1
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Lyu H, Yuan G, Liu X, Wang X, Geng S, Xia T, Zhou X, Li Y, Hu X, Shi Y. Sustained store-operated calcium entry utilizing activated chromatin state leads to instability in iTregs. eLife 2023; 12:RP88874. [PMID: 38055613 PMCID: PMC10699804 DOI: 10.7554/elife.88874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.
Collapse
Affiliation(s)
- Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
| | - Guohua Yuan
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xinyi Liu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaobo Wang
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| | - Tie Xia
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xuyu Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yinqing Li
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Yan Shi
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
3
|
Omata Y, Tachibana H, Aizaki Y, Mimura T, Sato K. Essentiality of Nfatc1 short isoform in osteoclast differentiation and its self-regulation. Sci Rep 2023; 13:18797. [PMID: 37914750 PMCID: PMC10620225 DOI: 10.1038/s41598-023-45909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
During osteoclast differentiation, the expression of the transcription factor nuclear factor of activated T cell 1 (Nfatc1) increases in an autoproliferative manner. Nfatc1 isoforms are of three sizes, and only the short isoform increases during osteoclast differentiation. Genetic ablation of the whole Nfatc1 gene demonstrated that it is essential for osteoclastogenesis; however, the specific role of the Nfatc1 short form (Nfatc1/αA) remains unknown. In this study, we engineered Nfatc1 short form-specific knockout mice and found that these mice died in utero by day 13.5. We developed a novel osteoclast culture system in which hematopoietic stem cells were cultured, proliferated, and then differentiated into osteoclasts in vitro. Using this system, we show that the Nfatc1/αA isoform is essential for osteoclastogenesis and is responsible for the expression of various osteoclast markers, the Nfatc1 short form itself, and Nfatc1 regulators.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Tachibana
- Department of Rheumatology, Akiru Municipal Medical Center, 78-1 Hikita, Akiruno, Tokyo, 197-0834, Japan
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Kojiro Sato
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
4
|
Anuj A, Reuven N, Roberts SGE, Elson A. BASP1 down-regulates RANKL-induced osteoclastogenesis. Exp Cell Res 2023; 431:113758. [PMID: 37619639 DOI: 10.1016/j.yexcr.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine RANKL (Receptor Activator of NFκB Ligand) is the key driver of differentiation of monocytes/macrophages to form multi-nucleated, bone-resorbing osteoclasts, a process that is accompanied by significant changes in gene expression. We show that exposure to RANKL rapidly down-regulates expression of Brain Acid Soluble Protein 1 (BASP1) in cultured primary mouse bone marrow macrophages (BMMs), and that this reduced expression is causally linked to the osteoclastogenic process in vitro. Knocking down BASP1 expression in BMMs or eliminating its expression in these cells or in RAW 264.7 cells enhanced RANKL-induced osteoclastogenesis, promoted cell-cell fusion, and generated cultures containing larger osteoclasts with increased mineral degrading abilities relative to controls. Expression of exogenous BASP1 in BMMs undergoing osteoclastogenic differentiation produced the opposite effects. Upon exposure to RANKL, primary mouse BMMs in which BASP1 had been knocked down exhibited increased expression of the key osteoclastogenic transcription factor Nfatc1and of its downstream target genes Dc-stamp, Ctsk, Itgb3, and Mmp9 relative to controls. The knock-down cells also exhibited increased sensitivity to the pro-osteoclastogenic effects of RANKL. We conclude that BASP1 is a negative regulator of RANKL-induced osteoclastogenesis, which down-regulates the pro-osteoclastogenic gene expression pattern induced by this cytokine. Decreased expression of BASP1 upon exposure of BMMs to RANKL removes a negative regulator of osteoclastogenesis and promotes this process.
Collapse
Affiliation(s)
- Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan G E Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
6
|
Seth A, Yokokura Y, Choi JY, Shyer JA, Vidyarthi A, Craft J. AP-1-independent NFAT signaling maintains follicular T cell function in infection and autoimmunity. J Exp Med 2023; 220:e20211110. [PMID: 36820828 PMCID: PMC9998660 DOI: 10.1084/jem.20211110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Coordinated gene expression programs enable development and function of T cell subsets. Follicular helper T (Tfh) cells coordinate humoral immune responses by providing selective and instructive cues to germinal center B cells. Here, we show that AP-1-independent NFAT gene expression, a program associated with hyporesponsive T cell states like anergy or exhaustion, is also a distinguishing feature of Tfh cells. NFAT signaling in Tfh cells, maintained by NFAT2 autoamplification, is required for their survival. ICOS signaling upregulates Bcl6 and induces an AP-1-independent NFAT program in primary T cells. Using lupus-prone mice, we demonstrate that genetic disruption or pharmacologic inhibition of NFAT signaling specifically impacts Tfh cell maintenance and leads to amelioration of autoantibody production and renal injury. Our data provide important conceptual and therapeutic insights into the signaling mechanisms that regulate Tfh cell development and function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yoshiyuki Yokokura
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jin-Young Choi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Justin A. Shyer
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Aurobind Vidyarthi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Liu Z, Wang H, Hou Y, Yang Y, Jia J, Wu J, Zuo Z, Gao T, Ren S, Bian Y, Liu S, Fu J, Sun Y, Li J, Yamamoto M, Zhang Q, Xu Y, Pi J. CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners. Redox Biol 2021; 48:102180. [PMID: 34763297 PMCID: PMC8591424 DOI: 10.1016/j.redox.2021.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
Fine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms' accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yang Yang
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jingkun Jia
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jinzhi Wu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianchang Gao
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongxin Sun
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, 46202, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
8
|
Yang J, Wang S, Zhang G, Fang Y, Fang Z, Shang P, Zhang H. Static Magnetic Field (2-4 T) Improves Bone Microstructure and Mechanical Properties by Coordinating Osteoblast/Osteoclast Differentiation in Mice. Bioelectromagnetics 2021; 42:200-211. [PMID: 33655538 DOI: 10.1002/bem.22324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 01/09/2021] [Indexed: 01/03/2023]
Abstract
Static magnetic field (SMF), with constant magnetic field strength and direction, has a long history of basic and clinical research in bone biology. Numerous studies demonstrate that exposure to moderate SMF (1 mT-1 T) can increase bone mass and bone density. However, few studies pay attention to the effects of high SMF (>1 T) on the skeletal system. To investigate the physiological effects of high SMF on bone, mice were exposed to 2-4 T SMF for 28 days. Bone microstructure and mechanical properties were examined. The activity of osteoblasts and osteoclasts involved in bone remodeling was evaluated in vivo and in vitro. Compared with the unexposed group, 2-4 T significantly improved the femoral microstructure and tibial mechanical properties. For bone remodeling in vivo, the number of osteoblasts and bone formation was increased, and the osteoclastic number was decreased by 2-4 T. Moreover, the expression of marker proteins in the femur and concentrations of biochemical indicators in serum involved in bone formation were elevated and bone resorption was reduced under 2-4 T SMF. In vitro, osteoblast differentiation was promoted, and the osteoclastic formation and bone resorption ability were inhibited by 2 T SMF. Overall, these results demonstrate that 2-4 T SMF improved bone microarchitecture and strength by stimulating bone formation and restraining bone resorption, and imply that high SMF might become a potential biophysical treatment modality for bone diseases with abnormal bone remodeling. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yanwen Fang
