1
|
Wang Y, Li D, Liu Y, Chen S, Dong Z. Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5. SCIENCE ADVANCES 2025; 11:eadp9894. [PMID: 39792675 PMCID: PMC11721569 DOI: 10.1126/sciadv.adp9894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance. We observed an increase in the population of ILC2s in Rag1-deficient mice. Homotypic engagement of SFRs between ILC2s and adaptive immune cells was identified as a potential mechanism. SFR deficiency led to an increase in ILC2s. Conditional deletion of SFRs on T and/or B cells led to an increased ILC2 abundance. Mechanistically, as ILC precursors differentiate into ILC2s, SFRs, primarily SLAMF3 and SLAMF5, are inhibitory, which impair IL-7-induced PI3K activation and enhance apoptosis via SHP-1. These findings reveal a mechanism by which adaptive immune cells negatively regulate the homeostasis of ILC2s and contribute to our understanding of the complex interplay between innate and adaptive immune cells in the regulation of immune responses.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Dan Li
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yehai Liu
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Kwantwi LB. SLAM family-mediated crosstalk between tumor and immune cells in the tumor microenvironment: a promising biomarker and a potential therapeutic target for immune checkpoint therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03675-2. [PMID: 39212911 DOI: 10.1007/s12094-024-03675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Immune cells infiltrating the tumor microenvironment are physiologically important in controlling cancers. However, emerging studies have shown that cancer cells can evade immune surveillance and establish a balance in which these immune cells support tumor progression and therapeutic resistance. The signaling lymphocytic activation molecule family members have been recognized as mediators of tumor microenvironment interactions, and a promising therapeutic target for cancer immunotherapy. This review is focused on the role of SLAM family in tumor and immune cell interactions and discusses how such crosstalk affects tumor behavior. This will shed insight into the next step toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
3
|
Wang Y, Quan Y, He J, Chen S, Dong Z. SLAM-family receptors promote resolution of ILC2-mediated inflammation. Nat Commun 2024; 15:5056. [PMID: 38871792 DOI: 10.1038/s41467-024-49466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice. SFR deficiency exacerbates ILC2-driven eosinophil infiltration in the lung, and results in a significant increase in IL-13 production by ILC2s exclusively in mediastinal lymph nodes (MLN), leading to increased dendritic cell (DC) and TH2 cell numbers. In MLNs, we observe more frequent interaction between ILC2s and bystander T cells, with T cell-expressed SFRs (especially SLAMF3 and SLAMF5) acting as self-ligands to suppress IL-13 production by ILC2s. Mechanistically, homotypic engagement of SFRs at the interface between ILC2s and T cells delivers inhibitory signaling primarily mediated by SHIP-1. This prevents activation of NF-κB, driven by IL-7 and IL-33, two major drivers of ILC2-mediated type 2 immunity. Thus, our study shows that an ILC2-DC-TH2 regulatory axis may promote the resolution of pulmonary type 2 immune responses, and highlights SLAMF3/SLAMF5 as potential therapeutic targets for ameliorating type 2 immunity.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yuhe Quan
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Junming He
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Lin Z, Tang X, Cao Y, Yang L, Jiang M, Li X, Min J, Chen B, Yang Y, Gu C. CD229 interacts with RASAL3 to activate RAS/ERK pathway in multiple myeloma proliferation. Aging (Albany NY) 2022; 14:9264-9279. [PMID: 36445333 PMCID: PMC9740379 DOI: 10.18632/aging.204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, while CAR-T therapy offers a new direction for the treatment of MM. Recently, signaling lymphocytic activation molecule family 3 (CD229), a cell surface immune receptor belonging to the signaling lymphocyte activating molecule family (SLAMF), is emerging as a CAR-T therapeutic target in MM. However, a clear role of CD229 in MM remains elusive. In this study, MM patients with elevated CD229 expression achieved poor prognosis by analyzing MM clinical databases. In addition, CD229 promoted MM cell proliferation in vitro as well as in xenograft mouse model in vivo. Mechanism study revealed that CD229 promoted MM cell proliferation by regulating the RAS/ERK signaling pathway. Further exploration employed co-immunoprecipitation coupled with mass spectrometry to identify RASAL3 as an important downstream protein of CD229. Additionally, we developed a co-culture method combined with the immunofluorescence assay to confirm that intercellular tyrosine phosphorylation mediated self-activation of CD229 to activate RAS/ERK signaling pathway via interacting with RASAL3. Taken together, these findings not only demonstrate the oncogenic role of CD229 in MM cell proliferation, but also illustrate the potential of CD229 as a promising therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Zigen Lin
