1
|
Chen S, Hou J, Jaffery R, Guerrero A, Fu R, Shi L, Zheng N, Bohat R, Egan NA, Yu C, Sharif S, Lu Y, He W, Wang S, Gjuka D, Stone EM, Shah PA, Rodon Ahnert J, Chen T, Liu X, Bedford MT, Xu H, Peng W. MTA-cooperative PRMT5 inhibitors enhance T cell-mediated antitumor activity in MTAP-loss tumors. J Immunother Cancer 2024; 12:e009600. [PMID: 39313308 PMCID: PMC11418539 DOI: 10.1136/jitc-2024-009600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Hyperactivated protein arginine methyltransferases (PRMTs) are implicated in human cancers. Inhibiting tumor intrinsic PRMT5 was reported to potentiate antitumor immune responses, highlighting the possibility of combining PRMT5 inhibitors (PRMT5i) with cancer immunotherapy. However, global suppression of PRMT5 activity impairs the effector functions of immune cells. Here, we sought to identify strategies to specifically inhibit PRMT5 activity in tumor tissues and develop effective PRMT5i-based immuno-oncology (IO) combinations for cancer treatment, particularly for methylthioadenosine phosphorylase (MTAP)-loss cancer. METHODS Isogeneic tumor lines with and without MTAP loss were generated by CRISPR/Cas9 knockout. The effects of two PRMT5 inhibitors (GSK3326595 and MRTX1719) were evaluated in these isogenic tumor lines and T cells in vitro and in vivo. Transcriptomic and proteomic changes in tumors and T cells were characterized in response to PRMT5i treatment. Furthermore, the efficacy of MRTX1719 in combination with immune checkpoint blockade was assessed in two syngeneic murine models with MTAP-loss tumor. RESULTS GSK3326595 significantly suppresses PRMT5 activity in tumors and T cells regardless of the MTAP status. However, MRTX1719, a methylthioadenosine-cooperative PRMT5 inhibitor, exhibits tumor-specific PRMT5 inhibition in MTAP-loss tumors with limited immunosuppressive effects. Mechanistically, transcriptomic and proteomic profiling analysis reveals that MRTX1719 successfully reduces the activation of the PI3K pathway, a well-documented immune-resistant pathway. It highlights the potential of MRTX1719 to overcome immune resistance in MTAP-loss tumors. In addition, MRTX1719 sensitizes MTAP-loss tumor cells to the killing of tumor-reactive T cells. Combining MRTX1719 and anti-PD-1 leads to superior antitumor activity in mice bearing MTAP-loss tumors. CONCLUSION Collectively, our results provide a strong rationale and mechanistic insights for the clinical development of MRTX1719-based IO combinations in MTAP-loss tumors.
Collapse
Affiliation(s)
- Si Chen
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jiakai Hou
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Roshni Jaffery
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ashley Guerrero
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Rongjie Fu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leilei Shi
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ritu Bohat
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nicholas A Egan
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chengtai Yu
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sana Sharif
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Yue Lu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei He
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuyue Wang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donjeta Gjuka
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Everett M Stone
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Pooja Anil Shah
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taiping Chen
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinli Liu
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Mark T Bedford
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Xu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
3
|
Hernando-Calvo A, Yang SC, Vila-Casadesús M, Han M, Liu ZA, Berman AHK, Spreafico A, Razak AA, Lheureux S, Hansen AR, Lo Giacco D, Abbas-Aghababazadeh F, Matito J, Haibe-Kains B, Pugh TJ, Bratman SV, Aleshin A, Berche R, Saavedra O, Garralda E, Elston S, Siu LL, Ohashi PS, Vivancos A, Bedard PL. Combined Transcriptome and Circulating Tumor DNA Longitudinal Biomarker Analysis Associates With Clinical Outcomes in Advanced Solid Tumors Treated With Pembrolizumab. JCO Precis Oncol 2024; 8:e2400100. [PMID: 39178369 PMCID: PMC11371115 DOI: 10.1200/po.24.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE Immune gene expression signatures are emerging as potential biomarkers for immunotherapy (IO). VIGex is a 12-gene expression classifier developed in both nCounter (Nanostring) and RNA sequencing (RNA-seq) assays and analytically validated across laboratories. VIGex classifies tumor samples into hot, intermediate-cold (I-Cold), and cold subgroups. VIGex-Hot has been associated with better IO treatment outcomes. Here, we investigated the performance of VIGex and other IO biomarkers in an independent data set of patients treated with pembrolizumab in the INSPIRE phase II clinical trial (ClinicalTrials.gov identifier: NCT02644369). MATERIALS AND METHODS Patients with advanced solid tumors were treated with pembrolizumab 200 mg IV once every 3 weeks. Tumor RNA-seq data from baseline tumor samples were classified by the VIGex algorithm. Circulating tumor DNA (ctDNA) was measured at baseline and start of cycle 3 using the bespoke Signatera assay. VIGex-Hot was compared with VIGex I-Cold + Cold and four groups were defined on the basis of the combination of VIGex subgroups and the change in ctDNA at cycle 3 from baseline (ΔctDNA). RESULTS Seventy-six patients were enrolled, including 16 ovarian, 12 breast, 12 head and neck cancers, 10 melanoma, and 26 other tumor types. Objective response rate was 24% in VIGex-Hot and 10% in I-Cold/Cold. VIGex-Hot subgroup was associated with higher overall survival (OS) and progression-free survival (PFS) when included in a multivariable model adjusted for tumor type, tumor mutation burden, and PD-L1 immunohistochemistry. The addition of ΔctDNA improved the predictive performance of the baseline VIGex classification for both OS and PFS. CONCLUSION Our data indicate that the addition of ΔctDNA to baseline VIGex may refine prediction for IO.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Departamento de Medicina, Universidad Autonoma de Barcelona (UAB), Barcelona, Spain