- Zhejiang Heye Health Technology, Anji, China
| | - Zhicai Fang
- Zhejiang Heye Health Technology, Anji, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
9
|
Shalev M, Arman E, Stein M, Cohen-Sharir Y, Brumfeld V, Kapishnikov S, Royal I, Tuckermann J, Elson A. PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 2021; 288:4702-4723. [PMID: 33605542 DOI: 10.1111/febs.15778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Yael Cohen-Sharir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Royal
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.,Institut du Cancer de Montréal, QC, Canada.,Department of Medicine, University of Montreal, QC, Canada
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Fillatreau S. Regulatory functions of B cells and regulatory plasma cells. Biomed J 2019; 42:233-242. [PMID: 31627865 PMCID: PMC6818159 DOI: 10.1016/j.bj.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
B cells critically contribute to health through the production of antibodies that provide a vital line of defence against infectious agents. In addition, B cells are known to play an integrative role in immunity, acting as crucial antigen-presenting cells for T cells, and being an important source of cytokines that can target multiple cell types including stromal cells, innate cells, and adaptive lymphocytes. This review focuses on the role of B cells as negative regulators of immunity through the production of interleukin-10 (IL-10) in autoimmune, infectious, and malignant diseases. It discusses the phenotypes of the B cell subsets most competent to produce IL-10 in vitro and to exert suppressive functions in vivo upon adoptive transfer in recipient mice, the signals and transcription factors regulating IL-10 expression in B cells, and the recent identification of plasmocytes, including short-lived plasmablasts and long-lived plasma cells, as an important source of IL-10 in secondary lymphoid organs and inflamed tissues in vivo during mouse and human diseases. With our increasing knowledge of this non-canonical B cell function a coherent framework starts emerging that will help monitoring and targeting this B cell function in health and disease.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; Faculty of Medicine, Paris Descartes University, Paris-Sorbonne University, Paris, France; AP-HP Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
12
|
Understanding regulatory B cells in autoimmune diseases: the case of multiple sclerosis. Curr Opin Immunol 2019; 61:26-32. [PMID: 31445312 DOI: 10.1016/j.coi.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023]
Abstract
The suppressive function of B cells is mediated mostly through their provision of cytokines with anti-inflammatory properties, in particular interleukin-10. This B cell activity has been convincingly described in mice with autoimmune, infectious, as well as malignant diseases, and evidence is accumulating of its relevance in human. This review provides a personal view of this B cell function using multiple sclerosis and its animal model experimental autoimmune encephalomyelitis as representative examples, in an attempt to bridge observations obtained in mice and human, with the goal of providing a coherent transversal framework to further explore this field, and eventually manipulate this B cell function therapeutically.
Collapse
|
13
|
Shin SY, Kim MW, Cho KH, Nguyen LK. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 2019; 9:10637. [PMID: 31337782 PMCID: PMC6650396 DOI: 10.1038/s41598-019-46592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Min-Wook Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
14
|
Kim ET, Kwon KM, Lee MK, Park J, Ahn JH. Sumoylation of a small isoform of NFATc1 is promoted by PIAS proteins and inhibits transactivation activity. Biochem Biophys Res Commun 2019; 513:172-178. [PMID: 30952432 DOI: 10.1016/j.bbrc.2019.03.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
The NFAT family of transcription factors plays an important role in immune system development and function. NFATc1 and NFATc2 are highly expressed in peripheral T cells, and several isoforms are produced via the use of different promoters and polyadenylation sites. The specific isoforms with relatively long C-termini, NFATc1/C and NFATc2/A, have been shown to be modified by SUMO within their specific C-terminal regions, which regulates NFAT protein localization and transactivation activity. Here, we demonstrate that an isoform NFATc1/A, which has a short C-terminus and does not contain the sumoylation sites found in the long isoforms, is also modified by SUMO. NFATc1/A sumoylation increased with low level expression of SUMO E3 ligases, specifically PIAS1, PIAS3, and PIASy, in co-transfected cells. PIAS3 interacted with NFATc1/A and an active site mutant failed to promote NFATc1/A sumoylation, indicating a role for PIAS3 as a SUMO E3 ligase. A lysine residue at 351 within the central regulatory domain was identified as the major SUMO attachment site in both co-transfection and in vitro assays. Sumoylation of NFATc1/A did not affect nuclear translocation upon ionomycin and phorbol 12-myristate 13-acetate treatment. However, although sumoylation of NFATc1/A slightly increased protein stability, it inhibited transactivation activity for reporter genes driven by promoters containing NFAT sites. Our results indicate that the transactivation activity of NFATc1/A is negatively regulated by PIAS protein-mediated sumoylation, and that SUMO is a general regulator of NFAT family members with either long or short C-termini.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ki Mun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jungchan Park
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
15
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Analysis of NFATc1 amplification in T cells for pharmacodynamic monitoring of tacrolimus in kidney transplant recipients. PLoS One 2018; 13:e0201113. [PMID: 30036394 PMCID: PMC6056039 DOI: 10.1371/journal.pone.0201113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic drug monitoring (TDM) of tacrolimus, based on blood concentrations, shows an imperfect correlation with the occurrence of rejection. Here, we tested whether measuring NFATc1 amplification, a member of the calcineurin pathway, is suitable for TDM of tacrolimus. Materials and methods NFATc1 amplification was monitored in T cells of kidney transplant recipients who received either tacrolimus- (n = 11) or belatacept-based (n = 10) therapy. Individual drug effects on NFATc1 amplification were studied in vitro, after spiking blood samples of healthy volunteers with either tacrolimus, belatacept or mycophenolate mofetil. Results At day 30 after transplantation, in tacrolimus-treated patients, NFATc1 amplification was inhibited in CD4+ T cells expressing the co-stimulation receptor CD28 (mean inhibition 37%; p = 0.01) and in CD8+CD28+ T cells (29% inhibition; p = 0.02), while this was not observed in CD8+CD28- T cells or belatacept-treated patients. Tacrolimus pre-dose concentrations of these patients correlated inversely with NFATc1 amplification in CD28+ T cells (rs = -0.46; p < 0.01). In vitro experiments revealed that 50 ng/ml tacrolimus affected NFATc1 amplification by 58% (mean; p = 0.02). Conclusion In conclusion, measuring NFATc1 amplification is a direct tool for monitoring biological effects of tacrolimus on T cells in whole blood samples of kidney transplant recipients. This technique has potential that requires further development before it can be applied in daily practice.