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijin Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Min
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Li B, Lu Y, Zhong MC, Qian J, Li R, Davidson D, Tang Z, Zhu K, Argenty J, de Peredo AG, Malissen B, Roncagalli R, Veillette A. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci Immunol 2022; 7:eabn6373. [PMID: 35930657 DOI: 10.1126/sciimmunol.abn6373] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD2 is largely described to promote T cell activation when engaged by its ligands, CD48 in mice and CD58 in humans, that are present on antigen-presenting cells (APCs). However, both CD48 and CD58 are also expressed on T cells. By generating new knockout mouse strains lacking CD2 or CD48 in the C57BL/6 background, we determined that whereas CD2 was necessary on T cells for T cell activation, its ligand CD48 was not required on APCs. Rather, CD48 was also needed on T cells. One exception was during cytotoxicity, which required CD48 on T cells and APCs. Fluorescence resonance energy transfer (FRET) studies in nonimmune cells provided evidence that cis interactions between CD2 and CD48 existed within individual cells. CD2-CD48 interactions on T cells enabled more robust T cell receptor (TCR) signals, including protein tyrosine phosphorylation. Using T cells from a CD2 knock-in mouse in which a tag was inserted at the carboxyl terminus of CD2, mass spectrometry analyses revealed that the role of CD2 in T cell activation correlated with its ability to interact with components of the TCR complex and the protein tyrosine kinase Lck. CD2-CD58 provided a similar function in human T cells. Thus, our data imply that T cell-intrinsic cis interactions of CD2 with its ligands are required for TCR signaling and T cell activation. Interactions with ligands on APCs contribute during cytotoxicity.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Zhenghai Tang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Kaiwen Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS UPS, Toulouse, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
6
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
7
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
9
|
Ishibashi M, Takahashi R, Tsubota A, Sasaki M, Handa H, Imai Y, Tanaka N, Tsukune Y, Tanosaki S, Ito S, Asayama T, Sunakawa M, Kaito Y, Kuribayashi-Hamada Y, Onodera A, Moriya K, Komatsu N, Tanaka J, Odajima T, Sugimori H, Inokuchi K, Tamura H. SLAMF3-Mediated Signaling via ERK Pathway Activation Promotes Aggressive Phenotypic Behaviors in Multiple Myeloma. Mol Cancer Res 2020; 18:632-643. [PMID: 31974290 DOI: 10.1158/1541-7786.mcr-19-0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 12/03/2019] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
The signaling lymphocytic activation molecule family 3 (SLAMF3) is a member of the immunoglobulin superfamily expressed on T, B, and natural killer cells and modulates the activation and cytotoxicity of these cells. SLAMF3 is also expressed on plasma cells from patients with multiple myeloma (MM), although its role in MM pathogenesis remains unclear. This study found that SLAMF3 is highly and constitutively expressed on MM cells regardless of disease stage and that SLAMF3 knockdown/knockout suppresses proliferative potential and increases drug-induced apoptosis with decreased levels of phosphorylated ERK protein in MM cells. SLAMF3-overexpressing MM cells promote aggressive myeloma behavior in comparison with cytoplasmic domain-truncated SLAMF3 (ΔSLAMF3) cells. SLAMF3 interacts directly with adaptor proteins SH2 domain-containing phosphatase 2 (SHP2) and growth factor receptor bound 2 (GRB2), which also interact with each other. SLAMF3 knockdown, knockout, ΔSLAMF3, and SHP2 inhibitor-treated MM cells decreased phosphorylated ERK protein levels. Finally, serum soluble SLAMF3 (sSLAMF3) levels were markedly increased in advanced MM. Patients with high levels of sSLAMF3 progressed to the advanced stage significantly more often and had shorter progression-free survival times than those with low levels. This study revealed that SLAMF3 molecules consistently expressed on MM cells transmit MAPK/ERK signals mediated via the complex of SHP2 and GRB2 by self-ligand interaction between MM cells and induce a high malignant potential in MM. Furthermore, high levels of serum sSLAMF3 may reflect MM disease progression and be a useful prognostic factor. IMPLICATIONS: SLAMF3 may be a new therapeutic target for immunotherapy and novel agents such as small-molecule inhibitors.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Risa Takahashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Asako Tsubota
