further investigating commensal bacteria in the pathogenesis of obesity and diabetes mellitus and its complications, as dysbiosis is thought to play a pivotal role in diabetic-associated disorders. This paper is intended to evaluate the role of intestinal dysbiosis in the pathogenesis of diabetes mellitus and examine the potential for restoration of balance via use of probiotics.
Collapse
Affiliation(s)
- Parth J. Parekh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tulane University, New Orleans, LA, USA
| | - Vipul R. Nayi
- Department of Internal Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A. Johnson
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Aaron I. Vinik
- Division of Endocrinology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
10
|
Patel A, Yamashita N, Ascaño M, Bodmer D, Boehm E, Bodkin-Clarke C, Ryu YK, Kuruvilla R. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun 2015; 6:10119. [PMID: 26658127 PMCID: PMC4682116 DOI: 10.1038/ncomms10119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Down syndrome is the most common chromosomal disorder affecting the nervous system in humans. To date, investigations of neural anomalies in Down syndrome have focused on the central nervous system, although dysfunction of the peripheral nervous system is a common manifestation. The molecular and cellular bases underlying peripheral abnormalities have remained undefined. Here, we report the developmental loss of sympathetic innervation in human Down syndrome organs and in a mouse model. We show that excess regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of the calcineurin phosphatase that is triplicated in Down syndrome, impairs neurotrophic support of sympathetic neurons by inhibiting endocytosis of the nerve growth factor (NGF) receptor, TrkA. Genetically correcting RCAN1 levels in Down syndrome mice markedly improves NGF-dependent receptor trafficking, neuronal survival and innervation. These results uncover a critical link between calcineurin signalling, impaired neurotrophin trafficking and neurodevelopmental deficits in the peripheral nervous system in Down syndrome.
Collapse
Affiliation(s)
- Ami Patel
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Maria Ascaño
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Daniel Bodmer
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Chantal Bodkin-Clarke
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Yun Kyoung Ryu
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400N. Charles Street, 224 Mudd Hall, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Benitez SU, Carneiro EM, de Oliveira ALR. Synaptic input changes to spinal cord motoneurons correlate with motor control impairments in a type 1 diabetes mellitus model. Brain Behav 2015; 5:e00372. [PMID: 26516607 PMCID: PMC4614060 DOI: 10.1002/brb3.372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/09/2015] [Accepted: 07/18/2015] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Hyperglycemia is the main cause of diabetic complications, contributing to a widespread degeneration of the nervous system. Nevertheless, the main focus has been the sensory neurons because of neuropathic pain, while the impairments associated with the spinal cord and motor deficits, mostly of those initiated at early stages of the disease, have been poorly investigated. In this way, the present study used the nonobese diabetic mouse model to evaluate the microenvironment around motoneurons at ventral horn of the spinal cord, following prolonged hyperglycemia. METHODS Adult female mice were divided into two groups: spontaneously diabetic (n = 33) and nondiabetic (n = 26). Mice were considered hyperglycemic when blood glucose surpassed 400 mg/dL. Following 2 weeks from that stage, part of the animals was euthanized and the lumbar intumescences were obtained and processed for immunohistochemistry and transmission electron microscopy. For immunohistochemistry, the antibodies used for integrated density of pixels quantification were anti-synaptophysin, anti-GFAP, and anti-Iba1. The functional analysis was monitored with the walking track test (CatWalk system) during 4 weeks. RESULTS The results revealed significant motor impairment in diabetic animals in comparison to the control group. Such loss of motor control correlated with a significant reduction in presynaptic terminals apposed to the motoneurons. Nevertheless, there were no significant changes in glial reaction in the spinal cord. CONCLUSION Overall, the results herein revealed central nervous system changes at early stages of the disease that may in turn contribute to the motor deficit. Such changes open a new window of investigation in early stages of diabetes to better comprehend motor impairment as a long-term complication of the disease.
Collapse
Affiliation(s)
- Suzana Ulian Benitez
- Department of Structural and Functional Biology Institute of Biology State University of Campinas 13083-970 Campinas Sao Paulo Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology Institute of Biology State University of Campinas 13083-970 Campinas Sao Paulo Brazil
| | | |
Collapse
|
12
|
Houtz J, Kuruvilla R. VIP pipes up: neuronal signals direct tubulogenesis. Dev Cell 2014; 30:361-2. [PMID: 25158849 DOI: 10.1016/j.devcel.2014.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological tubes serve as the body's plumbing system, transporting fluids and gases throughout secretory, circulatory, and respiratory organs. In this issue of Developmental Cell, Nedvetsky et al. (2014) find that vasoactive intestinal peptide (VIP), secreted by parasympathetic nerves, is a surprising player in directing epithelial tubulogenesis in salivary glands.