Collapse
Affiliation(s)
- Nynke M. Kannegieter
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| | - Dennis A. Hesselink
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gretchen N. de Graav
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Section of Transplantation and Nephrology, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Ye J, Liu S, Shang Y, Chen H, Wang R. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells. Cell Cycle 2018; 17:1014-1025. [PMID: 29886802 DOI: 10.1080/15384101.2018.1469874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133+CD44+ CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133+CD44+ CRC population, but not in the CD133-CD44- CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133+CD44+ or CRC CD133-CD44- populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133+CD44+ CRC population, thus conferring their self-renewal.
Collapse
Affiliation(s)
- Jun Ye
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Shanxi Liu
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Yangyang Shang
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Haoyuan Chen
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| | - Rongquan Wang
- a Institute of Gastroenterology of PLA, Southwest Hospital , Third Military Medical University , Chongqing , China
| |
Collapse
|
17
|
Heim L, Friedrich J, Engelhardt M, Trufa DI, Geppert CI, Rieker RJ, Sirbu H, Finotto S. NFATc1 Promotes Antitumoral Effector Functions and Memory CD8 + T-cell Differentiation during Non-Small Cell Lung Cancer Development. Cancer Res 2018; 78:3619-3633. [PMID: 29691251 DOI: 10.1158/0008-5472.can-17-3297] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Nuclear factor of activated T cells 1 (NFATc1) is a transcription factor activated by T-cell receptor (TCR) and Ca2+ signaling that affects T-cell activation and effector function. Upon tumor antigen challenge, TCR and calcium-release-activated channels are induced, promoting NFAT dephosphorylation and translocation into the nucleus. In this study, we report a progressive decrease of NFATc1 in lung tumor tissue and in tumor-infiltrating lymphocytes (TIL) of patients suffering from advanced-stage non-small cell lung cancer (NSCLC). Mice harboring conditionally inactivated NFATc1 in T cells (NFATc1ΔCD4) showed increased lung tumor growth associated with impaired T-cell activation and function. Furthermore, in the absence of NFATc1, reduced IL2 influenced the development of memory CD8+ T cells. We found a reduction of effector memory and CD103+ tissue-resident memory (TRM) T cells in the lung of tumor-bearing NFATc1ΔCD4 mice, underlining an impaired cytotoxic T-cell response and a reduced TRM tissue-homing capacity. In CD4+ICOS+ T cells, programmed cell death 1 (PD-1) was induced in the draining lymph nodes of these mice and associated with lung tumor cell growth. Targeting PD-1 resulted in NFATc1 induction in CD4+ and CD8+ T cells in tumor-bearing mice and was associated with increased antitumor cytotoxic functions. This study reveals a role of NFATc1 in the activation and cytotoxic functions of T cells, in the development of memory CD8+ T-cell subsets, and in the regulation of T-cell exhaustion. These data underline the indispensability of NFATc1 for successful antitumor immune responses in patients with NSCLC.Significance: The multifaceted role of NFATc1 in the activation and function of T cells during lung cancer development makes it a critical participant in antitumor immune responses in patients with NSCLC. Cancer Res; 78(13); 3619-33. ©2018 AACR.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
18
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
19
|
Muhammad K, Rudolf R, Pham DAT, Klein-Hessling S, Takata K, Matsushita N, Ellenrieder V, Kondo E, Serfling E. Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation. Front Immunol 2018; 9:32. [PMID: 29416540 PMCID: PMC5787671 DOI: 10.3389/fimmu.2018.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/04/2018] [Indexed: 11/15/2022] Open
Abstract
In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Ronald Rudolf
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Duong Anh Thuy Pham
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Katsuyoshi Takata
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Eisaku Kondo
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Calcineurin inhibitors regulate fibroblast growth factor 23 (FGF23) synthesis. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1117-1123. [DOI: 10.1007/s00210-017-1411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023]
|
21
|
Takeuchi T, Sugimoto A, Imazato N, Tamura M, Nakatani S, Kobata K, Arata Y. Glucosamine Suppresses Osteoclast Differentiation through the Modulation of Glycosylation Including O-GlcNAcylation. Biol Pharm Bull 2017; 40:352-356. [PMID: 28250278 DOI: 10.1248/bpb.b16-00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoclasts represent the only bone resorbing cells in an organism. In this study, we investigated the effect of glucosamine (GlcN), a nutrient used to prevent joint pain and bone loss, on the osteoclastogenesis of murine macrophage-like RAW264 cells. GlcN supplementation suppressed the upregulation of osteoclast-specific genes (tartrate-resistant acid phosphatase (TRAP), cathepsin K, matrix metallopeptidase 9, and nuclear factor of activated T cell c1 (NFATc1)), receptor activator of nuclear factor-κB ligand (RANKL)-dependent upregulation of TRAP enzyme activity, and the formation of TRAP-positive multinuclear cells more effectively than N-acetylglucosamine (GlcNAc), which we have previously shown to inhibit osteoclast differentiation. To clarify the mechanism by which GlcN suppresses osteoclastogenesis, we further investigated the effect of GlcN on O-GlcNAcylation by Western blotting and on other types of glycosylation by lectin blotting. We found that, upon addition of GlcN, the O-GlcNAcylation of cellular proteins was increased whereas α2,6-linked sialic acid modification was decreased. Therefore, these glycan modifications in cellular proteins may contribute to the suppression of osteoclastogenesis.
Collapse
|
22
|
Tu WJ, Hardy K, Sutton CR, McCuaig R, Li J, Dunn J, Tan A, Brezar V, Morris M, Denyer G, Lee SK, Turner SJ, Seddiki N, Smith C, Khanna R, Rao S. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells. Sci Rep 2017; 7:44825. [PMID: 28317936 PMCID: PMC5357947 DOI: 10.1038/srep44825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Memory T cells exhibit transcriptional memory and “remember” their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to “remember” their initial environmental encounter.
