1
|
Lee JH, Hwang SJ, Ham SL, Kim J, Bang HJ, Park JS, Jang HH, Kim TY, Park JW, Seo YR, Kim BS, Kim GS, Lee HJ, Kim CS. Gut Bacterial Metabolites from Tryptophan and Phenylalanine Induce Melatonin Synthesis and Extend Sleep Duration in Mice. ACS OMEGA 2024; 9:43875-43883. [PMID: 39493976 PMCID: PMC11525535 DOI: 10.1021/acsomega.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
The human gut microbiota significantly influences various physiological systems, including immune, nervous, and metabolic systems. Recent studies suggest that gut microbiota may affect sleep quality with certain bacteria and metabolites being linked to sleep patterns. However, the underlying chemical signaling pathway remains unclear. In this study, we investigated the effect of four gut bacteria-derived metabolites, tryptamine (1), indolokine A5 (2), 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, 3), and phenethylamine (PEA, 4), on sleep characteristics in mice and melatonin biosynthesis pathways in zebrafish. Their sleep-promoting effects were evaluated in a pentobarbital-induced sleep mouse model, revealing significant increases in sleep duration and blood melatonin levels, particularly with ITE (3) and PEA (4). Further tests in zebrafish embryos showed that ITE (3) and PEA (4) increased the expression of genes for melatonin biosynthesis (Aanat1, Aanat2, Tph1a, and Hiomt) in a concentration-dependent manner, indicating their potential as therapeutic agents for sleep disorders.
Collapse
Affiliation(s)
- Ji-Hyeok Lee
- Department
of Biohealth Regulatory Science, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Su Jung Hwang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Song Lim Ham
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Hye Jung Bang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon-Suk Park
- Preclinical
Research Center (PRC), Daegu-Gyeongbuk Medical
Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Hyun-Hee Jang
- Research
Institute of Biological R&D Center, Eco-Prime Co., Changwon 51371, Republic
of Korea
| | - Tae Yang Kim
- Kick the
Hurdle Co., Changwon 51139, Republic of Korea
| | | | - Young Rok Seo
- Kick the
Hurdle Co., Changwon 51139, Republic of Korea
| | | | - Gon Sup Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo-Jong Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department
of Biohealth Regulatory Science, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Dexheimer TS, Coussens NP, Silvers T, Jones EM, Chen L, Fang J, Morris J, Moscow JA, Doroshow JH, Teicher BA. Combination screen in multi-cell type tumor spheroids reveals interaction between aryl hydrocarbon receptor antagonists and E1 ubiquitin-activating enzyme inhibitor. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100186. [PMID: 39362362 DOI: 10.1016/j.slasd.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates genes of drug transporters and metabolic enzymes to detoxify small molecule xenobiotics. It has a complex role in cancer biology, influencing both the progression and suppression of tumors by modulating malignant properties of tumor cells and anti-tumor immunity, depending on the specific tumor type and developmental stage. This has led to the discovery and development of selective AhR modulators, including BAY 2416964 which is currently in clinical trials. To identify small molecule anticancer agents that might be combined with AhR antagonists for cancer therapy, a high-throughput combination screen was performed using multi-cell type tumor spheroids grown from malignant cells, endothelial cells, and mesenchymal stem cells. The AhR selective antagonists BAY 2416964, GNF351, and CH-223191 were tested individually and in combination with twenty-five small molecule anticancer agents. As single agents, BAY 2416964 and CH-223191 showed minimal activity, whereas GNF351 reduced the viability of some spheroid models at concentrations greater than 1 µM. The activity of most combinations aligned well with the single agent activity of the combined agent, without apparent contributions from the AhR antagonist. All three AhR antagonists sensitized tumor spheroids to TAK-243, an E1 ubiquitin-activating enzyme inhibitor. These combinations were active in spheroids containing bladder, breast, ovary, kidney, pancreas, colon, and lung tumor cell lines. The AhR antagonists also potentiated pevonedistat, a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit, in several tumor spheroid models. In contrast, the AhR antagonists did not enhance the cytotoxicity of the proteasome inhibitor bortezomib.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Nathan P Coussens
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Thomas Silvers
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Eric M Jones
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jianwen Fang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey A Moscow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Li Y, Yu X, Shi J, Zhao J, Li L. The role of aryl hydrocarbon receptors in nutrient metabolism and immune regulation at the maternal-fetal interface. Placenta 2024; 154:9-17. [PMID: 38830294 DOI: 10.1016/j.placenta.2024.05.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
The maternal-fetal interface is composed of the placenta, which is affiliated with the fetus, and the maternal decidua. During pregnancy, the placenta is mainly responsible for nutrient transport and immune tolerance maintenance, which plays a key role in fetal growth and development and pregnancy maintenance. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exists in various cell types at the maternal-fetal interface and is involved in multiple cellular processes. Recent studies have highlighted the role of AhR in regulating various physiological processes, including glucose and lipid metabolism, as well as tryptophan metabolism and immune responses, within non-pregnant tissues. This review shifts focus towards understanding how AhR modulation impacts metabolism and immune regulation at the maternal-fetal interface. This may implicate the development of pregnancy-related complications and the potential target of the AhR pathway for therapeutic strategies against poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, Shandong, 250021, China
| | - Xiaojun Yu
- School of Public Health Kunming Medical University, Kunming, 650500, China
| | - Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100083, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100083, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100083, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100083, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Chen C, Cao Z, Lei H, Zhang C, Wu M, Huang S, Li X, Xie D, Liu M, Zhang L, Chen G. Microbial Tryptophan Metabolites Ameliorate Ovariectomy-Induced Bone Loss by Repairing Intestinal AhR-Mediated Gut-Bone Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404545. [PMID: 39041942 PMCID: PMC11423200 DOI: 10.1002/advs.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/β-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shaohua Huang
- Institute of Drug Discovery and TechnologyNingbo UniversityNingbo315211China
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau999078China
| | - Denghui Xie
- Department of Joint SurgeryCenter for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and ImagingNational Centre for Magnetic Resonance in WuhanInnovation Academy of Precision Measurement Science and TechnologyCASWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gang Chen
- Department of GeriatricsHubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Chinese Medicine)Wuhan430060China
| |
Collapse
|
6
|
He Y, Zhao C, Su N, Yang W, Yang H, Yuan C, Zhang N, Hu X, Fu Y. Disturbances of the gut microbiota-derived tryptophan metabolites as key actors in vagotomy-induced mastitis in mice. Cell Rep 2024; 43:114585. [PMID: 39110590 DOI: 10.1016/j.celrep.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Previous studies have demonstrated that gut microbiota dysbiosis promotes the development of mastitis. The interaction of the vagus nerve and gut microbiota endows host homeostasis and regulates disease development, but whether the vagus nerve participates in the pathogenesis of mastitis is unclear. Here, vagotomized mice exhibit disruption of the blood-milk barrier and mammary gland inflammation. Notably, mastitis and barrier damage caused by vagotomy are dependent on the gut microbiota, as evidenced by antibiotic treatment and fecal microbiota transplantation. Vagotomy significantly alters the gut microbial composition and tryptophan metabolism and reduces the 5-hydroxyindole acetic acid (5-HIAA) level. Supplementation with 5-HIAA alleviates vagotomy-induced mastitis, which is associated with the activation of the aryl hydrocarbon receptor (AhR) and subsequent inhibition of the NF-κB pathway. Collectively, our findings indicate the important role of the vagus-mediated gut-mammary axis in the pathogenesis of mastitis and imply a potential strategy for the treatment of mastitis by targeting the vagus-gut microbiota interaction.