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Makoto Sasaki
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Tsukune
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Sakae Tanosaki
- Department of Hematology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shigeki Ito
- Department of Hematology/Oncology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Asaka Onodera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Odajima
- Faculty of Health Science, Daito Bunka University School of Sports and Health Science, Saitama, Japan
| | - Hiroki Sugimori
- Department of Preventive Medicine, Daito Bunka University Graduate School of Sports and Health Science, Saitama, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
10
|
Valenzuela-Vazquez L, Núñez-Enríquez JC, Sánchez-Herrera J, Jiménez-Hernández E, Martín-Trejo JA, Espinoza-Hernández LE, Medina-Sanson A, Flores-Villegas LV, Peñaloza-González JG, Refugio Torres-Nava J, Espinosa-Elizondo RM, Amador-Sánchez R, Santillán-Juárez JD, Flores-Lujano J, Pérez-Saldívar ML, García-López LR, Castañeda-Echevarría A, Rodríguez-Leyva F, Rosas-Vargas H, Mata-Rocha M, Duarte-Rodríguez DA, Sepúlveda-Robles OA, Mancilla-Herrera I, Mejía-Aranguré JM, Cruz-Munoz ME. Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. PLoS One 2020; 15:e0227314. [PMID: 31951638 PMCID: PMC6968843 DOI: 10.1371/journal.pone.0227314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children around the globe. Mexico City has one of the highest incidence rates of childhood leukemia worldwide with 49.5 cases per million children under the age of 15 which is similar to that reported for Hispanic populations living in the United States. In addition, it has been noted a dismal prognosis in Mexican and Hispanic ALL pediatric population. Although ALL, like cancer in general, has its origins in endogenous, exogenous, and genetic factors, several studies have shown that the immune system also plays a deterministic role in cancer development. Among various elements of the immune system, T lymphocytes and NK cells seem to dominate the immune response against leukemia. The aim of the present study was to perform a phenotypic and functional characterization of NK cells in ALL Mexican children at the moment of diagnosis and before treatment initiation. A case-control study was conducted by the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia (MIGICCL). 41 cases were incident ALL children younger than 17 years old and residents of Mexico City. 14 controls were children without leukemia, matched by age and sex with cases. NK cell function was evaluated by degranulation assays towards K562 cells and SLAM-associated protein (SAP) expression was measured by intracellular staining. All assays were performed using peripheral blood mononuclear cells from controls and patients. The results indicate that NK mediated cytotoxicity, measured by CD107a degranulation assays in response to K562 cells, was reduced in ALL patients compared to controls. Interestingly, an impaired NK cell killing of target cells was not equally distributed among ALL patients. In contrast to patients classified as high-risk, standard-risk patients did not display a significant reduction in NK cell-mediated cytotoxicity. Moreover, patients presenting a leukocyte count ≥ 50,000xmm3 displayed a reduction in NK-cell mediated cytotoxicity and a reduction in SAP expression, indicating a positive correlation between a reduced SAP expression and an impaired NK cell-mediated citotoxicity. In the present study it was observed that unlike patients with standard-risk, NK cells from children presenting high-risk ALL, harbor an impaired cytotoxicity towards K562 at diagnosis. In addition, NK cell function was observed to be compromised in patients with a leukocyte count ≥50,000xmm3, where also it was noticed a decreased expression of SAP compared to patients with a leukocyte count <50,000xmm3. These data indicate NK cell-mediated cytotoxicity is not equally affected in ALL patients, nevertheless a positive correlation between low SAP expression and decreased NK cell-mediated cytotoxicity was observed in ALL patients with a leukocyte count ≥50,000xmm3. Finally, an abnormal NK cell-mediated cytotoxicity may represent a prognostic factor for high-risk acute lymphoblastic leukemia.