Collapse
Affiliation(s)
- Wen Juan Tu
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Kristine Hardy
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Christopher R Sutton
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Robert McCuaig
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jasmine Li
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jenny Dunn
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Abel Tan
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Vedran Brezar
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Melanie Morris
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Gareth Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Sau Kuen Lee
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Nabila Seddiki
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sudha Rao
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| |
Collapse
|
23
|
Zhang J, Feng H, Zhao J, Feldman ER, Chen SY, Yuan W, Huang C, Akbari O, Tibbetts SA, Feng P. IκB Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Rep 2016; 16:405-418. [PMID: 27346349 DOI: 10.1016/j.celrep.2016.05.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Activation of nuclear factor of activated T cells (NFAT) is crucial for immune responses. IKKε is an IκB kinase (IKK)-related kinase, and the function of IKKε remains obscure in T cells, despite its abundant expression. We report that IKKε inhibits NFAT activation and T cell responses by promoting NFATc1 phosphorylation. During T cell activation, IKKε was transiently activated to phosphorylate NFATc1. Loss of IKKε elevated T cell antitumor and antiviral immunity and, therefore, reduced tumor development and persistent viral infection. IKKε was activated in CD8(+) T cells of mice bearing melanoma or persistently infected with a model herpesvirus. These results collectively show that IKKε promotes NFATc1 phosphorylation and inhibits T cell responses, identifying IKKε as a crucial negative regulator of T cell activation and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Hao Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA; Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Emily R Feldman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
24
|
A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nat Commun 2016; 7:11841. [PMID: 27312418 PMCID: PMC4915031 DOI: 10.1038/ncomms11841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. NFATc1 orchestrates thymocyte development. Here the authors show that NFATc1 expression is regulated by distinct promoters during thymocyte differentiation, and by conditional deletion of individual promoters in mice they define their specific roles in the control of T-cell development by NFATc1.
Collapse
|
25
|
Tang J, Zhou X, Liu J, Meng Q, Han Y, Wang Z, Fan H, Liu Z. IL-25 promotes the function of CD4+CD25+ T regulatory cells and prolongs skin-graft survival in murine models. Int Immunopharmacol 2015; 28:931-7. [DOI: 10.1016/j.intimp.2015.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 02/02/2023]
|
26
|
Hermann-Kleiter N, Klepsch V, Wallner S, Siegmund K, Klepsch S, Tuzlak S, Villunger A, Kaminski S, Pfeifhofer-Obermair C, Gruber T, Wolf D, Baier G. The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance. Cell Rep 2015; 12:2072-85. [PMID: 26387951 PMCID: PMC4594157 DOI: 10.1016/j.celrep.2015.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6(-/-) mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4(+) and CD8(+) T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4(+) and CD8(+) T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Victoria Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephanie Wallner
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sebastian Klepsch
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Selma Tuzlak
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandra Kaminski
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christa Pfeifhofer-Obermair
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Gruber
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dominik Wolf
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria; Medical Clinic III, Oncology, Hematology & Rheumatology, University Clinic Bonn, 53127 Bonn, Germany
| | - Gottfried Baier
- Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Chen X, Luo Y, Zhou B, Huang Z, Jia G, Liu G, Zhao H, Yang Z, Zhang R. Effect of porcine Akirin2 on skeletal myosin heavy chain isoform expression. Int J Mol Sci 2015; 16:3996-4006. [PMID: 25686036 PMCID: PMC4346940 DOI: 10.3390/ijms16023996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/16/2022] Open
Abstract
Akirin2 plays an important role in skeletal myogenesis. In this study, we found that porcine Akirin2 (pAkirin2) mRNA level was significantly higher in fast extensor digitorum longus (EDL) and longissimus lumborum (LL) muscles than in slow soleus (SOL) muscle of pigs. Overexpression of pAkirin2 increased the number of myosin heavy chain (MHC)-positive cells, indicating that pAkirin2 promoted myoblast differentiation. We also found that overexpression of pAkirin2 increased the mRNA expressions of MHCI and MHCIIa and decreased the mRNA expression of MHCIIb. Myocyte enhancer factor 2 (MEF2) and nuclear factor of activated T cells (NFAT) are the major downstream effectors of calcineurin. Here we also observed that the mRNA expressions of MEF2C and NFATc1 were notably elevated by pAkirin2 overexpression. Together, our data indicate that the role of pAkirin2 in modulating MHCI and MHCIIa expressions may be achieved through calcineurin/NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bo Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
28
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
29
|
Rudolf R, Busch R, Patra AK, Muhammad K, Avots A, Andrau JC, Klein-Hessling S, Serfling E. Architecture and expression of the nfatc1 gene in lymphocytes. Front Immunol 2014; 5:21. [PMID: 24550910 PMCID: PMC3909943 DOI: 10.3389/fimmu.2014.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 01/03/2023] Open
Abstract
In lymphocytes, the three NFAT factors NFATc1 (also designated as NFAT2), NFATc2 (NFAT1), and NFATc3 (NFAT4 or NFATx) are expressed and are the targets of immune receptor signals, which lead to a rapid rise of intracellular Ca++, the activation of phosphatase calcineurin, and to the activation of cytosolic NFATc proteins. In addition to rapid activation of NFAT factors, immune receptor signals lead to accumulation of the short NFATc1/αA isoform in lymphocytes which controls their proliferation and survival. In this mini-review, we summarize our current knowledge on the structure and transcription of the Nfatc1 gene in lymphocytes, which is controlled by two promoters, two poly A addition sites and a remote downstream enhancer. The Nfatc1 gene resembles numerous primary response genes (PRGs) induced by LPS in macrophages. Similar to the PRG promoters, the Nfatc1 promoter region is organized in CpG islands, forms DNase I hypersensitive sites, and is marked by histone tail modifications before induction. By studying gene induction in lymphocytes in detail, it will be important to elucidate whether the properties of the Nfatc1 induction are not only typical for the Nfatc1 gene but also for other transcription factor genes expressed in lymphocytes.