Collapse
Affiliation(s)
- Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Niri Su
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Wencheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Hengyi Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
7
|
Ruggeri RM, Minuti A, Gianì F, Masto R, Romano D, Aliquò F, Campennì A, Campo S, Cannavò S, D'Ascola A. Polychlorinated Biphenyls (PCBS)-induced oxidative stress and inflammation in human thyrocytes: involvement of AhR and NRF-2/HO-1 pathway. Endocrine 2024:10.1007/s12020-024-04005-w. [PMID: 39174753 DOI: 10.1007/s12020-024-04005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE In this in vitro study, we investigated the effects of polychlorinated biphenyls (PCBs) on human thyrocytes, with a focus on the involvement of AhR, a key player in xenobiotic response, and the anti-oxidant Nrf-2/HO-1 pathway. METHODS Primary cultured thyrocytes were exposed to the dioxin-like congeners PCB118 and PCB126 at 2.5 and 5 µM concentrations. mRNA expression was assessed by real-time PCR, and protein expression by Western Blot and ELISA, while protein quantification was assessed by densitometric analysis. RESULTS In cultured thyrocytes, PCB118 and PCB126 induced a significant (P < 0.01) increase of mRNA and protein levels of the pro-inflammatory cytokines IL-1beta and IL-6, while reducing those of thyroglobulin (TG) and NIS (p < 0.05), indicating down-regulation of these thyroid-specific genes in PCB-induced inflammation. ROS production also increased (p < 0.001). mRNA levels of AhR and the downstream molecules cytochrome P4501A, Nrf-2/HO-1 increased (p < 0.001), as well as related protein levels (p < 0.01), suggesting the activation of AhR and Nrf-2 pathways in response to PCBs exposure. AhR silencing decreased AhR-related gene expression and restored NIS and TG expression, while reducing inflammatory cytokines and oxidative stress markers (p < 0.05). CONCLUSIONS Dioxin-like PCBs (PCB118 and PCB126) may promote inflammation and oxidative stress in thyrocytes, impairing the expression of genes that are key players of thyroid function. These effects can be partially attributed to the activation of the AhR and Nrf-2 pathways. These data may contribute to explain the mechanisms underlying thyroid toxicity of PCBs, highlighting the potential role of these pollutants as a trigger of autoimmune thyroid inflammation and damage.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Department of Human Pathology of Adulthood and Childhood DETEV, Endocrine Unit, University of Messina, Messina, Italy.
| | - Aurelio Minuti
- Department of Human Pathology of Adulthood and Childhood DETEV, Endocrine Unit, University of Messina, Messina, Italy
| | - Fiorenza Gianì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Masto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Davide Romano
- Department of Biomedical and Dental Sciences, and Morpho-functional Images, University of Messina, Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences, and Morpho-functional Images, University of Messina, Messina, Italy
| | - Alfredo Campennì
- Department of Biomedical and Dental Sciences, and Morpho-functional Images, University of Messina, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences, and Morpho-functional Images, University of Messina, Messina, Italy
| | - Salvatore Cannavò
- Department of Human Pathology of Adulthood and Childhood DETEV, Endocrine Unit, University of Messina, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
9
|
Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, Vaziri ND, Ma SX, Su W, Shang YQ, Gao M, Zhang JH, Zhang L, Zhao YY, Cao G. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther 2024; 9:195. [PMID: 39098923 PMCID: PMC11298530 DOI: 10.1038/s41392-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Accumulated evidence suggested that gut microbial dysbiosis interplayed with progressive chronic kidney disease (CKD). However, no available therapy is effective in suppressing progressive CKD. Here, using microbiomics in 480 participants including healthy controls and patients with stage 1-5 CKD, we identified an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers. L. johnsonii abundance reduced with progressive CKD in rats with adenine-induced CKD. L. johnsonii supplementation ameliorated kidney lesion. Serum indole-3-aldehyde (IAld), whose level strongly negatively correlated with creatinine level in CKD rats, decreased in serum of rats induced using unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (NX) as well as late CKD patients. Treatment with IAld dampened kidney lesion through suppressing aryl hydrocarbon receptor (AHR) signal in rats with CKD or UUO, and in cultured 1-hydroxypyrene-induced HK-2 cells. Renoprotective effect of IAld was partially diminished in AHR deficiency mice and HK-2 cells. Our further data showed that treatment with L. johnsonii attenuated kidney lesion by suppressing AHR signal via increasing serum IAld level. Taken together, targeting L. johnsonii might reverse patients with CKD. This study provides a deeper understanding of how microbial-produced tryptophan metabolism affects host disease and discovers potential pathways for prophylactic and therapeutic treatments for CKD patients.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, FL, USA
| | | | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Ming Gao
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Jin-Hua Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Abu-Bakar A, Ismail M, Zulkifli MZI, Zaini NAS, Shukor NIA, Harun S, Inayat-Hussain SH. Mapping the influence of hydrocarbons mixture on molecular mechanisms, involved in breast and lung neoplasms: in silico toxicogenomic data-mining. Genes Environ 2024; 46:15. [PMID: 38982523 PMCID: PMC11232146 DOI: 10.1186/s41021-024-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exposure to chemical mixtures inherent in air pollution, has been shown to be associated with the risk of breast and lung cancers. However, studies on the molecular mechanisms of exposure to a mixture of these pollutants, such as hydrocarbons, in the development of breast and lung cancers are scarce. We utilized in silico toxicogenomic analysis to elucidate the molecular pathways linked to both cancers that are influenced by exposure to a mixture of selected hydrocarbons. The Comparative Toxicogenomics Database and Cytoscape software were used for data mining and visualization. RESULTS Twenty-five hydrocarbons, common in air pollution with carcinogenicity classification of 1 A/B or 2 (known/presumed or suspected human carcinogen), were divided into three groups: alkanes and alkenes, halogenated hydrocarbons, and polyaromatic hydrocarbons. The in silico data-mining revealed 87 and 44 genes commonly interacted with most of the investigated hydrocarbons are linked to breast and lung cancer, respectively. The dominant interactions among the common genes are co-expression, physical interaction, genetic interaction, co-localization, and interaction in shared protein domains. Among these genes, only 16 are common in the development of both cancers. Benzo(a)pyrene and tetrachlorodibenzodioxin interacted with all 16 genes. The molecular pathways potentially affected by the investigated hydrocarbons include aryl hydrocarbon receptor, chemical carcinogenesis, ferroptosis, fluid shear stress and atherosclerosis, interleukin 17 signaling pathway, lipid and atherosclerosis, NRF2 pathway, and oxidative stress response. CONCLUSIONS Within the inherent limitations of in silico toxicogenomics tools, we elucidated the molecular pathways associated with breast and lung cancer development potentially affected by hydrocarbons mixture. Our findings indicate adaptive responses to oxidative stress and inflammatory damages are instrumental in the development of both cancers. Additionally, ferroptosis-a non-apoptotic programmed cell death driven by lipid peroxidation and iron homeostasis-was identified as a new player in these responses. Finally, AHR potential involvement in modulating IL-8, a critical gene that mediates breast cancer invasion and metastasis to the lungs, was also highlighted. A deeper understanding of the interplay between genes associated with these pathways, and other survival signaling pathways identified in this study, will provide invaluable knowledge in assessing the risk of inhalation exposure to hydrocarbons mixture. The findings offer insights into future in vivo and in vitro laboratory investigations that focus on inhalation exposure to the hydrocarbons mixture.