Collapse
Affiliation(s)
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Laura Eugenia Espinoza-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Aurora Medina-Sanson
- Servicio de Hemato-Oncologia, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud del D.F., Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 "Carlos McGregor Sánchez Navarro", IMSS, Mexico City, Mexico
| | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud (SS), Mexico City, Mexico
| | | | | | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de infectología e inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- * E-mail: (MECM); (JMMA)
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- * E-mail: (MECM); (JMMA)
| |
Collapse
|
11
|
Chen S, Dong Z. Concomitant deletion of SLAM-family receptors, NKG2D and DNAM-1 reveals gene redundancy of NK cell activating receptors in NK cell development and education. J Leukoc Biol 2019; 107:561-572. [PMID: 31729776 DOI: 10.1002/jlb.1ma1019-186r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/11/2022] Open
Abstract
NK cells recognize "unwanted" cells using a variety of germline-encoded activating receptors, such as the seven members of signaling lymphocyte activating molecule (SLAM)-family receptors (SFRs), natural killer cell group 2D (NKG2D), and DNAX accessory molecule-1(DNAM-1). Whether these receptors redundantly or synergistically regulate NK cell development and effector function remains poorly understood. By generating mice lacking SFRs, NKG2D, and DNAM-1, separately or in combination, we found that SLAMF6, one of the SFR members, was associated with NK cell differentiation, but its absence had no severe effect on NK cell differentiation and function, likely due to SFR redundancy. Moreover, we revealed that SFRs might work with other NK cell activating receptors in regulating NK cell development and function. We found that SFR deficiency caused an increase in immature NK cell subsets (CD27+ CD11b- ), and this effect was further augmented by the additional deficiency of NKG2D but not DNAM-1. However, SFR-deficient NK cells exhibited elevated responsiveness against "missing-self" hematopoietic targets, whereas the deletion of either NKG2D or DNAM-1 could partially abrogate the elevated effect of SFR deficiency on NK cell activation. Therefore, our results reveal the complexity of activating receptors in regulating NK cell differentiation and activation, extending our insights into the gene redundancy and compensatory effect of NK cell activating receptors.
Collapse
Affiliation(s)
- Shasha Chen
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
13
|
Vacchio MS, Ciucci T, Gao Y, Watanabe M, Balmaceno-Criss M, McGinty MT, Huang A, Xiao Q, McConkey C, Zhao Y, Shetty J, Tran B, Pepper M, Vahedi G, Jenkins MK, McGavern DB, Bosselut R. A Thpok-Directed Transcriptional Circuitry Promotes Bcl6 and Maf Expression to Orchestrate T Follicular Helper Differentiation. Immunity 2019; 51:465-478.e6. [PMID: 31422869 DOI: 10.1016/j.immuni.2019.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Masashi Watanabe
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mitchell T McGinty
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Allan Huang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cameron McConkey
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yongmei Zhao
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jyoti Shetty
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bao Tran
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
14
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
NK cell recognition of hematopoietic cells by SLAM-SAP families. Cell Mol Immunol 2019; 16:452-459. [PMID: 30911116 DOI: 10.1038/s41423-019-0222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family of receptors (SFRs) are ubiquitously expressed on immune cells, and they regulate multiple immune events by recruiting SH2 (Src homology 2) domain-containing SAP family adapters, including SAP and its homologs, Ewing's sarcoma-associated transcript 2 (EAT-2) and EAT-2 related transducer (ERT). In human patients with X-linked lymphoproliferative (XLP) disease, which is caused by SAP mutations, SFRs alternatively bind other inhibitory SH2 domain-containing molecules to suppress immune cell activation and development. NK cells express multiple SFRs and all SAP family adapters. In recent decades, SFRs have been found to be critical for enhancing NK cell activation in response to abnormal hematopoietic cells in SAP-family-intact NK cells; however, SFRs might suppress NK cell activation in SAP-family-deficient mice or patients with XLP1. In this paper, we review how these two distinct SFR signaling pathways orchestrate NK cell activation and inhibition and highlight the importance of SFR regulation of NK cell biology and their physiological status and pathological relevance in patients with XLP1.
Collapse
|
16
|
Abstract
T follicular helper (Tfh) cells are a distinct type of CD4+ T cell specialized in providing help to B cells during the germinal centre (GC) reaction. As such, they are critical determinants of the quality of an antibody response following antigen challenge. Excessive production of Tfh cells can result in autoimmunity whereas too few can result in inadequate protection from infection. Hence, their differentiation and maintenance must be tightly regulated to ensure appropriate but limited help to B cells. Unlike the majority of other CD4+ T-cell subsets, Tfh cell differentiation occurs in three phases defined by their anatomical location. During each phase of differentiation the emerging Tfh cells express distinct patterns of co-receptors, which work together with the T-cell receptor (TCR) to drive Tfh differentiation. These signals provided by both TCR and co-receptors during Tfh differentiation alter proliferation, survival, metabolism, cytokine production and transcription factor expression. This review will discuss how engagement of TCR and co-receptors work together to shape the formation and function of Tfh cells.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