Collapse
Affiliation(s)
- Ronald Rudolf
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | - Rhoda Busch
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | - Amiya K Patra
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | - Andris Avots
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | | | - Stefan Klein-Hessling
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Comprehensive Cancer Center Mainfranken, Institute of Pathology, University of Würzburg , Würzburg , Germany
| |
Collapse
|
30
|
Meng L, Tompkins M, Miller M, Fogle J. Lentivirus-activated T regulatory cells suppress T helper cell interleukin-2 production by inhibiting nuclear factor of activated T cells 2 binding to the interleukin-2 promoter. AIDS Res Hum Retroviruses 2014; 30:58-66. [PMID: 23924068 DOI: 10.1089/aid.2013.0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using the feline immunodeficiency virus (FIV) model for AIDS lentivirus infection, we previously demonstrated that Treg cells from FIV-infected cats up-regulate membrane-associated tumor growth factor beta (mTGF-ß) during the course of infection and that activated T lymphocytes up-regulate TGF-ß receptor II (TGF-ßRII) during the course of infection. Furthermore, we have demonstrated that autologous coculture of Tregs with Th cells from FIV-infected cats leads to suppression of interleukin (IL)-2 production and loss of proliferation in a TGF-ß-dependent fashion. Nuclear factor of activated T cells (NFAT) 2 has been identified as integral to effector Th cell maturation and function by promoting IL-2 transcription. Therefore, we questioned whether NFAT2 expression might be altered by TGF-β signaling. Feline NFAT2 exon sequences were identified based upon sequence homology to human and murine NFAT2. Following stimulation, IL-2 and NFAT2 mRNA levels were similarly increased in both FIV(-) and FIV(+) cats. Activated CD4(+)CD25(-) cells from both FIV(-) and FIV(+) cats cocultured with autologous CD4(+)CD25(+) cells or treated with TGF-β demonstrated decreased IL-2 production; however, NFAT2 mRNA levels were unaffected. Although NFAT2 mRNA levels were unaffected, chromatin immunoprecipitation (ChIP) for NFAT2 indicated decreased NFAT2 binding at the IL-2 promoter in suppressed Th cells. These data suggest that TGF-β-mediated Treg cell suppression of IL-2 transcription is modulated through alterations in NFAT2 binding to the IL-2 promoter.
Collapse
Affiliation(s)
- Liping Meng
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine , Raleigh, North Carolina
| | | | | | | |
Collapse
|
31
|
Pierau M, Na SY, Simma N, Lowinus T, Marx A, Schraven B, Bommhardt UH. Constitutive Akt1 signals attenuate B-cell receptor signaling and proliferation, but enhance B-cell migration and effector function. Eur J Immunol 2013; 42:3381-93. [PMID: 22930469 DOI: 10.1002/eji.201242397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 11/07/2022]
Abstract
Ligation of the BCR induces a complex signaling network that involves activation of Akt, a family of serine/threonine protein kinases associated with B-cell development, proliferation, and tumor formation. Here, we analyzed the effect of enhanced Akt1 signals on B-cell maturation and function. Unexpectedly, we found that peripheral B cells overexpressing Akt1 were less responsive to BCR stimuli. This correlated with a decrease in Ca(2+) -mobilization and proliferation, in an impaired activation of Erk1/2 and mammalian target of rapamycin (mTOR) kinases and poor mobilization of NFATc1 and NF-κB/p65 factors. In contrast, activation of STAT5 and migration of B cells toward the chemokine SDF1α was found to be enhanced. Akt1 Tg mice showed an altered maturation of peritoneal and splenic B1 B cells and an enhanced production of IgG1 and IgG3 upon immunization with the T-cell independent Ag TNP-Ficoll. Furthermore, mice homo-zygous for Tg Akt1 showed a severe block in the maturation of B-cell precursors in BM and a strong enrichment of plasma cells in spleen. Altogether, our data reveal that enhanced Akt1 signals modify BCR signaling strength and, thereby, B-cell development and effector function.
Collapse
Affiliation(s)
- Mandy Pierau
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Hock M, Vaeth M, Rudolf R, Patra AK, Pham DAT, Muhammad K, Pusch T, Bopp T, Schmitt E, Rost R, Berberich-Siebelt F, Tyrsin D, Chuvpilo S, Avots A, Serfling E, Klein-Hessling S. NFATc1 induction in peripheral T and B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 190:2345-53. [PMID: 23365084 DOI: 10.4049/jimmunol.1201591] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NFAT transcription factors control the proliferation and survival of peripheral lymphocytes. We have reported previously that the short isoform NFATc1/αA whose generation is induced by immune receptor stimulation supports the proliferation and inhibits the activation-induced cell death of peripheral T and B cells. We will show in this study that in novel bacterial artificial chromosome transgenic mice that express EGFP under the control of entire Nfatc1 locus the Nfatc1/Egfp transgene is expressed as early as in double-negative thymocytes and in nonstimulated peripheral T and B cells. Upon immune receptor stimulation, Nfatc1/Egfp expression is elevated in B, Th1, and Th2 cells, but only weakly in T regulatory, Th9, and Th17 cells in vitro whose generation is affected by TGFβ. In naive lymphocytes, persistent immune receptor signals led to a 3-5 increase in NFATc1/αA RNA levels during primary and secondary stimulation, but a much stronger induction was observed at the protein level. Whereas anti-CD3(+)CD28 stimulation of primary T cells induces both NFATc1/αA and their proliferation and survival, anti-IgM stimulation of B cells induces NFATc1/αA and proliferation, but activation-induced cell death after 3-d incubation in vitro. The anti-IgM-mediated activation-induced cell death induction of B cells in vitro is suppressed by anti-CD40-, LPS-, and CpG-mediated signals. In addition to inducing NF-κB factors, together with anti-IgM, these signals also support the generation of NFATc1/αA. According to these data and the architecture of its promoter region, the Nfatc1 gene resembles a primary response gene whose induction is affected at the posttranscriptional level.
Collapse
Affiliation(s)
- Matthias Hock
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mueller K, Quandt J, Marienfeld RB, Weihrich P, Fiedler K, Claussnitzer M, Laumen H, Vaeth M, Berberich-Siebelt F, Serfling E, Wirth T, Brunner C. Octamer-dependent transcription in T cells is mediated by NFAT and NF-κB. Nucleic Acids Res 2013; 41:2138-54. [PMID: 23293002 PMCID: PMC3575799 DOI: 10.1093/nar/gks1349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and NF-κB-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/NF-κB sites. An array of genetic and biochemical analyses illustrates the involvement of the Ca2+/calmodulin-dependent phosphatase calcineurin as well as NFAT and NF-κB transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or NF-κB transcription factors.