Collapse
Affiliation(s)
- A'edah Abu-Bakar
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - Maihani Ismail
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - M Zaqrul Ieman Zulkifli
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Aini Sofiyya Zaini
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Izzah Abd Shukor
- Health, Safety and Environment (HSE), KLCC Urusharta, Kuala Lumpur, 50088, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Salmaan Hussain Inayat-Hussain
- ESPPS, GHSE, PETRONAS, Kuala Lumpur, 50088, Malaysia
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College St, New Haven, CT, 06250, USA
| |
Collapse
|
11
|
Gao Y, Liu KY, Xiao W, Xie X, Liang Q, Tu Z, Yang L, Yu H, Guo H, Huang S, Han X, Fu J, Zhou Y. Aryl hydrocarbon receptor confers protection against macrophage pyroptosis and intestinal inflammation through regulating polyamine biosynthesis. Theranostics 2024; 14:4218-4239. [PMID: 39113799 PMCID: PMC11303072 DOI: 10.7150/thno.95749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: The aryl hydrocarbon receptor (AhR) functions in the regulation of intestinal inflammation, but knowledge of the underlying mechanisms in innate immune cells is limited. Here, we investigated the role of AhR in modulating the functions of macrophages in inflammatory bowel disease pathogenesis. Methods: The cellular composition of intestinal lamina propria CD45+ leukocytes in a dextran sulfate sodium (DSS)-induced mouse colitis model was determined by single-cell RNA sequencing. Macrophage pyroptosis was quantified by analysis of lactate dehydrogenase release, propidium iodide staining, enzyme-linked immunosorbent assay, western blot, and flow cytometry. Differentially expressed genes were confirmed by RNA-seq, RT-qPCR, luciferase assay, chromatin immunoprecipitation, and immunofluorescence staining. Results: AhR deficiency mediated dynamic remodeling of the cellular composition of intestinal lamina propria (LP) CD45+ immune cells in a colitis model, with a significant increase in monocyte-macrophage lineage. Mice with AhR deficiency in myeloid cells developed more severe dextran sulfate sodium induced colitis, with concomitant increased macrophage pyroptosis. Dietary supplementation with an AhR pre-ligand, indole-3-carbinol, conferred protection against colitis while protection failed in mice lacking AhR in myeloid cells. Mechanistically, AhR signaling inhibited macrophage pyroptosis by promoting ornithine decarboxylase 1 (Odc1) transcription, to enhance polyamine biosynthesis. The increased polyamine, particularly spermine, inhibited NLRP3 inflammasome assembly and subsequent pyroptosis by suppressing K+ efflux. AHR expression was positively correlated with ODC1 in intestinal mucosal biopsies from patients with ulcerative colitis. Conclusions: These findings suggest a functional role for the AhR/ODC1/polyamine axis in maintaining intestinal homeostasis, providing potential targets for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Kwei-Yan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan
| | - Wenfeng Xiao
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xueru Xie
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Qiuyan Liang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Zikun Tu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Lan Yang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Hongmiao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Haiyan Guo
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Saihua Huang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xiao Han
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Jinrong Fu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Singh G, Trehan S, Singh A, Goswami K, Farooq A, Antil P, Puri P, Bector G, Jain A, Azhar W. Aryl Hydrocarbon Receptor Signaling in Prostate Cancer Therapy: A Review of Implications for Anti-androgen Treatment Strategies and Resistance. Cureus 2024; 16:e65247. [PMID: 39184676 PMCID: PMC11342139 DOI: 10.7759/cureus.65247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Prostate cancer is a leading cause of cancer-related morbidity and mortality in men, frequently exhibiting resistance to conventional anti-androgen therapies. This review investigates the emerging significance of the aryl hydrocarbon receptor (AhR) in prostate cancer, focusing on its role in modulating androgen receptor (AR) signaling and its potential as a therapeutic target. AhR, traditionally known for detoxifying harmful compounds, has been increasingly recognized for its dual capacity to either enhance or inhibit AR activity based on cellular context and specific coactivators. Furthermore, AhR influences tumor progression independently of AR by regulating genes involved in cell cycle control and apoptosis. This narrative review synthesizes current research on AhR's multifaceted roles in prostate cancer, evaluates its potential as a biomarker, and discusses the therapeutic implications of targeting AhR, particularly for hormone-refractory prostate cancer. Our findings underscore the necessity for personalized AhR-targeted therapies and advocate for continued clinical research to fully leverage AhR's therapeutic potential.
Collapse
Affiliation(s)
- Gurjot Singh
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Shubam Trehan
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Adarshpreet Singh
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Kanishka Goswami
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Amna Farooq
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Priya Antil
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Piyush Puri
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Gaurav Bector
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Aayush Jain
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Waqas Azhar
- Internal Medicine, Memorial Medical Center, Springfield, USA
- Internal Medicine, Saint John Hospital, Springfield, USA
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
- Hospital Medicine, Springfield Clinic, Springfield, USA
| |
Collapse
|
13
|
Quan S, Huang J, Chen G, Zhang A, Yang Y, Wu Z. Genistein Promotes M2 Macrophage Polarization via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Broilers with Necrotic Enteritis. Int J Mol Sci 2024; 25:6656. [PMID: 38928362 PMCID: PMC11203855 DOI: 10.3390/ijms25126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates the immune system through complicated transcriptional programs. Genistein, an AhR ligand, exhibits anti-inflammatory properties. However, its role in modulating immune responses via the AhR signaling pathway remains unclear. In this study, 360 male Arbor Acre broilers (1-day-old) were fed a basal diet supplemented with 40 or 80 mg/kg genistein and infected with or without Clostridium perfringens (Cp). Our results demonstrated that genistein ameliorated Cp-induced intestinal damage, as reflected by the reduced intestinal lesion scores and improved intestinal morphology and feed-to-gain ratio. Moreover, genistein increased intestinal sIgA, TGF-β, and IL-10, along with elevated serum IgG, IgA, and lysozyme levels. Genistein improved intestinal AhR and cytochrome P450 family 1 subfamily A member 1 (CYP1A1) protein levels and AhR+ cell numbers in Cp-challenged broilers. The increased number of AhR+CD163+ cells in the jejunum suggested a potential association between genistein-induced AhR activation and anti-inflammatory effects mediated through M2 macrophage polarization. In IL-4-treated RAW264.7 cells, genistein increased the levels of AhR, CYP1A1, CD163, and arginase (Arg)-1 proteins, as well as IL-10 mRNA levels. This increase was attenuated by the AhR antagonist CH223191. In summary, genistein activated the AhR signaling pathway in M2 macrophages, which enhanced the secretion of anti-inflammatory cytokines and attenuated intestinal damage in Cp-infected broilers Cp.
Collapse
Affiliation(s)
| | | | | | | | - Ying Yang
- College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (J.H.); (G.C.); (A.Z.); (Z.W.)
| | | |
Collapse
|
14
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: A systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:01279778-990000000-01671. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
15
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Zhang J, Liu Y, Zhi X, Xu L, Tao J, Cui D, Liu TF. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies. Inflamm Res 2024; 73:979-996. [PMID: 38592457 DOI: 10.1007/s00011-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp), an essential amino acid, is the only amino acid whose level is regulated specifically by immune signals. Most proportions of Trp are catabolized via the kynurenine (Kyn) pathway (KP) which has evolved to align the food availability and environmental stimulation with the host pathophysiology and behavior. Especially, the KP plays an indispensable role in balancing the immune activation and tolerance in response to pathogens. SCOPE OF REVIEW In this review, we elucidate the underlying immunological regulatory network of Trp and its KP-dependent catabolites in the pathophysiological conditions by participating in multiple signaling pathways. Furthermore, the KP-based regulatory roles, biomarkers, and therapeutic strategies in pathologically immune disorders are summarized covering from acute to chronic infection and inflammation. MAJOR CONCLUSIONS The immunosuppressive effects dominate the functions of KP induced-Trp depletion and KP-produced metabolites during infection and inflammation. However, the extending minor branches from the KP are not confined to the immune tolerance, instead they go forward to various functions according to the specific condition. Nevertheless, persistent efforts should be made before the clinical use of KP-based strategies to monitor and cure infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
17
|
Kamata K, Kudo M, Watanabe T. Indigo naturalis as a promising novel treatment for type 2 autoimmune pancreatitis. Pancreatology 2024; 24:665-666. [PMID: 38521684 DOI: 10.1016/j.pan.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
18
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Bakoyan Z, Cao Y, Hansson SR, Karlsson JP, Lodefalk M. Childhood atopic disorders in relation to placental changes-A systematic review and meta-analysis. Pediatr Allergy Immunol 2024; 35:e14141. [PMID: 38773752 DOI: 10.1111/pai.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Fetal programming may arise from prenatal exposure and increase the risk of diseases later in life, potentially mediated by the placenta. The objective of this systematic review was to summarize and critically evaluate publications describing associations between human placental changes and risk of atopic disorders during childhood. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. The inclusion criteria were original research articles or case reports written in English describing a human placental change in relation to disease occurring in offspring during childhood. The MEDLINE and EMBASE databases were searched for eligible studies. Risk of bias (RoB) was assessed using the ROBINS-I tool. The results were pooled both in a narrative way and by a meta-analysis. Nineteen studies were included (n = 12,997 participants). All studies had an overall serious RoB, and publication bias could not be completely ruled out. However, five studies showed that histological chorioamnionitis in preterm-born children was associated with asthma-related problems (pooled odds ratio = 3.25 (95% confidence interval = 2.22-4.75)). In term-born children, a large placenta (≥750 g) increased the risk of being prescribed anti-asthma medications during the first year of life. Placental histone acetylation, DNA methylation, and gene expression differences were found to be associated with different atopic disorders in term-born children. There is some evidence supporting the idea that the placenta can mediate an increased risk of atopic disorders in children. However, further studies are needed to validate the findings, properly control for confounders, and examine potential mechanisms.