| | - S.Y. Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Ming Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - A Hal K. Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Judith Matito
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott V. Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Roger Berche
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Omar Saavedra
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sawako Elston
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L. Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ana Vivancos
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Philippe L. Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Vlajnic T, Chijioke O, Roma L, Savic Prince S, Zellweger T, Rentsch CA, Bubendorf L. Loss of MTAP Expression by Immunohistochemistry Is a Surrogate Marker for Homozygous 9p21.3 Deletion in Urothelial Carcinoma. Mod Pathol 2024; 37:100495. [PMID: 38641323 DOI: 10.1016/j.modpat.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Homozygous deletion of the chromosomal region 9p21.3 is common in urothelial carcinoma (UC) and leads to loss of several genes, including CDKN2A and MTAP, resulting in loss of MTAP protein expression. Here, we aimed to explore the diagnostic potential of MTAP immunohistochemistry (IHC) as a surrogate marker for homozygous 9p21.3 deletion (9p21 homozygous deletion [HD]) in UC. MTAP status was determined by IHC on 27 UC tissue specimens with known 9p21.3 status as defined by fluorescence in situ hybridization in matched cytological specimens, by IHC and fluorescence in situ hybridization on a tissue microarray (TMA) containing 359 UC at different stages, and by IHC on 729 consecutive UC from routine practice. Moreover, we analyzed a longitudinal series of matched specimens from 38 patients with MTAP-negative recurrent UC. MTAP loss by IHC was found in all 17 patients with 9p21 HD and in 2/8 cases without 9p21 HD. In the TMA, MTAP loss was more common in metastases (53%) than in muscle-invasive (33%) and non-muscle-invasive UC (29%) (P = .03). In the consecutive series, 164/729 (22%) cases showed loss of MTAP expression. In 41 of these 164 cases (25%), loss of MTAP expression was heterogenous. We also discovered loss of MTAP expression in flat urothelium adjacent to MTAP-negative low-grade UC, suggesting true flat low-grade neoplasia that could not be diagnosed by morphology alone. Longitudinal analysis of recurrences showed persistent negative MTAP status over time in 37/38 (97%) patients. MTAP IHC can serve as a surrogate marker for 9p21 HD in UC and as a diagnostic tool to differentiate reactive urothelium from urothelial neoplasia. It also provides a unique opportunity to study clinicopathological associations and the heterogeneity of 9p21 HD across the whole spectrum of UC manifestations.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Obinna Chijioke
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Deng C, Li ZX, Xie CJ, Zhang QL, Hu BS, Wang MD, Mei J, Yang C, Zhong Z, Wang KW. Pan-cancer analysis of CDKN2A alterations identifies a subset of gastric cancer with a cold tumor immune microenvironment. Hum Genomics 2024; 18:55. [PMID: 38822443 PMCID: PMC11143690 DOI: 10.1186/s40246-024-00615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/03/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zi-Xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Chen-Jun Xie
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Qing-Lin Zhang
- Departments of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ben-Shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-Dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macao SAR 999078, China.
| | - Ke-Wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
6
|
Barriga FM, Lowe SW. Engineering megabase-sized genomic deletions with MACHETE (Molecular Alteration of Chromosomes with Engineered Tandem Elements). Nat Protoc 2024; 19:1381-1399. [PMID: 38326496 DOI: 10.1038/s41596-024-00953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/21/2023] [Indexed: 02/09/2024]
Abstract
The elimination of large genomic regions has been enabled by the advent of site-specific nucleases. However, as the intended deletions get larger, the efficiency of successful engineering decreases to a point where it is not feasible to retrieve edited cells due to the rarity of on-target events. To address this issue, we developed a system called molecular alteration of chromosomes with engineered tandem elements (MACHETE). MACHETE is a CRISPR-Cas9-based system involving two stages: the initial insertion of a bicistronic positive/negative selection cassette to the locus of interest. This is followed by the introduction of single-guide RNAs flanking the knockin cassette to engineer the intended deletion, where only cells that have lost the locus survive the negative selection. In contrast to other approaches optimizing the activity of sequence-specific nucleases, MACHETE selects for the deletion event itself, thus greatly enriching for cells with the engineered alteration. The procedure routinely takes 4-6 weeks from design to selection of polyclonal populations bearing the deletion of interest. We have successfully deployed MACHETE to engineer deletions of up to 45 Mb, as well as the rapid creation of allelic series to map the relevant activities within a locus. This protocol details the design and step-by-step procedure to engineer megabase-sized deletions in cells of interest, with potential application for cancer genetics, transcriptional regulation, genome architecture and beyond.