Collapse
Affiliation(s)
- Kerstin Mueller
- Institute of Physiological Chemistry, University Ulm, D-89081 Ulm, Germany, Institute of Pathology, University Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR, Kim SK. Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell 2012; 23:21-34. [PMID: 22814600 DOI: 10.1016/j.devcel.2012.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/04/2012] [Accepted: 05/19/2012] [Indexed: 11/29/2022]
Abstract
Little is known about the mechanisms governing neonatal growth and maturation of organs. Here we demonstrate that calcineurin/Nuclear Factor of Activated T cells (Cn/NFAT) signaling regulates neonatal pancreatic development in mouse and human islets. Inactivation of calcineurin b1 (Cnb1) in mouse islets impaired dense core granule biogenesis, decreased insulin secretion, and reduced cell proliferation and mass, culminating in lethal diabetes. Pancreatic β cells lacking Cnb1 failed to express genes revealed to be direct NFAT targets required for replication, insulin storage, and secretion. In contrast, glucokinase activation stimulated Cn-dependent expression of these genes. Calcineurin inhibitors, such as tacrolimus, used for human immunosuppression, induce diabetes. Tacrolimus exposure reduced Cn/NFAT-dependent expression of factors essential for insulin dense core granule formation and secretion and neonatal β cell proliferation, consistent with our genetic studies. Discovery of conserved pathways regulating β cell maturation and proliferation suggests new strategies for controlling β cell growth or replacement in human islet diseases.
Collapse
Affiliation(s)
- William R Goodyer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
35
|
Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F. NFATc1/αA: The other Face of NFAT Factors in Lymphocytes. Cell Commun Signal 2012; 10:16. [PMID: 22764736 PMCID: PMC3464794 DOI: 10.1186/1478-811x-10-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
In effector T and B cells immune receptor signals induce within minutes a rise of intracellular Ca++, the activation of the phosphatase calcineurin and the translocation of NFAT transcription factors from cytosol to nucleus. In addition to this first wave of NFAT activation, in a second step the occurrence of NFATc1/αA, a short isoform of NFATc1, is strongly induced. Upon primary stimulation of lymphocytes the induction of NFATc1/αA takes place during the G1 phase of cell cycle. Due to an auto-regulatory feedback circuit high levels of NFATc1/αA are kept constant during persistent immune receptor stimulation. Contrary to NFATc2 and further NFATc proteins which dampen lymphocyte proliferation, induce anergy and enhance activation induced cell death (AICD), NFATc1/αA supports antigen-mediated proliferation and protects lymphocytes against rapid AICD. Whereas high concentrations of NFATc1/αA can also lead to apoptosis, in collaboration with NF-κB-inducing co-stimulatory signals they support the survival of mature lymphocytes in late phases after their activation. However, if dysregulated, NFATc1/αA appears to contribute to lymphoma genesis and - as we assume - to further disorders of the lymphoid system. While the molecular details of NFATc1/αA action and its contribution to lymphoid disorders have to be investigated, NFATc1/αA differs in its generation and function markedly from all the other NFAT proteins which are expressed in lymphoid cells. Therefore, it represents a prime target for causal therapies of immune disorders in future.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Ronald Rudolf
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Friederike Berberich-Siebelt
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| |
Collapse
|
36
|
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3:51. [PMID: 22566933 PMCID: PMC3341960 DOI: 10.3389/fimmu.2012.00051] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/01/2012] [Indexed: 12/22/2022] Open
Abstract
CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4(+)CD25(-) conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca(2+)), NFAT, and NF-κB signaling in Tcons by Tregs.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics, Tumorimmunology Program, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Hampton PJ, Jans R, Flockhart RJ, Parker G, Reynolds NJ. Lithium regulates keratinocyte proliferation via glycogen synthase kinase 3 and NFAT2 (nuclear factor of activated T cells 2). J Cell Physiol 2012; 227:1529-37. [PMID: 21678407 PMCID: PMC4150531 DOI: 10.1002/jcp.22872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1-2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis.
Collapse
Affiliation(s)
- Philip J Hampton
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
38
|
NFATc3 regulates the transcription of genes involved in T-cell activation and angiogenesis. Blood 2011; 118:795-803. [PMID: 21642596 DOI: 10.1182/blood-2010-12-322701] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.
Collapse
|
39
|
Wang L, Chang JH, Paik SY, Tang Y, Eisner W, Spurney RF. Calcineurin (CN) activation promotes apoptosis of glomerular podocytes both in vitro and in vivo. Mol Endocrinol 2011; 25:1376-86. [PMID: 21622531 DOI: 10.1210/me.2011-0029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To determine the role of Gq signaling and calcineurin (CN) activation in promoting apoptosis of glomerular podocytes, constitutively active Gq [Gq(+)] or CN [CN(+)] proteins were introduced into cultured podocytes using protein transduction by tagging the proteins with the transactivator of transcription peptide. To investigate the role of CN in promoting podocyte apoptosis in vivo, a genetic model of type 1 diabetes mellitus (Akita mice) was treated with the CN inhibitor FK506. In cultured podocytes, Gq(+) stimulated nuclear translocation of nuclear factor of activated T cells (NFAT) family members, activated an NFAT reporter construct, and enhanced podocyte apoptosis in a CN-dependent fashion. CN(+) similarly promoted podocyte apoptosis, and apoptosis induced by either angiotensin II or endothelin-1 was blocked by FK506. Induction of apoptosis required NFAT-induced gene transcription because apoptosis induced by either Gq(+) or CN(+) was blocked by an inhibitor that prevented CN-dependent NFAT activation without affecting CN phosphatase activity. Podocyte apoptosis was mediated, in part, by the NFAT-responsive gene cyclooxygenase 2 (COX2) and prostaglandin E(2) generation because apoptosis induced by Gq(+) was attenuated by either COX2 inhibition or blockade of the Gq-coupled E-series prostaglandins receptor. The findings appeared relevant to podocyte apoptosis in diabetic nephropathy because apoptosis was significantly reduced in Akita mice by treatment with FK506. These data suggest that Gq stimulates CN and promotes podocyte apoptosis both in vitro and in vivo. Apoptosis requires NFAT-dependent gene transcription and is mediated, in part, by CN-dependent COX2 induction, prostaglandin E(2) generation, and autocrine activation of the Gq-coupled E-series prostaglandins receptor.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University, Durham Veterans Affairs Medical Centers, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
Meissner JD, Freund R, Krone D, Umeda PK, Chang KC, Gros G, Scheibe RJ. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/beta gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Res 2011; 39:5907-25. [PMID: 21498542 PMCID: PMC3152325 DOI: 10.1093/nar/gkr162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca2+-dependent upregulation of myosin heavy chain (MyHC) I/β expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca2+-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFATc1-dependent upregulation of a −2.4 kb MyHCI/β promoter construct without affecting subcellular localization of endogenous NFATc1. Instead, ERK1/2-augmented phosphorylation of transcriptional coactivator p300, promoted its recruitment to NFATc1 and increased NFATc1–DNA binding to a NFAT site of the MyHCI/β promoter. In line, inhibition of ERK1/2 signaling abolished the effects of p300. Comparison between wild-type p300 and an acetyltransferase-deficient mutant (p300DY) indicated increased NFATc1–DNA binding as a consequence of p300-mediated acetylation of NFATc1. Activation of the MyHCI/β promoter by p300 depends on two conserved acetylation sites in NFATc1, which affect DNA binding and transcriptional stimulation. NFATc1 acetylation occurred in Ca2+-ionophore treated C2C12 myotubes or electrostimulated soleus. Finally, endogenous MyHCI/β gene expression in C2C12 myotubes was strongly inhibited by p300DY and a mutant deficient in ERK phosphorylation sites. In conclusion, ERK1/2-mediated phosphorylation of p300 is crucial for enhancing NFATc1 transactivation function by acetylation, which is essential for Ca2+-induced MyHCI/β expression.