Collapse
Affiliation(s)
- Zaki Bakoyan
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Science Lund, Lund University, Lund, Sweden
| | | | - Maria Lodefalk
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Pediatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Santonocito R, Paladino L, Vitale AM, D’Amico G, Zummo FP, Pirrotta P, Raccosta S, Manno M, Accomando S, D’Arpa F, Carini F, Barone R, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Caruso Bavisotto C. Nanovesicular Mediation of the Gut-Brain Axis by Probiotics: Insights into Irritable Bowel Syndrome. BIOLOGY 2024; 13:296. [PMID: 38785778 PMCID: PMC11117693 DOI: 10.3390/biology13050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.
Collapse
Affiliation(s)
- Radha Santonocito
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Paolo Zummo
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Paolo Pirrotta
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialities “G D‘Alessandro”, PROMISE, University of Palermo, 90127 Palermo, Italy;
| | - Francesco D’Arpa
- Department of Surgical, Oncological and Stomatological Disciplines, DICHIRONS, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Carini
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Rosario Barone
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| |
Collapse
|
21
|
Li Y, Li Q, Yuan R, Wang Y, Guo C, Wang L. Bifidobacterium breve-derived indole-3-lactic acid ameliorates colitis-associated tumorigenesis by directing the differentiation of immature colonic macrophages. Theranostics 2024; 14:2719-2735. [PMID: 38773969 PMCID: PMC11103503 DOI: 10.7150/thno.92350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.
Collapse
Affiliation(s)
| | | | | | | | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
22
|
Xu L, Lin L, Xie N, Chen W, Nong W, Li R. Role of aryl hydrocarbon receptors in infection and inflammation. Front Immunol 2024; 15:1367734. [PMID: 38680494 PMCID: PMC11045974 DOI: 10.3389/fimmu.2024.1367734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by various ligands, including pollutants, microorganisms, and metabolic substances. It is expressed extensively in pulmonary and intestinal epithelial cells, where it contributes to barrier defense. The expression of AhR is pivotal in regulating the inflammatory response to microorganisms. However, dysregulated AhR expression can result in endocrine disorders, leading to immunotoxicity and potentially promoting the development of carcinoma. This review focuses on the crucial role of the AhR in facilitating and limiting the proliferation of pathogens, specifically in relation to the host cell type and the species of etiological agents involved in microbial pathogen infections. The activation of AhR is enhanced through the IDO1-AhR-IDO1 positive feedback loop, which is manipulated by viruses. AhR primarily promotes the infection of SARS-CoV-2 by inducing the expression of angiotensin-converting enzyme 2 (ACE2) and the secretion of pro-inflammatory cytokines. AhR also plays a significant role in regulating various types of T-cells, including CD4+ T cells and CD8+ T cells, in the context of pulmonary infections. The AhR pathway plays a crucial role in regulating immune responses within the respiratory and intestinal barriers when they are invaded by viruses, bacteria, parasites, and fungi. Additionally, we propose that targeting the agonist and antagonist of AhR signaling pathways could serve as a promising therapeutic approach for combating pathogen infections, especially in light of the growing prevalence of drug resistance to multiple antibiotics.
Collapse
Affiliation(s)
- Linglan Xu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Luping Lin
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Nan Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Weiwei Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ranhui Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Prevention and Treatment Institute for Occupational Diseases and Affiliated Prevention and Treatment Institute for Occupational Diseases, University of South China, Changsha, China
| |
Collapse
|
23
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
24
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
25
|
Prieto K, Duong JQ, Feldman SR. Tapinarof cream for the topical treatment of plaque psoriasis in adults. Expert Rev Clin Immunol 2024; 20:327-337. [PMID: 38117596 DOI: 10.1080/1744666x.2023.2296607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
INTRODUCTION Plaque psoriasis, a chronic immune-mediated skin disorder, is characterized by well-demarcated erythematous plaques with silvery scales. This condition stems from complex interactions between genetic predisposition, immune dysregulation, and environmental triggers. Tapinarof downregulates the cytokine IL-17, diminishes the inflammatory infiltrate, and provides antioxidant properties while enhancing the expression of skin barrier proteins. AREAS COVERED This review begins by assessing tapinarof's mechanism in treating plaque psoriasis. Subsequently, it examines the effectiveness and safety of tapinarof 1% cream in adult patients. EXPERT OPINION Tapinarof 1% cream, which works by activating the aryl hydrocarbon receptor, is an FDA-approved treatment for adult plaque psoriasis. This therapy introduces a novel, nonsteroidal method for addressing inflammation and skin barrier issues, potentially serving as an alternative to conventional treatments. The once-daily, convenient cream formulation and favorable safety profile may enhance patient adherence, which is often poor with topical treatments. Tapinarof also maintains disease clearance for a mean of 4 months after treatment cessation.
Collapse
Affiliation(s)
- Kaley Prieto
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jessica Q Duong
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
26
|
Zelante T, Paolicelli G, Fallarino F, Gargaro M, Vascelli G, De Zuani M, Fric J, Laznickova P, Kohoutkova MH, Macchiarulo A, Dolciami D, Pieraccini G, Gaetani L, Scalisi G, Trevisan C, Frossi B, Pucillo C, De Luca A, Nunzi E, Spaccapelo R, Pariano M, Borghi M, Boscaro F, Romoli R, Mancini A, Gentili L, Renga G, Costantini C, Puccetti M, Giovagnoli S, Ricci M, Antonini M, Calabresi P, Puccetti P, Di Filippo M, Romani L. A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis. Sci Rep 2024; 14:6651. [PMID: 38509264 PMCID: PMC10954611 DOI: 10.1038/s41598-024-57400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy.
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy.