Collapse
Affiliation(s)
- Jessica Houtz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
Beumer W, Welzen-Coppens JMC, van Helden-Meeuwsen CG, Gibney SM, Drexhage HA, Versnel MA. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse. PLoS One 2014; 9:e103404. [PMID: 25166904 PMCID: PMC4148310 DOI: 10.1371/journal.pone.0103404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers) and the CD8α+ CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sinead M. Gibney
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Proshchina AE, Krivova YS, Barabanov VM, Saveliev SV. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas. Front Endocrinol (Lausanne) 2014; 5:57. [PMID: 24795697 PMCID: PMC4001005 DOI: 10.3389/fendo.2014.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/08/2014] [Indexed: 11/13/2022] Open
Abstract
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.
Collapse
Affiliation(s)
- Alexandra E. Proshchina
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
- *Correspondence: Alexandra E. Proshchina, Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Tsurupi Street 3, Moscow 117418, Russia e-mail:
| | - Yulia S. Krivova
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| | - Valeriy M. Barabanov
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| | - Sergey V. Saveliev
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| |
Collapse
|
15
|
Jansson L, Kampf C, Källskog Ö. Functional stimulation of graft nerves has minor effects on insulin release from transplanted rat pancreatic islets. Ups J Med Sci 2013; 118:209-16. [PMID: 23977866 PMCID: PMC4190888 DOI: 10.3109/03009734.2013.818601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Morphological evidence for reinnervation of pancreatic islet grafts is plentiful. However, to what extent intra-graft nerves influence the endocrine functions of the islet transplant is largely unknown. We therefore aimed to directly stimulate nerves leading to islet grafts with electrodes and measure insulin secretion in response to this. METHODS We implanted syngeneic islets under the renal capsule of rats, and examined them 1 or 7-9 months later. In anesthetized rats blood samples were collected from the renal vein and femoral artery, respectively, during electrode stimulation of the nerves leading to the islet grafts. RESULTS As expected, nerve stimulation decreased renal blood flow. However, serum insulin concentrations in samples derived from the renal vein or femoral artery changed in concert with one another, both during normoglycemia and acute hyperglycemia. CONCLUSION Reinnervation which occurs after islet transplantation under the renal capsule has minor effects on graft endocrine function.
Collapse
Affiliation(s)
- Leif Jansson
- 1Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Caroline Kampf
- 2Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Örjan Källskog
- 1Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig 2013; 4:4-18. [PMID: 23550085 PMCID: PMC3580884 DOI: 10.1111/jdi.12042] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022] Open
Abstract
One of the most overlooked of all serious complications of diabetes is cardiovascular autonomic neuropathy. There is now clear evidence that suggests activation of inflammatory cytokines in diabetic patients and that these correlate with abnormalities in sympathovagal balance. Dysfunction of the autonomic system predicts cardiovascular risk and sudden death in patients with type 2 diabetes. It also occurs in prediabetes, providing opportunities for early intervention. Simple tests that can be carried out at the bedside with real-time output of information - within the scope of the practicing physician - facilitate diagnosis and allow the application of sound strategies for management. The window of opportunity for aggressive control of all the traditional risk factors for cardiovascular events or sudden death with intensification of therapy is with short duration diabetes, the absence of cardiovascular disease and a history of severe hypoglycemic events. To this list we can now add autonomic dysfunction and neuropathy, which have become the most powerful predictors of risk for mortality. It seems prudent that practitioners should be encouraged to become familiar with this information and apply risk stratification in clinical practice. Several agents have become available for the correction of functional defects in the autonomic nervous system, and restoration of autonomic balance is now possible.