Collapse
Affiliation(s)
- Joachim D Meissner
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Bhattacharyya S, Deb J, Patra AK, Thuy Pham DA, Chen W, Vaeth M, Berberich-Siebelt F, Klein-Hessling S, Lamperti ED, Reifenberg K, Jellusova J, Schweizer A, Nitschke L, Leich E, Rosenwald A, Brunner C, Engelmann S, Bommhardt U, Avots A, Müller MR, Kondo E, Serfling E. NFATc1 affects mouse splenic B cell function by controlling the calcineurin--NFAT signaling network. ACTA ACUST UNITED AC 2011; 208:823-39. [PMID: 21464221 PMCID: PMC3135343 DOI: 10.1084/jem.20100945] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse B cells lacking NFATc1 exhibit defective proliferation, survival, isotype class switching, cytokine production, and T cell help. By studying mice in which the Nfatc1 gene was inactivated in bone marrow, spleen, or germinal center B cells, we show that NFATc1 supports the proliferation and suppresses the activation-induced cell death of splenic B cells upon B cell receptor (BCR) stimulation. BCR triggering leads to expression of NFATc1/αA, a short isoform of NFATc1, in splenic B cells. NFATc1 ablation impaired Ig class switch to IgG3 induced by T cell–independent type II antigens, as well as IgG3+ plasmablast formation. Mice bearing NFATc1−/− B cells harbor twofold more interleukin 10–producing B cells. NFATc1−/− B cells suppress the synthesis of interferon-γ by T cells in vitro, and these mice exhibit a mild clinical course of experimental autoimmune encephalomyelitis. In large part, the defective functions of NFATc1−/− B cells are caused by decreased BCR-induced Ca2+ flux and calcineurin (Cn) activation. By affecting CD22, Rcan1, CnA, and NFATc1/αA expression, NFATc1 controls the Ca2+-dependent Cn–NFAT signaling network and, thereby, the fate of splenic B cells upon BCR stimulation.
Collapse
Affiliation(s)
- Sankar Bhattacharyya
- Department of Molecular Pathology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu S, Zhang S, Bromley-Brits K, Cai F, Zhou W, Xia K, Mittelholtz J, Song W. Transcriptional Regulation of TMP21 by NFAT. Mol Neurodegener 2011; 6:21. [PMID: 21375783 PMCID: PMC3063815 DOI: 10.1186/1750-1326-6-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 03/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TMP21 is a member of the p24 cargo protein family, which is involved in protein transport between the Golgi apparatus and ER. Alzheimer's Disease (AD) is the most common neurodegenerative disorder leading to dementia and deposition of amyloid β protein (Aβ) is the pathological feature of AD pathogenesis. Knockdown of TMP21 expression by siRNA causes a sharp increase in Aβ production; however the underlying mechanism by which TMP21 regulates Aβ generation is unknown, and human TMP21 gene expression regulation has not yet been studied. RESULTS In this report we have cloned a 3.3-kb fragment upstream of the human TMP21 gene. The transcription start site (TSS) of the human TMP21 gene was identified. A series of nested deletions of the 5' flanking region of the human TMP21 gene were subcloned into the pGL3-basic luciferase reporter plasmid. We identified the -120 to +2 region as containing the minimal sequence necessary for TMP21 gene promoter activity. Gel shift assays revealed that the human TMP21 gene promoter contains NFAT response elements. Expression of NFAT increased TMP21 gene expression and inhibition of NFAT by siRNA reduced TMP21 gene expression. CONCLUSION NFAT plays a very important role in the regulation of human TMP21 gene expression. This study demonstrates that the human TMP21 gene expression is transcriptionally regulated by NFAT signaling.
Collapse
Affiliation(s)
- Shengchun Liu
- Department of Surgery, The First Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing 410006, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Alexopoulos A, Peroukides S, Bravou V, Varakis J, Pyrgakis V, Papadaki H. Implication of bone regulatory factors in human coronary artery calcification. Artery Res 2011. [DOI: 10.1016/j.artres.2011.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
Vitamin A-dependent transcriptional activation of the nuclear factor of activated T cells c1 (NFATc1) is critical for the development and survival of B1 cells. Proc Natl Acad Sci U S A 2010; 108:722-7. [PMID: 21187378 DOI: 10.1073/pnas.1014697108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B1 cells represent a distinct subset of B cells that produce most of the natural serum IgM and much of the gut IgA and function as an important component of early immune responses to pathogens. The development of B1 cells depends on the nuclear factor of activated T cells c1 (NFATc1), a transcription factor abundantly expressed by B1 cells but not by conventional B2 cells. However, the factors that regulate the expression of NFATc1 in B1 cells remain unknown. Here we show that a vitamin A-deficient diet results in reduction of NFATc1 expression in B1 cells and almost complete loss of the B1 cell compartment. As a consequence, vitamin A-deficient mice have reduced serum IgM and are unable to mount T cell-independent antibody responses against bacterial antigens. We demonstrate that injection of all-trans retinoic acid induces the expression of NFATc1, particularly from the constitutive P2 promoter, and leads to the increase of the B1 cells. Thus, the retinoic acid-dependent pathway is critical for regulating NFATc1 expression and for maintenance of the natural memory B cell compartment.