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco De Zuani
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20, Prague, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petra Laznickova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Lorenzo Gaetani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Caterina Trevisan
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Andrea Mancini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Lucia Gentili
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Martina Antonini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Paolo Calabresi
- Unità di Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Massimiliano Di Filippo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
27
|
Ahmadi M, Soleimanifar N, Rostamian A, Sadr M, Mojtahedi H, Mazari A, Hossein Nicknam M, Assadiasl S. Aryl hydrocarbon receptor gene expression in ankylosing spondylitis and its correlation with interleukin-17, RAR-related orphan receptor gamma t expression, and disease activity indices. Arch Rheumatol 2024; 39:123-132. [PMID: 38774696 PMCID: PMC11104753 DOI: 10.46497/archrheumatol.2023.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives Considering the role of T helper (Th)17 cells in the pathogenesis of ankylosing spondylitis (AS), the aim of this study was to determine the correlation between aryl hydrocarbon receptor (AHR) gene expression and the expression of Th17-related genes including interleukin (IL)-17 and RAR-related orphan receptor gamma t (RORγt) transcription factor. Patients and methods Thirty patients with AS (26 males, 4 females; mean age: 36.1±8.1 years) and 30 age- and sex-matched healthy individuals (26 males, 4 females; mean age: 36.2±14.6 years) were recruited for the case-control study between June 2021 and January 2022. Ribonucleic acid (RNA) was extracted from peripheral blood cells and expression levels of AHR, IL-17, RORγt, and AHR repressor (AHRR) genes were evaluated using real-time polymerase chain reaction technique. The serum level of IL-17 was evaluated with enzyme-linked immunosorbent assay. Results The results showed a nonsignificant elevation of AHR, IL-17, and RORγt gene expression in the patient group compared to the control. There was a direct correlation between AHR gene expression and IL-17 and RORγt genes and a negative correlation between AHR and AHRR expression. Moreover, AHR gene expression showed a weak correlation with disease activity indices, including Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Bath Ankylosing Spondylitis Metrology Index, Bath Ankylosing Spondylitis Global Score, and Ankylosing Spondylitis Quality of Life. Moreover, the serum level of IL-17 was higher in AS patients compared to the healthy group (p=0.02). Conclusion Upregulated expression of the AHR gene in ankylosing spondylitis and its correlation with IL-17 and ROR-γ t gene expression suggests that it could be a potential diagnostic and therapeutic target for AS.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Department of Rheumatology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abeda Mazari
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ying Y, Song LY, Pang WL, Zhang SQ, Yu JZ, Liang PT, Li TG, Sun Y, Wang YY, Yan JY, Yang ZS. Astragalus polysaccharide protects experimental colitis through an aryl hydrocarbon receptor-dependent autophagy mechanism. Br J Pharmacol 2024; 181:681-697. [PMID: 37653584 DOI: 10.1111/bph.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Disruption of intestinal barriers plays a vital role in the pathogenesis of colitis. The aryl hydrocarbon receptor (AhR) is a recognition sensor that mediates intestinal immune homeostasis and minimizes intestinal inflammation. Astragalus polysaccharide (APS) exerts pharmacological actions in colitis; however, the mechanism has not been elucidated. We investigated whether APS protects through AhR-dependent autophagy. EXPERIMENTAL APPROACH The symptoms of dextran sulfate sodium (DSS)-induced colitis in mice involving intestinal barrier function and inflammatory injury were evaluated after APS administration. Intestinal-specific Becn1 conditional knockout (Becn1 cKO) mice were constructed and compared with wild-type mice. Autophagy and the effects of APS were investigated after the deactivation of AhRs. The relationship between APS-induced AhRs and autophagic Becn1 was investigated using a dual-luciferase reporter system and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction assay. Caco-2 cells were used to investigate inflammatory responses and AhR-dependent autophagy. KEY RESULTS APS improved intestinal barrier function in inflammatory injury in colitis mice. APS triggered autophagic flow; however, knockout of Becn1 in the gut increased susceptibility to colitis, leading to diminished epithelial barrier function and severe intestinal inflammation, impairing the protective effects of APS. Mechanistically, APS-triggered autophagy depends on AhR expression. Activated AhR binds to the promoter Becn1 to operate transcription of genes involved in anti-inflammation and intestinal barrier repair, while deactivation of AhR correlated with intestinal inflammation and the therapeutic function of APS. CONCLUSIONS AND IMPLICATIONS APS protects colitis mice by targeting autophagy, especially as the AhR stimulates the repair of damaged intestinal barrier functions.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Peng-Tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-Ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
29
|
Wang L, Li M, Gu Y, Shi J, Yan J, Wang X, Li B, Wang B, Zhong W, Cao H. Dietary flavonoids-microbiota crosstalk in intestinal inflammation and carcinogenesis. J Nutr Biochem 2024; 125:109494. [PMID: 37866426 DOI: 10.1016/j.jnutbio.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Colorectal cancer (CRC) is currently the third leading cancer and commonly develops from chronic intestinal inflammation. A strong association was found between gut microbiota and intestinal inflammation and carcinogenic risk. Flavonoids, which are abundant in vegetables and fruits, can inhibit inflammation, regulate gut microbiota, protect gut barrier integrity, and modulate immune cell function, thereby attenuating colitis and preventing carcinogenesis. Upon digestion, about 90% of flavonoids are transported to the colon without being absorbed in the small intestine. This phenomenon increases the abundance of beneficial bacteria and enhances the production of short-chain fatty acids. The gut microbe further metabolizes these flavonoids. Interestingly, some metabolites of flavonoids play crucial roles in anti-inflammation and anti-tumor effects. This review summarizes the modulatory effect of flavonoids on gut microbiota and their metabolism by intestinal microbe under disease conditions, including inflammatory bowel disease, colitis-associated cancer (CAC), and CRC. We focus on dietary flavonoids and microbial interactions in intestinal mucosal barriers as well as intestinal immune cells. Results provide novel insights to better understand the crosstalk between dietary flavonoids and gut microbiota and support the standpoint that dietary flavonoids prevent intestinal inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Junli Shi
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bingqing Li
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
30
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
31
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Ambrosio LF, Volpini X, Quiroz JN, Brugo MB, Knubel CP, Herrera MR, Fozzatti L, Avila Pacheco J, Clish CB, Takenaka MC, Beloscar J, Theumer MG, Quintana FJ, Perez AR, Motrán CC. Association between altered tryptophan metabolism, plasma aryl hydrocarbon receptor agonists, and inflammatory Chagas disease. Front Immunol 2024; 14:1267641. [PMID: 38283348 PMCID: PMC10811785 DOI: 10.3389/fimmu.2023.1267641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Chagas disease causes a cardiac illness characterized by immunoinflammatory reactions leading to myocardial fibrosis and remodeling. The development of Chronic Chagas Cardiomyopathy (CCC) in some patients while others remain asymptomatic is not fully understood, but dysregulated inflammatory responses are implicated. The Aryl hydrocarbon receptor (AhR) plays a crucial role in regulating inflammation. Certain tryptophan (Trp) metabolites have been identified as AhR ligands with regulatory functions. Methods results and discussion We investigated AhR expression, agonist response, ligand production, and AhR-dependent responses, such as IDO activation and regulatory T (Treg) cells induction, in two T. cruzi-infected mouse strains (B6 and Balb/c) showing different polymorphisms in AhR. Furthermore, we assessed the metabolic profile of Trp catabolites and AhR agonistic activity levels in plasma samples from patients with chronic Chagas disease (CCD) and healthy donors (HD) using a luciferase reporter assay and liquid chromatography-mass spectrophotometry (LC-MS) analysis. T. cruzi-infected B6 mice showed impaired AhR-dependent responses compared to Balb/c mice, including reduced IDO activity, kynurenine levels, Treg cell induction, CYP1A1 up-regulation, and AhR expression following agonist activation. Additionally, B6 mice exhibited no detectable AhR agonist activity in plasma and displayed lower CYP1A1 up-regulation and AhR expression upon agonist activation. Similarly, CCC patients had decreased AhR agonistic activity in plasma compared to HD patients and exhibited dysregulation in Trp metabolic pathways, resulting in altered plasma metabolite profiles. Notably, patients with severe CCC specifically showed increased N-acetylserotonin levels in their plasma. The methods and findings presented here contribute to a better understanding of CCC development mechanisms and may identify potential specific biomarkers for T. cruzi infection and the severity of associated heart disease. These insights could be valuable in designing new therapeutic strategies. Ultimately, this research aims to establish the AhR agonistic activity and Trp metabolic profile in plasma as an innovative, non-invasive predictor of prognosis for chronic Chagas disease.
Collapse
Affiliation(s)
- Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan Nahuel Quiroz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Belén Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Paola Knubel
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Melisa Rocío Herrera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Julián Avila Pacheco
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Maisa C. Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan Beloscar
- Servicio de Cardiología, Departamento de Chagas, Hospital Provincial del Centenario y Cátedra de Cardiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martín Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Francisco Javier Quintana
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Rosa Perez
- Instituto de Inmunología Clínica y Experimental de Rosario-CONICET-Universidad Nacional de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
33
|
McGettigan SE, Aira LE, Kumar G, Ballet R, Butcher EC, Baumgarth N, Debes GF. Secreted IgM modulates IL-10 expression in B cells. Nat Commun 2024; 15:324. [PMID: 38182585 PMCID: PMC10773282 DOI: 10.1038/s41467-023-44382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
IL-10+ B cells are critical for immune homeostasis and restraining immune responses in infection, cancer, and inflammation; however, the signals that govern IL-10+ B cell differentiation are ill-defined. Here we find that IL-10+ B cells expand in mice lacking secreted IgM ((s)IgM-/-) up to 10-fold relative to wildtype (WT) among all major B cell and regulatory B cell subsets. The IL-10+ B cell increase is polyclonal and presents within 24 hours of birth. In WT mice, sIgM is produced prenatally and limits the expansion of IL-10+ B cells. Lack of the high affinity receptor for sIgM, FcμR, in B cells translates into an intermediate IL-10+ B cell phenotype relative to WT or sIgM-/- mice. Our study thus shows that sIgM regulates IL-10 programming in B cells in part via B cell-expressed FcμR, thereby revealing a function of sIgM in regulating immune homeostasis.