17
|
Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, Li D, Du J, Lin X, Yang M, Dong Z. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med 2017; 214:475-489. [PMID: 28049627 PMCID: PMC5294859 DOI: 10.1084/jem.20161312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Chen et al. dissect SAP-dependent and SAP-independent SLAM family signaling in the regulation of NKT cell development and follicular T helper cell differentiation using a novel mouse model lacking all seven SLAM family receptors. Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Chenxu Cai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Marzenna Blonska
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|
18
|
Huang YH, Tsai K, Tan SY, Kang S, Ford ML, Harder KW, Priatel JJ. 2B4-SAP signaling is required for the priming of naive CD8 + T cells by antigen-expressing B cells and B lymphoma cells. Oncoimmunology 2016; 6:e1267094. [PMID: 28344876 DOI: 10.1080/2162402x.2016.1267094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022] Open
Abstract
Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a-/- CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a-/- CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Tsai
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Y Tan
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohyeong Kang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mandy L Ford
- Department of Surgery, Emory University , Atlanta, GA, USA
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, British Columbia, Canada
| | - John J Priatel
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Chen S, Yang M, Du J, Li D, Li Z, Cai C, Ma Y, Zhang L, Tian Z, Dong Z. The Self-Specific Activation Receptor SLAM Family Is Critical for NK Cell Education. Immunity 2016; 45:292-304. [PMID: 27521267 DOI: 10.1016/j.immuni.2016.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/26/2016] [Accepted: 05/24/2016] [Indexed: 01/23/2023]
Abstract
NK cell education, a term describing a process for NK cell acquisition of functional competence, is primarily achieved by self-MHC-I-specific inhibitory receptors. In this study, we have demonstrated that SLAM family receptors (SFRs) redundantly expressed on hematopoietic cells function as self-specific activation receptors critical for NK cell education. To overcome gene redundancy, we generated mice simultaneously lacking seven SFRs, revealing that NK-cell-mediated rejection of semi-allogeneic hematopoietic cells largely depended on the presence of SFRs on target cells. This stimulatory effect was determined by the presence of SFR-coupled adaptors; however, SFR-deficient mice displayed enhanced reactivity to hematopoietic cells. These findings demonstrate that SFRs endow NK cells with an ability to kill hematopoietic cells during the effector phase; however, the sustained engagement of SFRs can desensitize NK cell responses during an education process. Therefore, self-specific activating ligands may be "tolerogens" for NK cells, akin to self-antigens that induce T cell tolerance.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Juan Du
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Li
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zehua Li
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenxu Cai
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Zhigang Tian
- School of Life Sciences, University of Sciences and Technology of China, Hefei 230026, China.
| | - Zhongjun Dong
- Institute for Immunology, School of Medicine and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Wang N, Keszei M, Halibozek P, Yigit B, Engel P, Terhorst C. Slamf6 negatively regulates autoimmunity. Clin Immunol 2016; 173:19-26. [PMID: 27368806 DOI: 10.1016/j.clim.2016.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
The nine SLAM family (Slamf) receptors are positive or negative regulators of adaptive and innate immune responses, and of several autoimmune diseases. Here we report that the transfer of Slamf6-/- B6 CD4+ T cells into co-isogenic bm12 mice causes SLE-like autoimmunity with elevated levels of autoantibodies. In addition, significantly higher percentages of Tfh cells and IFN-γ-producing CD4+ cells, as well as GC B cells were observed. Interestingly, the expression of the Slamf6-H1 isoform in Slamf6-/- CD4+ T cells did not induce this lupus-like phenotype. By contrast, Slamf1-/- or Slamf5-/- CD4+ T cells caused the same pathology as WT CD4+ T cells. As the transfer of Slamf [1+6]-/- or Slamf [1+5+6]-/- CD4+ T cells induced WT levels of autoantibodies, the presence of Slamf1 was requisite for the induction of increased levels of autoantibodies by Slamf6-/- CD4+ T cells. We conclude that Slamf6 functions as an inhibitory receptor that controls autoimmune responses.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Marton Keszei
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Halibozek
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pablo Engel
- Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol 2015; 38:45-51. [PMID: 26682762 DOI: 10.1016/j.coi.2015.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is a group of six receptors restricted to hematopoietic cells. Most of these receptors are self-ligands, and thus are triggered in the context of interactions between hematopoietic cells. By way of their cytoplasmic domain, SLAM-related receptors associate with the SLAM-associated protein (SAP) family of adaptors, which control the signals and functions of SLAM family receptors. Recent findings have provided new insights into the key roles of SLAM family receptors in normal immunity, their involvement in human diseases and their usefulness as drug targets to treat human malignancies. These data are reviewed herein.
Collapse
Affiliation(s)
- Ning Wu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7.