Collapse
|
45
|
Belibasakis GN, Emingil G, Saygan B, Turkoglu O, Atilla G, Bostanci N. Gene expression of transcription factor NFATc1 in periodontal diseases. APMIS 2010; 119:167-72. [PMID: 21284733 DOI: 10.1111/j.1600-0463.2010.02706.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Periodontitis is a disease of infectious aetiology that causes inflammatory destruction of the tooth-supporting tissues. Activated T cells are central to the pathogenesis of the disease, by producing receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) that stimulates bone resorption. Antigenic activation of T cells is regulated by the induction of transcription factor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). There is as yet no information on the potential involvement of NFATc1 in periodontal diseases. This study aimed to investigate NFATc1 gene expression levels in periodontal diseases, and analyse the potential correlation with RANKL expression and clinical periodontal parameters. In this cross-sectional study, gingival tissue biopsies were obtained from healthy (n = 10) and periodontally diseased (n = 58) sites. NFATc1 and RANKL gene expression levels in these samples were analysed by quantitative real-time polymerase chain reaction. Compared with healthy subjects, patients with gingivitis, chronic and aggressive periodontitis, exhibited higher NFATc1 expression, which proved to be statistically significant in the periodontitis groups. NFATc1 and RANKL expression levels strongly correlated with each other, and with clinical periodontal parameters. The increased expression of NFATc1 in periodontitis denotes a role for this transcription factor in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
Koslowski M, Luxemburger U, Türeci Ö, Sahin U. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1α. Oncogene 2010; 30:876-82. [DOI: 10.1038/onc.2010.481] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Serrano-Pérez MC, Martín ED, Vaquero CF, Azcoitia I, Calvo S, Cano E, Tranque P. Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: Identification of a subpopulation of reactive astrocytes. Glia 2010; 59:94-107. [DOI: 10.1002/glia.21079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/23/2010] [Indexed: 01/21/2023]
|
48
|
Brandt C, Liman P, Bendfeldt H, Mueller K, Reinke P, Radbruch A, Worm M, Baumgrass R. Whole blood flow cytometric measurement of NFATc1 and IL-2 expression to analyze cyclosporine A-mediated effects in T cells. Cytometry A 2010; 77:607-13. [PMID: 20583270 DOI: 10.1002/cyto.a.20928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The calcineurin inhibitor Cyclosporine A (CsA) is one of the crucial immunosuppressive drugs given after organ transplantation. The small therapeutic window of CsA generates the dilemma that efficient and toxic drug doses differ only slightly. Moreover, these threshold concentrations differ considerably between individuals; therefore, functional assays are urgently needed. We explored whether the transcription factor NFATc1, a direct as well as indirect target of CsA, can be used as a potential biomarker to determine the individual immunosuppressive activity of CsA. First, in isolated human T cells we showed that flow cytometry is practicable to measure NFATc1, the most abundant NFATc isoform in activated T cells. Second, for whole blood we developed a flow cytometric assay to determine in parallel the inducible transcription factor NFATc1 and the cytokine IL-2 in stimulated T cells. We found that added CsA inhibits both the expression of NFATc1 and IL-2 in T cells of stimulated whole blood samples with IC(50) values of 200 and 150 nM, respectively. The intra- and inter-assay variability was low, and clinical practicability was good. Further experiments have to demonstrate whether the parallel cytometric measurement of NFATc1 and IL-2 in whole blood is a good predictor of individual CsA efficacy and toxicity in CsA-treated patients.
Collapse
Affiliation(s)
- Claudia Brandt
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mehta J, Genin A, Brunner M, Scalzi LV, Mishra N, Beukelman T, Cron RQ. Prolonged expression of CD154 on CD4 T cells from pediatric lupus patients correlates with increased CD154 transcription, increased nuclear factor of activated T cell activity, and glomerulonephritis. ACTA ACUST UNITED AC 2010; 62:2499-509. [PMID: 20506525 DOI: 10.1002/art.27554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess CD154 expression in patients with pediatric systemic lupus erythematosus (SLE) and to explore a transcriptional mechanism that may explain dysregulated expression of CD154. METHODS Cell surface CD154 expression (pre- and postactivation) in peripheral blood CD4 T cells from 29 children with lupus and 29 controls matched for age, sex, and ethnicity was examined by flow cytometry. CD154 expression was correlated with clinical features, laboratory parameters, and treatments received. Increased CD154 expression on CD4 T cells from the SLE patients was correlated with CD154 message and transcription rates by real-time reverse transcription-polymerase chain reaction (RT-PCR) and nuclear run-on assays, respectively. Nuclear factor of activated T cell (NF-AT) transcription activity and mRNA levels in CD4 T cells from SLE patients were explored by reporter gene analysis and real-time RT-PCR, respectively. RESULTS CD154 surface protein levels were increased 1.44-fold in CD4 T cells from SLE patients as compared with controls in cells evaluated 1 day postactivation ex vivo. This increase correlated clinically with the presence of nephritis and an elevated erythrocyte sedimentation rate. Increased CD154 protein levels also correlated with increased CD154 mRNA levels and with CD154 transcription rates, particularly at later time points following T cell activation. Reporter gene analyses revealed a trend for increased NF-AT, but decreased activator protein 1 and similar NF-kappaB, activity in CD4 T cells from SLE patients as compared with controls. Moreover, NF-AT1 and, in particular, NF-AT2 mRNA levels were notably increased in CD4 T cells from SLE patients as compared with controls. CONCLUSION Following activation, cell surface CD154 is increased on CD4 T cells from pediatric lupus patients as compared with controls, and this increase correlates with the presence of nephritis, increased CD154 transcription rates, and increased NF-AT activity. These results suggest that NF-AT/calcineurin inhibitors, such as tacrolimus and cyclosporine, may be beneficial in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Jay Mehta
- Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Alexopoulos A, Bravou V, Peroukides S, Kaklamanis L, Varakis J, Alexopoulos D, Papadaki H. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int J Cardiol 2010; 139:142-9. [PMID: 19019468 DOI: 10.1016/j.ijcard.2008.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 08/26/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Emerging evidence suggests that calcific aortic valve stenosis constitutes an active process sharing common features with atherosclerosis and bone formation. To further support this hypothesis, we investigated the expression of bone regulatory factors in calcified aortic valves. METHODS-RESULTS Formalin-fixed, paraffin-embedded tissue samples of human aortic tricuspid valves (n=54) were used from patients undergoing valve replacement for calcific, non-rheumatic aortic stenosis. As controls, fourteen aortic tricuspid valves (n=14) were obtained at autopsy from patients without clinical and morphological aortic valve lesions. Sections from both stenotic and normal aortic valve leaflets were studied immunohistochemically. Interstitial cells in stenotic valves showed intense expression of Sox9, Runx2 and Osterix (Osx) whereas NFATc1 was expressed in interstitial and inflammatory cells. In addition, NFATc1 expression correlated significantly with Osx (r=0.458, p<0.001) and Runx2 (r=0.387, p<0.001). Finally, there was accumulation of activated interstitial cells, T lymphocytes and macrophages as well as intense neoangiogenesis in pathological leaflets. CONCLUSIONS The presence of NFATc1 and Osx in our material lends further support to the hypothesis that during the process of aortic valve calcification there is expression of osteoblastic phenotypes by valvular cells.
Collapse
|