Collapse
Affiliation(s)
- Shannon Eileen McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lazaro Emilio Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Romain Ballet
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
34
|
Li M, Ding Y, Wei J, Dong Y, Wang J, Dai X, Yan J, Chu F, Zhang K, Meng F, Ma J, Zhong W, Wang B, Gao Y, Yang R, Liu X, Su X, Cao H. Gut microbiota metabolite indole-3-acetic acid maintains intestinal epithelial homeostasis through mucin sulfation. Gut Microbes 2024; 16:2377576. [PMID: 39068517 PMCID: PMC11285290 DOI: 10.1080/19490976.2024.2377576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Feifei Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
35
|
Miao H, Wang YN, Yu XY, Zou L, Guo Y, Su W, Liu F, Cao G, Zhao YY. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. Br J Pharmacol 2024; 181:162-179. [PMID: 37594378 DOI: 10.1111/bph.16219] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, Florida, USA
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| |
Collapse
|
36
|
Grossmann MC, Pixley JN, Feldman SR. A Review of Topical Tapinarof for the Treatment of Plaque Psoriasis. Ann Pharmacother 2024; 58:76-85. [PMID: 37076998 DOI: 10.1177/10600280231164775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE This article reviews the efficacy and safety of 1% tapinarof cream for plaque psoriasis. DATA SOURCES A literature search was conducted from August 2022 to February 2023. The terms tapinarof, VTAMA, benvitimod, GSK2894512, DMVT-505, and WBI-1001 were queried in PubMed. ClinicalTrials.gov was searched to identify ongoing or unpublished studies. STUDY SELECTION AND DATA EXTRACTION All clinical trials written in English and relevant to pharmacology, efficacy, and safety were included. DATA SYNTHESIS In two 12-week phase III clinical trials, disease severity assessed by a Physician's Global Assessment (PGA) score of clear or almost clear and a 2-point PGA improvement was 35.4% and 40.2% at week 12 in the 2 trials, respectively. In the 40-week, open-label extension trial, the efficacy and safety results were similar: 40.9% of patients achieved a PGA of 0 at least once during the trial, and 58.2% of patients with PGA ≥ 2 achieved PGA 0/1 at least once. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON TO EXISTING DRUGS Tapinarof is a topical aryl hydrocarbon receptor agonist and a first-in-class, potentially promising treatment for plaque psoriasis recently approved by the U.S. Food and Drug Administration. CONCLUSION Compared with placebo, tapinarof may be an effective and safe topical treatment for mild to severe plaque psoriasis. Head-to-head trials to compare the efficacy and adverse effect profile of tapinarof to other topical treatments are still needed, as are investigation in patients with recent or current use of phototherapy or biologic or nonbiologic systemics. Cost and adherence to treatment may be barriers for treatment efficacy.
Collapse
Affiliation(s)
- Meghan C Grossmann
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jessica N Pixley
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
37
|
Zhou N, Chen J, Ling Z, Zhang C, Zhou Y, Wang D, Zhou L, Wang Z, Sun N, Wang X, Zhang H, Tang K, Ma J, Lv J, Huang B. Aryl hydrocarbon receptor sulfenylation promotes glycogenolysis and rescues cancer chemoresistance. J Clin Invest 2023; 133:e170753. [PMID: 38099490 PMCID: PMC10721154 DOI: 10.1172/jci170753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Elevation of reactive oxygen species (ROS) levels is a general consequence of tumor cells' response to treatment and may cause tumor cell death. Mechanisms by which tumor cells clear fatal ROS, thereby rescuing redox balance and entering a chemoresistant state, remain unclear. Here, we show that cysteine sulfenylation by ROS confers on aryl hydrocarbon receptor (AHR) the ability to dissociate from the heat shock protein 90 complex but to bind to the PPP1R3 family member PPP1R3C of the glycogen complex in drug-treated tumor cells, thus activating glycogen phosphorylase to initiate glycogenolysis and the subsequent pentose phosphate pathway, leading to NADPH production for ROS clearance and chemoresistance formation. We found that basic ROS levels were higher in chemoresistant cells than in chemosensitive cells, guaranteeing the rapid induction of AHR sulfenylation for the clearance of excess ROS. These findings reveal that AHR can act as an ROS sensor to mediate chemoresistance, thus providing a potential strategy to reverse chemoresistance in patients with cancer.
Collapse
Affiliation(s)
- Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Zheng Ling
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Chaoqi Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital; and
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Dianheng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Li Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Zhenfeng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital; and
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | | | - Ke Tang
- Department of Biochemistry and Molecular Biology, and
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences
- Department of Pathology
| |
Collapse
|
38
|
Zhou D, Li Y. Gut microbiota and tumor-associated macrophages: potential in tumor diagnosis and treatment. Gut Microbes 2023; 15:2276314. [PMID: 37943609 PMCID: PMC10653702 DOI: 10.1080/19490976.2023.2276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Avoiding immune destruction and polymorphic microbiomes are two key hallmarks of cancer. The tumor microenvironment (TME) is essential for the development of solid tumors, and the function of tumor-associated macrophages (TAMs) in the TME is closely linked to tumor prognosis. Therefore, research on TAMs could improve the progression and control of certain tumor patients. Additionally, the intestinal flora plays a crucial role in metabolizing substances and maintaining a symbiotic relationship with the host through a complex network of interactions. Recent experimental and clinical studies have suggested a potential link between gut microbiome and TME, particularly in regulating TAMs. Understanding this association could improve the efficacy of tumor immunotherapy. This review highlights the regulatory role of intestinal flora on TAMs, with a focus on gut microbiota and their metabolites. The implications of this association for tumor diagnosis and treatment are also discussed, providing a promising avenue for future clinical treatment strategies.
Collapse
Affiliation(s)
- Dongqin Zhou
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
39
|
Armstrong AW, McConaha JL. Tapinarof cream 1% once daily for the treatment of adults with mild to severe plaque psoriasis: A novel topical therapy targeting the aryl hydrocarbon receptor. J Manag Care Spec Pharm 2023; 29:S1-S13. [PMID: 38051146 PMCID: PMC10996039 DOI: 10.18553/jmcp.2023.29.12-a.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Plaque psoriasis is a chronic, immunemediated skin disease characterized by scaly, erythematous, pruritic plaques. The effects of psoriasis are often debilitating and stigmatizing, significantly impacting patients' physical and psychological well-being and quality of life. Current guideline-recommended psoriasis therapies (topicals, oral systemics, and biologics) have substantial limitations that include overall efficacy, safety, tolerability, sites of application, disease severity, and duration and extent of body surface area treated. Due to these limitations, psoriasis treatment regimens often require combination therapy, especially for moderate to severe disease, leading to increased treatment burden. Psoriasis is also associated with increased indirect costs (eg, reduced work productivity), leading to greater total costs expenditures. Thus, more effective, safe, well-tolerated, and cost-effective therapeutic options are needed. Tapinarof cream 1% once daily is a first-in-class, nonsteroidal, topical aryl hydrocarbon receptor agonist approved by the US Food and Drug Administration in 2022 for the treatment of plaque psoriasis in adults. Tapinarof cream has been evaluated in plaque psoriasis, including 2 pivotal phase 3 trials (NCT03956355 and NCT03983980) and a long-term extension trial (NCT04053387). These trials demonstrated high rates of complete skin clearance with tapinarof cream, durable effects while on treatment (a lack of tachyphylaxis for up to 52 weeks), an approximately 4-month remittive effect off therapy after achieving complete clearance and stopping treatment (ie, duration during which psoriasis does not recur off therapy), and no rebound effects after cessation of therapy. According to the US Food and Drug Administration-approved prescribing information, tapinarof may be used to treat plaque psoriasis of any severity and in any location, has no restrictions on duration of use or extent of total body surface area treated, and has no contraindications, warnings, precautions, or drug-drug interactions. Tapinarof cream is thus an efficacious, well-tolerated, steroid-free topical option that addresses many of the limitations of current recommended therapies. Here we review current knowledge on the physical, psychological, and financial burdens of plaque psoriasis and identify how the clinical profile of tapinarof cream can address key treatment gaps important in the management of plaque psoriasis and patient quality of life. In this article, we aim to assist pharmacists and other managed care practitioners by providing an evidence-based overview of tapinarof cream to support patient-centric decision-making.