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7; Department of Medicine, University of Montréal, Montréal, Québec, Canada H3T 1J4; Department of Medicine, McGill University, Montréal, Québec, Canada H3G 1Y6.
| |
Collapse
|
22
|
Margraf S, Garner LI, Wilson TJ, Brown MH. A polymorphism in a phosphotyrosine signalling motif of CD229 (Ly9, SLAMF3) alters SH2 domain binding and T-cell activation. Immunology 2015. [PMID: 26221972 PMCID: PMC4610628 DOI: 10.1111/imm.12513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signalling lymphocyte activation molecule (SLAM) family members regulate activation and inhibition in the innate and adaptive immune systems. Genome‐wide association studies identified their genetic locus (1q23) as highly polymorphic and associated with susceptibility to systemic lupus erythematosus (SLE). Here we show that the Val602 variant of the non‐synonymous single nucleotide polymorphism (SNP) rs509749 in the SLAM family member CD229 (Ly9, SLAMF3) has a two‐fold lower affinity compared with the SLE‐associated Met602 variant for the small adaptor protein SAP. Comparison of the two variants in T‐cell lines revealed the Val602 variant to be significantly more highly expressed than CD229 Met602. Activation was diminished in cells expressing CD229 Val602 compared with CD229 Met602 as measured by up‐regulation of CD69. There was no correlation between homozygosity at rs509749 and activation in peripheral blood mononuclear cells from healthy donors. These findings identify potential mechanisms by which a single SNP can perturb fine‐tuning in the immune system with significant functional consequences.
Collapse
Affiliation(s)
- Stefanie Margraf
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lee I Garner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timothy J Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Liu H, Li L, Voss C, Wang F, Liu J, Li SSC. A Comprehensive Immunoreceptor Phosphotyrosine-based Signaling Network Revealed by Reciprocal Protein-Peptide Array Screening. Mol Cell Proteomics 2015; 14:1846-58. [PMID: 25907764 PMCID: PMC4587333 DOI: 10.1074/mcp.m115.047951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/22/2015] [Indexed: 01/18/2023] Open
Abstract
Cells of the immune system communicate with their environment through immunoreceptors. These receptors often harbor intracellular tyrosine residues, which, when phosphorylated upon receptor activation, serve as docking sites to recruit downstream signaling proteins containing the Src Homology 2 (SH2) domain. A systematic investigation of interactions between the SH2 domain and the immunoreceptor tyrosine-based regulatory motifs (ITRM), including inhibitory (ITIM), activating (ITAM), or switching (ITSM) motifs, is critical for understanding cellular signal transduction and immune function. Using the B cell inhibitory receptor CD22 as an example, we developed an approach that combines reciprocal or bidirectional phosphopeptide and SH2 domain array screens with in-solution binding assays to identify a comprehensive SH2-CD22 interaction network. Extending this approach to 194 human ITRM sequences and 78 SH2 domains led to the identification of a high-confidence immunoreceptor interactome containing 1137 binary interactions. Besides recapitulating many previously reported interactions, our study uncovered numerous novel interactions. The resulting ITRM-SH2 interactome not only helped to fill many gaps in the immune signaling network, it also allowed us to associate different SH2 domains to distinct immune functions. Detailed analysis of the NK cell ITRM-mediated interactions led to the identification of a network nucleated by the Vav3 and Fyn SH2 domains. We showed further that these SH2 domains have distinct functions in cytotoxicity. The bidirectional protein-peptide array approach described herein may be applied to the numerous other peptide-binding modules to identify potential protein-protein interactions in a systematic and reliable manner.