Collapse
Affiliation(s)
- Aaron I Vinik
- The Strelitz Diabetes Research Center and Neuroendocrine Unit, The Department of Medicine and Pathology/Anatomy/Neurobiology, Eastern Virginia Medical School Norfolk, Virginia, USA
| | | | | |
Collapse
|
17
|
Di Gialleonardo V, de Vries EFJ, Di Girolamo M, Quintero AM, Dierckx RAJO, Signore A. Imaging of β-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus. Endocr Rev 2012; 33:892-919. [PMID: 22889646 DOI: 10.1210/er.2011-1041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic β-cells, called insulitis, confirmed in pancreatic samples obtained at autopsy. The possibility to noninvasively quantify β-cell mass in vivo would provide important biological insights and facilitate aspects of diagnosis and therapy, including follow-up of islet cell transplantation. Moreover, the availability of a noninvasive tool to quantify the extent and severity of pancreatic insulitis could be useful for understanding the natural history of human insulin-dependent (type 1) diabetes mellitus, to early diagnose children at risk to develop overt diabetes, and to select patients to be treated with immunotherapies aimed at blocking the insulitis and monitoring the efficacy of these therapies. In this review, we outline the imaging techniques currently available for in vivo, noninvasive detection of β-cell mass and insulitis. These imaging techniques include magnetic resonance imaging, ultrasound, computed tomography, bioluminescence and fluorescence imaging, and the nuclear medicine techniques positron emission tomography and single-photon emission computed tomography. Several approaches and radiopharmaceuticals for imaging β-cells and lymphocytic insulitis are reviewed in detail.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 AB, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Bad bedfellows - autonomic dysfunction, inflammation, and diabetes! Are they related? How? Evidence suggests the activation of inflammatory cytokines like IL-6 and TNFα in newly diagnosed type 2 diabetes and that the inflammatory change correlates with abnormalities in sympathovagal balance. Dysfunction of the autonomic system predicts cardiovascular risk and sudden death in patients with type 2 diabetes. It occurs in prediabetes, providing opportunities for early intervention. The importance of recognizing autonomic dysfunction as a predictor of morbidity and mortality with intensification of treatment suggests that all patients with type 2 diabetes at onset, and those with type 1 diabetes after 5 years should be screened for autonomic imbalance. These tests can be performed at the bedside with real time output of information - within the scope of the practicing physician - facilitates diagnosis and allows the application of sound strategies for management. The window of opportunity for aggressive control of all the traditional risk factors for cardiovascular events or sudden death with intensification of therapy is with short duration diabetes, the absence of cardiovascular disease, and a history of severe hypoglycemic events. To this list we can now add autonomic dysfunction and neuropathy, which have become the most powerful predictors of risk for mortality. It seems prudent that practitioners should be encouraged to become familiar with this information and apply risk stratification in clinical practice. After all, how difficult is it to ask patients "do you have numb feet?" and to determine their heart rate variability - it could be lifesaving. Ultimately methods to reset the hypothalamus and the inflammatory cascade are needed if we are to impact the care of patients with this compendium of conditions.
Collapse
Affiliation(s)
- Aaron I Vinik
- Department of Medicine, Eastern Virginia Medical School, Strelitz Diabetes and Neuroendocrine Center, Division of Endocrinology and Metabolism Norfolk, VA, USA.
| |
Collapse
|
19
|
Proshchina AE, Savelyev SV, Barabanov VM, Krivova YS. Immunoreactivity of Neuron-Specific Enolase (NSE) in Human Pancreas in Health and Type 1. Bull Exp Biol Med 2010; 149:763-7. [DOI: 10.1007/s10517-010-1047-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Coulaud J, Durant S, Homo-Delarche F. Glucose homeostasis in pre-diabetic NOD and lymphocyte-deficient NOD/SCID mice during gestation. Rev Diabet Stud 2010; 7:36-46. [PMID: 20703437 DOI: 10.1900/rds.2010.7.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Unlike other strains, spontaneously type 1 non-obese diabetic (NOD) experience transient hyperinsulinemia after weaning. The same applies for NOD/SCID mice, which lack functional lymphocytes, and unlike NOD mice, do not develop insulitis and diabetes like NOD mice. AIMS Given that beta-cell stimulation is a natural feature of gestation, we hypothesized that glucose homeostasis is disturbed in gestate pre-diabetic NOD and non-diabetic NOD/SCID mice, which may accelerate the onset of diabetes and increase diabetes prevalence. METHODS During gestation and postpartum, mice were analyzed under basal feed conditions followed by glucose injection (1 g/kg, i.p.) after overnight fast, using glucose tolerance test (GTT). Glycemia, corticosteronemia, blood and pancreatic insulin, glucagon levels, islet size, and islet morphology were evaluated. Glycemia and mortality were assessed after successive gestations in NOD mice mated for the first time at 2 different ages. RESULTS 1. Basal glucagonemia rose markedly in first-gestation fed NOD mice. 2. beta-cell hyperactivity was present earlier in first-gestation non-diabetic fasted NOD and NOD/SCID mice than in age-matched C57BL/6 mice, assessed by increased insulin/glucose ratio after GTT. 3. Overnight fasting increased corticosteronemia rapidly and sharply in pre-diabetic gestate NOD and NOD/SCID mice. 4. Islet size increased in non-diabetic gestate NOD mice compared with C57BL/6 mice. 5. Successive gestations accelerated diabetes onset, and contributed to increased mortality in NOD mice. CONCLUSIONS First-gestation pre-diabetic NOD and non-diabetic NOD/SCID mice exhibited beta-cell hyperactivity and deregulation of glucagon and/or corticosterone secretion. This amplified normally occurring insulin resistance, further exhausted maternal beta-cells, and accelerated diabetes in NOD mice.