Collapse
Affiliation(s)
| | - Jamie L McConaha
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
41
|
Zhou L, Wu D, Zhou Y, Wang D, Fu H, Huang Q, Qin G, Chen J, Lv J, Lai S, Zhang H, Tang K, Ma J, Fiskesund R, Zhang Y, Zhang X, Huang B. Tumor cell-released kynurenine biases MEP differentiation into megakaryocytes in individuals with cancer by activating AhR-RUNX1. Nat Immunol 2023; 24:2042-2052. [PMID: 37919525 PMCID: PMC10681900 DOI: 10.1038/s41590-023-01662-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.
Collapse
Affiliation(s)
- Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dongxiao Wu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Shaoyang Lai
- The Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Roland Fiskesund
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
Armstrong AW, McConaha JL. Tapinarof cream 1% once daily for the treatment of adults with mild to severe plaque psoriasis: A novel topical therapy targeting the aryl hydrocarbon receptor. J Manag Care Spec Pharm 2023; 29:S2-S14. [PMID: 38014659 DOI: 10.18553/jmcp.2023.29.12-a.s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Plaque psoriasis is a chronic, immunemediated skin disease characterized by scaly, erythematous, pruritic plaques. The effects of psoriasis are often debilitating and stigmatizing, significantly impacting patients' physical and psychological well-being and quality of life. Current guideline-recommended psoriasis therapies (topicals, oral systemics, and biologics) have substantial limitations that include overall efficacy, safety, tolerability, sites of application, disease severity, and duration and extent of body surface area treated. Due to these limitations, psoriasis treatment regimens often require combination therapy, especially for moderate to severe disease, leading to increased treatment burden. Psoriasis is also associated with increased indirect costs (eg, reduced work productivity), leading to greater total costs expenditures. Thus, more effective, safe, well-tolerated, and cost-effective therapeutic options are needed. Tapinarof cream 1% once daily is a first-in-class, nonsteroidal, topical aryl hydrocarbon receptor agonist approved by the US Food and Drug Administration in 2022 for the treatment of plaque psoriasis in adults. Tapinarof cream has been evaluated in plaque psoriasis, including 2 pivotal phase 3 trials (NCT03956355 and NCT03983980) and a long-term extension trial (NCT04053387). These trials demonstrated high rates of complete skin clearance with tapinarof cream, durable effects while on treatment (a lack of tachyphylaxis for up to 52 weeks), an approximately 4-month remittive effect off therapy after achieving complete clearance and stopping treatment (ie, duration during which psoriasis does not recur off therapy), and no rebound effects after cessation of therapy. According to the US Food and Drug Administration-approved prescribing information, tapinarof may be used to treat plaque psoriasis of any severity and in any location, has no restrictions on duration of use or extent of total body surface area treated, and has no contraindications, warnings, precautions, or drug-drug interactions. Tapinarof cream is thus an efficacious, well-tolerated, steroid-free topical option that addresses many of the limitations of current recommended therapies. Here we review current knowledge on the physical, psychological, and financial burdens of plaque psoriasis and identify how the clinical profile of tapinarof cream can address key treatment gaps important in the management of plaque psoriasis and patient quality of life. In this article, we aim to assist pharmacists and other managed care practitioners by providing an evidence-based overview of tapinarof cream to support patient-centric decision-making.
Collapse
Affiliation(s)
| | - Jamie L McConaha
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Kober C, Roewe J, Schmees N, Roese L, Roehn U, Bader B, Stoeckigt D, Prinz F, Gorjánácz M, Roider HG, Olesch C, Leder G, Irlbacher H, Lesche R, Lefranc J, Oezcan-Wahlbrink M, Batra AS, Elmadany N, Carretero R, Sahm K, Oezen I, Cichon F, Baumann D, Sadik A, Opitz CA, Weinmann H, Hartung IV, Kreft B, Offringa R, Platten M, Gutcher I. Targeting the aryl hydrocarbon receptor (AhR) with BAY 2416964: a selective small molecule inhibitor for cancer immunotherapy. J Immunother Cancer 2023; 11:e007495. [PMID: 37963637 PMCID: PMC10649913 DOI: 10.1136/jitc-2023-007495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.
Collapse
Affiliation(s)
- Christina Kober
- Bayer AG, Pharmaceutical Division, Berlin, Germany
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | | | - Lars Roese
- Bayer AG, Pharmaceutical Division, Berlin, Germany
| | - Ulrike Roehn
- Bayer AG, Pharmaceutical Division, Berlin, Germany
| | | | | | | | | | | | - Catherine Olesch
- Bayer AG, Pharmaceutical Division, Berlin, Germany
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
| | | | | | - Ralf Lesche
- Bayer AG, Pharmaceutical Division, Berlin, Germany
| | | | - Mine Oezcan-Wahlbrink
- Bayer AG, Pharmaceutical Division, Berlin, Germany
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
| | - Ankita Sati Batra
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Nirmeen Elmadany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Rafael Carretero
- Bayer AG, Pharmaceutical Division, Berlin, Germany
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
| | - Katharina Sahm
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Iris Oezen
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Frederik Cichon
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Baumann
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
| | - Ahmed Sadik
- Brain Cancer Metabolism (B350), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christiane A Opitz
- Brain Cancer Metabolism (B350), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Rienk Offringa
- DKFZ-Bayer Joint Immunotherapy Laboratory (D220), DKFZ-Bayer Joint Immunotherapy Laboratory, Heidelberg, Germany
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
44
|
Run L, Tian Z, Xu L, Du J, Li N, Wang Q, Sun H. Knockdown of IL4I1 Improved High Glucose-evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity Through AHR Activation. Appl Biochem Biotechnol 2023; 195:6694-6707. [PMID: 36913096 DOI: 10.1007/s12010-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Insulin resistance (IR) is one of the leading causes of Type 2 diabetes mellitus (T2DM). Inflammation, as a result of the disordered immune response, plays important roles in IR and T2DM. Interleukin-4-induced gene 1 (IL4I1) has been shown to regulate immune response and be involved in inflammation progress. However, there was little known about its roles in T2DM. Here, high glucose (HG)-treated HepG2 cells were used for T2DM investigation in vitro. Our results indicated that the expression of IL4I1 was up-regulated in peripheral blood samples of T2DM-patients and HG-induced HepG2 cells. The silencing of IL4I1 alleviated the HG-evoked IR through elevating the expressions of p-IRS1, p-AKT and GLUT4, and enhancing glucose consumption. Furthermore, IL4I1 knockdown inhibited inflammatory response by reducing the levels of inflammatory mediators, and suppressed the accumulation of lipid metabolites triglyceride (TG) and palmitate (PA) in HG-induced cells. Notably, IL4I1 expression was positively correlated with aryl hydrocarbon receptor (AHR) in peripheral blood samples of T2DM-patients. The silencing of IL4I1 inhibited the AHR signaling by reducing the HG-induced expressions of AHR and CYP1A1. Subsequent experiments confirmed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AHR, reversed the suppressive effects of IL4I1 knockdown on HG-caused inflammation, lipid metabolism and IR in cells. In conclusion, we found that the silencing of IL4I1 attenuated inflammation, lipid metabolism and IR in HG-induced cells via inhibiting AHR signaling, suggesting that IL4I1 might be a potential therapy target for T2DM.