Collapse
Affiliation(s)
- Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Feng Wang
- §Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- §Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Shawn Shun-Cheng Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1;
| |
Collapse
|
24
|
Huang YH, Tsai K, Ma C, Vallance BA, Priatel JJ, Tan R. SLAM-SAP signaling promotes differentiation of IL-17-producing T cells and progression of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5841-53. [PMID: 25362182 DOI: 10.4049/jimmunol.1301435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-17 plays critical roles in host defenses, combating bacterial and fungal infections, as well as the pathogenesis of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE). The signaling adaptor SAP is essential for normal immune homeostasis and mutations within SH2D1A, the locus encoding this protein, result in serious and sometimes fatal syndromes, including X-linked lymphoproliferative disease and severe cases of common variable immunodeficiency. However, the precise cellular basis of how SAP deficiency contributes to immune dysfunction remains incompletely understood. In this study, we found that CD4 and CD8 T cells lacking SAP had a diminished capacity to differentiate into IL-17-producing Th17 and T cytotoxic (Tc17) cells relative to wild-type lymphocytes. The use of costimulating SLAM Abs was found to augment the differentiation of IL-17-secreting effectors in wild-type but not Sh2d1a(-/-) splenic T cells under IL-17-polarizing conditions. In addition, SAP's regulation of IL-17-secreting T cells was shown to be a T cell-intrinsic role, as purified naive Sh2d1a(-/-) CD4 and CD8 T cells were inherently defective at converting into Th17 and Tc17 cells in vitro and in vivo. Furthermore, Sh2d1a(-/-) mice were protected from EAE and exhibited greatly decreased numbers of CNS-infiltrating Th17 and Tc17 effector T cells and reduced disease severity. Collectively, these results suggest that SLAM-SAP signaling drives the differentiation and function of Th17 and Tc17 cells in vitro and in vivo and contributes to the pathogenesis of autoimmunity in EAE.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kevin Tsai
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Caixia Ma
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Bruce A Vallance
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - John J Priatel
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada;
| | - Rusung Tan
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
25
|
Kirkham CL, Carlyle JR. Complexity and Diversity of the NKR-P1:Clr (Klrb1:Clec2) Recognition Systems. Front Immunol 2014; 5:214. [PMID: 24917862 PMCID: PMC4041007 DOI: 10.3389/fimmu.2014.00214] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/28/2014] [Indexed: 11/26/2022] Open
Abstract
The NKR-P1 receptors were identified as prototypical natural killer (NK) cell surface antigens and later shown to be conserved from rodents to humans on NK cells and subsets of T cells. C-type lectin-like in nature, they were originally shown to be capable of activating NK cell function and to recognize ligands on tumor cells. However, certain family members have subsequently been shown to be capable of inhibiting NK cell activity, and to recognize proteins encoded by a family of genetically linked C-type lectin-related ligands. Some of these ligands are expressed by normal, healthy cells, and modulated during transformation, infection, and cellular stress, while other ligands are upregulated during the immune response and during pathological circumstances. Here, we discuss historical and recent developments in NKR-P1 biology that demonstrate this NK receptor–ligand system to be far more complex and diverse than originally anticipated.
Collapse
Affiliation(s)
- Christina L Kirkham
- Department of Immunology, University of Toronto, Sunnybrook Research Institute , Toronto, ON , Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, Sunnybrook Research Institute , Toronto, ON , Canada
| |
Collapse
|
26
|
Pérez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization. ACTA ACUST UNITED AC 2014; 211:727-42. [PMID: 24687958 PMCID: PMC3978279 DOI: 10.1084/jem.20132038] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.
Collapse
|
27
|
Pállinger E, Erdélyi D, Kovács G, Kriván G, Korponay Z, Fekete G, Szabó A, Falus A, Dérfalvi B. [Flow cytometry in the diagnosis of hemophagocytic lymphohistiocytosis in a case with fatal outcome]. Orv Hetil 2014; 155:389-95. [PMID: 24583560 DOI: 10.1556/oh.2014.29790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemophagocytic lymphohistiocytosis is a multisystem inflammation, generated by the uncontrolled and excessive activation of cytotoxic T lymphocytes and natural killer cells. Severe immunodeficiency and generalized macrophage activation can often be detected in the background of this life threatening disorder. It is classified as a primary immunodeficiency. Functional abnormalities of the perforin protein or defects in granule secretory mechanisms are caused by gene mutations in most cases. Diagnostic criteria of hemophagocytic lymphohistiocytosis are the following: fever, splenomegaly, cytopenias affecting at least two of the 3 lineages in peripheral blood, hypertriglyceridemia and hyperferritinemia, elevated serum level of soluble interleukin-2 receptor (sCD25), hypofibrinogenemia, hemophagocytosis in bone marrow and decreased cytotoxic T cell and natural killer cell activity. In this case report the authors summarize the utility of functional flow cytometry in the diagnosis of hemophagocytic lymphohistiocytosis. Using flow cytometry, elevated intracellular perforin content, decreased killing activity of cytotoxic T cells and natural killer cells, and impaired cell surface expression of CD107a (LAMP1 protein) from in vitro stimulated blood lymphocytes were detected. Abnormal secretion of perforin was also demonstrated. Genetic testing revealed mutation of the MUNC 13-4 gene, which confirmed the base of the abnormal flow cytometric findings. This case report demonstrates the value of functional flow cytometry in the rapid diagnosis of genetically determined hemophagocytic lymphohistiocytosis, a condition in which early diagnosis is critical for optimal management. The authors emphasize the significance of functional flow cytometry in the differential diagnosis of immunodeficiencies.