Collapse
Affiliation(s)
- Josiane Coulaud
- Laboratoire Biologie and Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative-EAC CNRS 4413, Université Paris-Diderot, Paris, France
| | | | | |
Collapse
|
21
|
Abstract
Inflammation can cause damage and even death. What controls this primitive and potentially lethal innate immune response to injury and infection? Molecular and neurophysiological studies during the past decade have revealed a pivotal answer: immunity is coordinated by neural circuits that operate reflexively. The afferent arc of the reflex consists of nerves that sense injury and infection. This activates efferent neural circuits, including the cholinergic anti-inflammatory pathway, that modulate immune responses and the progression of inflammatory diseases. It might be possible to develop therapeutics that target neural networks for the treatment of inflammatory disorders.
Collapse
|
22
|
Cabrera-Vásquez S, Navarro-Tableros V, Sánchez-Soto C, Gutiérrez-Ospina G, Hiriart M. Remodelling sympathetic innervation in rat pancreatic islets ontogeny. BMC DEVELOPMENTAL BIOLOGY 2009; 9:34. [PMID: 19534767 PMCID: PMC2711085 DOI: 10.1186/1471-213x-9-34] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/17/2009] [Indexed: 01/16/2023]
Abstract
Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0). Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.
Collapse
Affiliation(s)
- Siraam Cabrera-Vásquez
- Biophysics Department, Instituto de Fisiología Celular, Neuroscience, Universidad Nacional Autónoma de México, Mexico DF, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Carrillo J, Puertas MC, Planas R, Pastor X, Alba A, Stratmann T, Pujol-Borrell R, Ampudia RM, Vives-Pi M, Verdaguer J. Anti-peripherin B lymphocytes are positively selected during diabetogenesis. Mol Immunol 2008; 45:3152-62. [PMID: 18433871 DOI: 10.1016/j.molimm.2008.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 01/06/2023]
Abstract
Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system. Moreover, we found that anti-peripherin antibody-producing hybridomas originated from B lymphocytes that had undergone immunoglobulin class switch recombination, a characteristic of secondary immune response. Therefore, in the present study we performed immunoglobulin VL and VH analysis of these hybridomas to ascertain whether they were derived from B lymphocytes that had undergone antigen-driven selection. The results indicated that whereas some anti-peripherin hybridomas showed signs of oligoclonality, somatic hypermutation and/or secondary rearrangements (receptor edition and receptor revision), others seemed to directly derive from the preimmune repertoire. In view of these results, we conclude that anti-peripherin B lymphocytes are positively selected and primed in the course of T1D development in NOD mice, and reinforce the idea that peripherin is a relevant autoantigen targeted during T1D development in this animal model.
Collapse
Affiliation(s)
- Jorge Carrillo
- Laboratory of Immunobiology for Research and Application to Diagnosis & Center for Transfusion and Tissue Bank (BST), Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Burris RE, Hebrok M. Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 2007; 150:592-602. [PMID: 18006238 DOI: 10.1016/j.neuroscience.2007.09.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/17/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Pancreatic innervation is being viewed with increasing interest with respect to pancreatic disease. At the same time, relatively little is currently known about innervation dynamics during development and disease. The present study employs confocal microscopy to analyze the growth and development of sympathetic and sensory neurons and astroglia during pancreatic organogenesis and maturation. Our research reveals that islet innervation is closely linked to the process of islet maturation-neural cell bodies undergo intrapancreatic migration/shuffling in tandem with endocrine cells, and close neuro-endocrine contacts are established quite early in pancreatic development. In addition, we have assayed the effects of large-scale beta-cell loss and repopulation on the maintenance of islet innervation with respect to particular neuron types. We demonstrate that depletion of the beta-cell population in the rat insulin promoter (RIP)-cmyc(ER) mouse line has cell-type-specific effects on postganglionic sympathetic neurons and pancreatic astroglia. This study contributes to a greater understanding of how cooperating physiological systems develop together and coordinate their functions, and also helps to elucidate how permutation of one organ system through stress or disease can specifically affect parallel systems in an organism.