Collapse
Affiliation(s)
- Lin Run
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Lin Xu
- Department of Endocrinology, The Affiliated Guangren Hospital, Xi'an Jiaotong University College of Medicine, 710004, Xi'an, Shaanxi, China
| | - Junhui Du
- Department of Medicine Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Nan Li
- Clinical Laboratory, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Nuclear Medicine, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District.
| |
Collapse
|
45
|
Li T, Shi J, Wang L, Qin X, Zhou R, Dong M, Ren F, Li X, Zhang Z, Chen Y, Liu Y, Piao Y, Shi Y, Xu S, Chen J, Li J. Thymol targeting interleukin 4 induced 1 expression reshapes the immune microenvironment to sensitize the immunotherapy in lung adenocarcinoma. MedComm (Beijing) 2023; 4:e355. [PMID: 37655051 PMCID: PMC10466095 DOI: 10.1002/mco2.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Immune checkpoint blockades are the most promising therapy in lung adenocarcinoma (LUAD). However, the response rate remains limited, underscoring the urgent need for effective sensitizers. Interleukin 4 induced 1 (IL4I1) is reported to have immunoinhibitory and tumor-promoting effects in several cancers. However, the targetable value of IL4I1 in sensitizing the immunotherapy is not clear, and there is a lack of effective small molecules that specifically target IL4I1. Here, we show that silencing IL4I1 significantly remodels the immune microenvironment via inhibiting aryl hydrocarbon receptor (AHR) signaling, thereby enhancing the efficacy of anti-PD-1 antibody in LUAD, which suggests that IL4I1 is a potential drug target for the combination immunotherapy. We then identify thymol as the first small molecule targeting IL4I1 transcription through a drug screening. Thymol inhibits the IL4I1 expression and blocks AHR signaling in LUAD cells. Thymol treatment restores the antitumor immune response and suppresses the progression of LUAD in an orthotopic mouse model. Strikingly, the combination treatment of thymol with anti-PD-1 antibody shows significant tumor regression in LUAD mice. Thus, we demonstrate that thymol is an effective small molecule to sensitize the PD-1 blockade in LUAD via targeting IL4I1, which provides a novel strategy for the immunotherapy of LUAD.
Collapse
Affiliation(s)
- Tong Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jie Shi
- School of MedicineNankai UniversityTianjinChina
| | | | - Xuan Qin
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rui Zhou
- School of MedicineNankai UniversityTianjinChina
| | - Ming Dong
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Fan Ren
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Xin Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Zihe Zhang
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Yanan Chen
- School of MedicineNankai UniversityTianjinChina
| | - Yanhua Liu
- School of MedicineNankai UniversityTianjinChina
| | | | - Yi Shi
- School of MedicineNankai UniversityTianjinChina
| | - Song Xu
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jun Chen
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jia Li
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
46
|
Yang L, Zhou Y, Zhang L, Wang Y, Zhang Y, Xiao Z. Aryl hydrocarbon receptors improve migraine-like pain behaviors in rats through the regulation of regulatory T cell/T-helper 17 cell-related homeostasis. Headache 2023; 63:1045-1060. [PMID: 37539825 DOI: 10.1111/head.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To investigate the effect of the aryl hydrocarbon receptor (AHR)/regulatory T cell (Treg)/T-helper 17 (Th17) cell pathway on the pathogenesis of migraine. BACKGROUND Migraine is a disabling neurovascular disease that imposes an enormous burden on both individuals and society. The pathophysiological mechanisms of migraine remain controversial. Recent studies have suggested that immune dysfunction may be involved in the pathogenesis of migraine. The AHR, a receptor expressed on most immune cells, has been implicated in the occurrence of many autoimmune diseases; however, whether it is involved in the pathogenesis of migraine is unclear. METHODS A chronic migraine rat model was established through repeated intraperitoneal injection of nitroglycerin (NTG). The mechanical and thermal pain thresholds were assessed using von Frey filaments and radiant heat. Next, the protein expression levels of AHR in the trigeminal nucleus caudalis (TNC) region of chronic migraine (CM)-like rats were quantified and the changes in Treg/Th17-related transcription factors and inflammatory factors in the TNC were explored. To determine the role of AHR in CM, we examined the effects of the AHR agonist 2-(1'-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and AHR antagonist CH-223191 on pain behavior, c-Fos, calcitonin gene-related peptide (CGRP), AHR, and Treg/Th17-related factor expression in CM-like rats. RESULTS Repeated administration of NTG significantly enhanced nociceptive hypersensitivity and increased expression of c-Fos and CGRP in rats, while AHR was significantly decreased in the TNC. In addition, the expression of the transcription factor forkhead box protein P3 and the signal transducer and activator of transcription 5 decreased significantly. In contrast, the expression of the transcription factor retinoic acid receptor-related orphan receptor γ t and signal transducer and activator of transcription 3 were significantly increased. Moreover, the mRNA level of transforming growth factor beta-1 was decreased, while that of interleukin (IL)-10 and IL-22 was increased in the TNC. The AHR agonist ITE alleviated migraine-like pain behaviors in rats, activated the AHR signaling pathway, and improved the imbalance of Treg/Th17-related transcription factors and inflammatory factors. Conversely, the AHR antagonist CH-223191 did not alleviate migraine-like pain behaviors in rats; and even exacerbated them. CONCLUSIONS The AHR participates in the development of CM by regulating Treg/Th17-related homeostasis. Therefore, treatments targeting the AHR/Treg/Th17 signaling pathway could be new effective interventions for CM treatment.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yue Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Miyamoto K, Sujino T, Harada Y, Ashida H, Yoshimatsu Y, Yonemoto Y, Nemoto Y, Tomura M, Melhem H, Niess JH, Suzuki T, Suzuki T, Suzuki S, Koda Y, Okamoto R, Mikami Y, Teratani T, Tanaka KF, Yoshimura A, Sato T, Kanai T. The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 2023; 42:113005. [PMID: 37590143 DOI: 10.1016/j.celrep.2023.113005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, 1-10-3, Kaminagazato, Kita-ku, Tokyo 114-0016, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba city, Chiba 260-8673, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, 3-11-1 Nshikiorikita, Tondabayshi, Osaka, 584-8584, Japan
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Clarunis-University Center for Gastrointestinal and Liver Diseases, University Hospital Basel, 4002 Basel, Switzerland
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toru Suzuki
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shohei Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
48
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
49
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
50
|
Chen X, Patterson AD, Perdew GH, Murray IA, Kellogg JJ. Molecular networking identifies an AHR-modulating benzothiazole from white button mushrooms ( Agaricus bisporus). J Funct Foods 2023; 106:105602. [PMID: 37397272 PMCID: PMC10312048 DOI: 10.1016/j.jff.2023.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Diet-derived aryl hydrocarbon receptor (AHR) ligands have potential to maintain gut health. However, among the myriad bioactive compounds from foods, identifying novel functional ligands which would significantly impact gastrointestinal health is a challenge. In this study, a novel AHR modulator is predicted, identified, and characterized in the white button mushroom (Agaricus bisporus). Using a molecular networking approach, a methylated analog to benzothiazole was indicated in white button mushrooms, which was subsequently isolated and identified as 2-amino-4-methyl-benzothiazole(2A4). Cell-based AHR transcriptional assays revealed that 2-amino-4-methyl-benzothiazole possesses agonistic activity and upregulated CYP1A1 expression. This contrasts with previous findings that whole white button mushroom extract has overall antagonistic activity in vivo, underscoring the importance of studying the roles each chemical component plays in a whole food. The findings suggest that 2-amino-4-methyl-benzothiazole is a previously unidentified AHR modulator from white button mushroom and demonstrate that molecular networking has potential to identify novel receptor modulators from natural products.
Collapse
|