Collapse
Affiliation(s)
- Eva Pállinger
- Semmelweis Egyetem, Általános Orvostudományi Kar Genetikai, Sejt- és Immunbiológiai Intézet Budapest Nagyvárad tér 4. 1089
| | - Dániel Erdélyi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| | - Gábor Kovács
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| | | | - Zsuzsanna Korponay
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| | - György Fekete
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| | - András Szabó
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| | - András Falus
- Semmelweis Egyetem, Általános Orvostudományi Kar Genetikai, Sejt- és Immunbiológiai Intézet Budapest Nagyvárad tér 4. 1089
| | - Beáta Dérfalvi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Gyermekgyógyászati Klinika Budapest
| |
Collapse
|
28
|
Takeda M, Tahara M, Nagata N, Seki F. Wild-Type Measles Virus is Intrinsically Dual-Tropic. Front Microbiol 2012; 2:279. [PMID: 22347873 PMCID: PMC3276359 DOI: 10.3389/fmicb.2011.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/26/2011] [Indexed: 01/30/2023] Open
Abstract
Measles is a highly contagious disease that causes temporary and severe immunosuppression in patients. Signaling lymphocyte activation molecule (SLAM) expressed on cells of the immune system functions as a receptor for measles virus (MV). In addition to SLAM, vaccine strains of MV also use a ubiquitously expressed complement regulatory protein, CD46, as a receptor, whereas wild-type (wt) MV strains do not use this receptor. However, recent studies have indicated that SLAM is not the sole receptor for wt MV strains. These strains have an intrinsic ability to enter both immune and epithelial cells using distinct receptor binding sites in their hemagglutinin (H) protein. Recently, a clear answer was obtained through the identification of an epithelial MV receptor, nectin4, expressed at adherens junctions, thereby greatly improving our knowledge of MV receptors. It is now clear that MV specifically targets two cell types, immune cells and epithelial cells, using SLAM and nectin4, respectively. MV loses the ability to use either SLAM or nectin4 when it possesses specific mutations in the H protein. However, nectin4-blind MV still infects SLAM-positive immune cells efficiently (SLAM-tropic), and conversely, SLAM-blind MV infects nectin4-positive epithelial cells efficiently (nectin4-tropic). In this regard, MV is intrinsically dual-tropic to immune cells and epithelial cells. Although many aspects and molecular mechanisms underlying immunosuppressive effects and a highly contagious nature of MV still remain to be elucidated, analyses of physiological functions of these two receptors would provide deep insights into MV pathogenesis.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Sieni E, Cetica V, Mastrodicasa E, Pende D, Moretta L, Griffiths G, Aricò M. Familial hemophagocytic lymphohistiocytosis: a model for understanding the human machinery of cellular cytotoxicity. Cell Mol Life Sci 2012; 69:29-40. [PMID: 21990010 PMCID: PMC11114696 DOI: 10.1007/s00018-011-0835-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
Cytotoxic T lymphocytes, natural killer cells, and NKT cells are effector cells able to kill infected cells. In some inherited human disorders, a defect in selected proteins involved in the cellular cytotoxicity mechanism results in specific clinical syndromes, grouped under the name of familial hemophagocytic lymphohistiocytosis. Recent advances in genetic studies of these patients has allowed the identification of different genetic subsets. Additional genetic immune deficiencies may also induce a similar clinical picture. International cooperation and prospective trials resulted in refining the diagnostic and therapeutic approach to these rare diseases with improved outcome but also with improved knowledge of the mechanisms underlying granule-mediated cellular cytotoxicity in humans.
Collapse
Affiliation(s)
- Elena Sieni
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Valentina Cetica
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Elena Mastrodicasa
- S.C. di Oncoematologia Pediatrica con Trapianto di CSE, Ospedale “S.M. della Misericordia” A.O, Perugia, Italy
| | - Daniela Pende
- A.O.U. San Martino-IST, Istituto Nazionale Ricerca sul Cancro, Genoa, Italy
| | | | - Gillian Griffiths
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, CB2 0XY UK
| | - Maurizio Aricò
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| |
Collapse
|
30
|
Schuldt NJ, Aldhamen YA, Appledorn DM, Seregin SS, Kousa Y, Godbehere S, Amalfitano A. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses. PLoS One 2011; 6:e24147. [PMID: 21912619 PMCID: PMC3166157 DOI: 10.1371/journal.pone.0024147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022] Open
Abstract
Background Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses. Methods and Findings BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo. Conclusion Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo.
Collapse
Affiliation(s)
- Nathaniel J. Schuldt
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel M. Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Youssef Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|