Collapse
Affiliation(s)
- R E Burris
- University of California, San Francisco, Diabetes Center, San Francisco, CA 94143-0540, USA
| | | |
Collapse
|
25
|
Puertas MC, Carrillo J, Pastor X, Ampudia RM, Planas R, Alba A, Bruno R, Pujol-Borrell R, Estanyol JM, Vives-Pi M, Verdaguer J. Peripherin Is a Relevant Neuroendocrine Autoantigen Recognized by Islet-Infiltrating B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:6533-9. [PMID: 17475883 DOI: 10.4049/jimmunol.178.10.6533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most of our knowledge of the antigenic repertoire of autoreactive B lymphocytes in type 1 diabetes (T1D) comes from studies on the antigenic specificity of both circulating islet-reactive autoantibodies and peripheral B lymphocyte hybridomas generated from human blood or rodent spleen. In a recent study, we generated hybridoma cell lines of infiltrating B lymphocytes from different mouse strains developing insulitis, but with different degrees of susceptibility to T1D, to characterize the antigenic specificity of islet-infiltrating B lymphocytes during progression of the disease. We found that many hybridomas produced mAbs restricted to the peripheral nervous system (PNS), thus indicating an active B lymphocyte response against PNS elements in the pancreatic islet during disease development. The aim of this study was to identify the autoantigen recognized by these anti-PNS mAbs. Our results showed that peripherin is the autoantigen recognized by all anti-PNS mAbs, and, therefore, a relevant neuroendocrine autoantigen targeted by islet-infiltrating B lymphocytes. Moreover, we discovered that the immune dominant epitope of this B lymphocyte immune response is found at the C-terminal end of Per58 and Per61 isoforms. In conclusion, our study strongly suggests that peripherin is a major autoantigen targeted during T1D development and poses a new question on why peripherin-specific B lymphocytes are mainly attracted to the islet during disease.
Collapse
Affiliation(s)
- Maria Carmen Puertas
- Laboratory of Immunobiology for Research and Diagnosis and Center for Transfusion and Tissue Bank; Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hughes RAC, Allen D, Makowska A, Gregson NA. Pathogenesis of chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 2006; 11:30-46. [PMID: 16519780 DOI: 10.1111/j.1085-9489.2006.00061.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acute lesions of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) consist of endoneurial foci of chemokine and chemokine receptor expression and T cell and macrophage activation. The myelin protein antigens, P2, P0, and PMP22, each induce experimental autoimmune neuritis in rodent models and might be autoantigens in CIDP. The strongest evidence incriminates P0, to which antibodies have been found in 20% of cases. Failure of regulatory T-cell mechanism is thought to underlie persistent or recurrent disease, differentiating CIDP from the acute inflammatory demyelinating polyradiculoneuropathy form of Guillain-Barré syndrome. Corticosteroids, intravenous immunoglobulin and plasma exchange each provide short term benefit but the possible long-term benefits of immunosuppressive drugs have yet to be confirmed in randomised, controlled trials.
Collapse
Affiliation(s)
- Richard A C Hughes
- Department of Clinical Neuroscience, King's College London, Guy's Hospital, London, UK.
| | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVES It has been suggested that the autoimmune assault in type 1 diabetes is not restricted to islet beta cells but also encompasses intraislet nervous structures. Thus, in addition to modulating islet endocrine function, the nerves may also play a direct pathogenic role in diabetes. A major problem in determining the role of neurons in islet function is to distinguish specific neural effects from those mediated through the vascular system, extrinsic hormones, and/or nutritional factors. The aim of this study was to develop an in vitro system that will enable studies on communication between 1 particular type of neuron and islet cell. METHODS To achieve this, we cocultured rat islets and rat embryonic dorsal root ganglia (DRG) in a 3-dimensional roller-tube system for 1 to 4 weeks. RESULTS We found a distinct glucose-induced insulin response throughout the culture period. This response was lower compared with islets cultured alone. DRGs survived better when they were cocultured with islet cells. CONCLUSIONS The roller-tube coculture system provides a novel in vitro system for exploring the interaction between different subpopulations of neurons and pancreatic beta cells. Coculture with DRG neurons reduced glucose-induced insulin release from beta cells, indicating that sensory nerve activity inhibits the insulin response.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
28
|
Carrillo J, Puertas MC, Alba A, Ampudia RM, Pastor X, Planas R, Riutort N, Alonso N, Pujol-Borrell R, Santamaria P, Vives-Pi M, Verdaguer J. Islet-infiltrating B-cells in nonobese diabetic mice predominantly target nervous system elements. Diabetes 2005; 54:69-77. [PMID: 15616012 DOI: 10.2337/diabetes.54.1.69] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cells accumulate in pancreatic islets during the autoimmune response that precedes the onset of type 1 diabetes. However, the role and antigenic specificity of these cells remain a mystery. To elucidate the antigenic repertoire of islet-infiltrating B-cells in type 1 diabetes, we generated hybridoma cell lines of islet-infiltrating B-cells from nonobese diabetic (NOD) mice and NOD mice expressing a diabetogenic T-cell receptor (8.3-NOD). Surprisingly, characterization of the tissue specificity of the antibodies secreted by these cells revealed that a predominant fraction of these hybridomas produce antibodies specific for the pancreatic nervous system. Similar results were obtained with B-cell hybridomas derived from mild insulinic lesions of diabetes-resistant (NOD x NOR)F1 and 8.3-(NOD x NOR)F1 mice. Immunoglobulin class analyses further indicated that most islet-derived hybridomas had arisen from B-cells that had undergone immunoglobulin class switch recombination, suggesting that islet-associated B-cells are involved in active, T-helper-driven immune responses against local antigenic targets. This is the first evidence showing the existence of a predominant active B-cell response in situ against pancreatic nervous system elements in diabetogenesis. Our data are consistent with the idea that this B-cell response precedes the progression of insulitis to overt diabetes, thus strongly supporting the idea that pancreatic nervous system elements are early targets in type 1 diabetes.
Collapse
Affiliation(s)
- Jorge Carrillo
- Servei d'Immunologia, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916 Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maffei A, Liu Z, Witkowski P, Moschella F, Del Pozzo G, Liu E, Herold K, Winchester RJ, Hardy MA, Harris PE. Identification of tissue-restricted transcripts in human islets. Endocrinology 2004; 145:4513-21. [PMID: 15231694 DOI: 10.1210/en.2004-0691] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of our study was to identify transcripts specific for tissue-restricted, membrane-associated proteins in human islets that, in turn, might serve as markers of healthy or diseased islet cell masses. Using oligonucleotide chips, we obtained gene expression profiles of human islets for comparison with the profiles of exocrine pancreas, liver, and kidney tissue. As periislet presence of type 1 interferon is associated with the development of type 1 diabetes, the expression profile of human islets treated ex vivo with interferon-alpha2beta (IFNalpha2beta) was also determined. A set of genes encoding transmembrane- or membrane-associated proteins with novel islet-restricted expression was resolved by determining the intersection of the islet set with the complement of datasets obtained from other tissues. Under the influence of IFNalpha2beta, the expression levels of transcripts for several of the identified gene products were up- or down-regulated. One of the islet-restricted gene products identified in this study, vesicular monoamine transporter type 2, was shown to bind [3H]dihydrotetrabenazine, a ligand with derivatives suitable for positron emission tomography imaging. We report here the first comparison of gene expression profiles of human islets with other tissues and the identification of a target molecule with possible use in determining islet cell masses.
Collapse
Affiliation(s)
- Antonella Maffei
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Center, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Homo-Delarche F, Drexhage HA. Immune cells, pancreas development, regeneration and type 1 diabetes. Trends Immunol 2004; 25:222-9. [PMID: 15099561 DOI: 10.1016/j.it.2004.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Françoise Homo-Delarche
- CNRS UMR 7059, Université Paris 7/Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | |
Collapse
|
31
|
Homo-Delarche F. Neuroendocrine Immuno-ontogeny of the Pathogenesis of Autoimmune Diabetes in the Nonobese Diabetic (NOD) Mouse. ILAR J 2004; 45:237-58. [PMID: 15229372 DOI: 10.1093/ilar.45.3.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward.
Collapse
Affiliation(s)
- Françoise Homo-Delarche
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Paris 7/D.Diderot, Paris, France
| |
Collapse
|