Collapse
Affiliation(s)
- Francisco M Barriga
- Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Scott W Lowe
- Cancer Biology and Genetics Program and Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Hofman P, Berezowska S, Kazdal D, Mograbi B, Ilié M, Stenzinger A, Hofman V. Current challenges and practical aspects of molecular pathology for non-small cell lung cancers. Virchows Arch 2024; 484:233-246. [PMID: 37801103 PMCID: PMC10948551 DOI: 10.1007/s00428-023-03651-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France.
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France.
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Baharia Mograbi
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Marius Ilié
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Véronique Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| |
Collapse
|
8
|
Serafini MS, Cavalieri S, Licitra L, Pistore F, Lenoci D, Canevari S, Airoldi M, Cossu Rocca M, Strojan P, Kuhar CG, Merlano M, Perrone F, Vingiani A, Denaro N, Perri F, Argiris A, Gurizzan C, Ghi MG, Cassano A, Allegrini G, Bossi P, De Cecco L. Association of a gene-expression subtype to outcome and treatment response in patients with recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab. J Immunother Cancer 2024; 12:e007823. [PMID: 38290766 PMCID: PMC10828850 DOI: 10.1136/jitc-2023-007823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have been approved and currently used in the clinical management of recurrent and metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients. The reported benefit in clinical trials is variable and heterogeneous. Our study aims at exploring and comparing the predictive role of gene-expression signatures with classical biomarkers for immunotherapy-treated R/M HNSCC patients in a multicentric phase IIIb trial. METHODS Clinical data were prospectively collected in Nivactor tiral (single-arm, open-label, multicenter, phase IIIb clinical trial in platinum-refractory HNSCC treated with nivolumab). Findings were validated in an external independent cohort of immune-treated HNSCC patients, divided in long-term and short-term survivors (overall survival >18 and <6 months since the start of immunotherapy, respectively). Pretreatment tumor tissue specimen from immunotherapy-treated R/M HNSCC patients was used for PD-L1 (Tumor Proportion Score; Combined Positive Score (CPS)) and Tumor Mutational Burden (Oncopanel TSO500) evaluation and gene expression profiling; classical biomarkers and immune signatures (retrieved from literature) were challenged in the NIVACTOR dataset. RESULTS Cluster-6 (Cl6) stratification of NIVACTOR cases in high score (n=16, 20%) and low score (n=64, 80%) demonstrated a statistically significant and clinically meaningful improvement in overall survival in the high-score cases (p=0.00028; HR=4.34, 95% CI 1.84 to 10.22) and discriminative ability reached area under the curve (AUC)=0.785 (95% CI 0.603 to 0.967). The association of high-score Cl6 with better outcome was also confirmed in: (1) NIVACTOR progression-free survival (p=4.93E-05; HR=3.71, 95% CI 1.92 to 7.18) and objective-response-rate (AUC=0.785; 95% CI 0.603 to 0.967); (2) long survivors versus short survivors (p=0.00544). In multivariate Cox regression analysis, Cl6 was independent from Eastern Cooperative Oncology Group performance status, PDL1-CPS, and primary tumor site. CONCLUSIONS These data highlight the presence of underlying biological differences able to predict survival and response following treatment with immunotherapy in platinum-refractory R/M HNSCC that could have translational implications improving treatment selection. TRIAL REGISTRATION NUMBER EudraCT Number: 2017-000562-30.
Collapse
Affiliation(s)
- Mara Serena Serafini
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Deborah Lenoci
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Mario Airoldi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | | - Cvetka Grasic Kuhar
- University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | | | - Federica Perrone
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Francesco Perri
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cristina Gurizzan
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maria Grazia Ghi
- Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padova, Italy
| | - Alessandra Cassano
- Policlinico Universitario Agostino Gemelli Dipartimento di scienze mediche e chirurgiche, Roma, Italy
| | | | - Paolo Bossi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Loris De Cecco
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
9
|
Varshavsky A, Lewis K, Chen SJ. Deletions of DNA in cancer and their possible uses for therapy. Bioessays 2023; 45:e2300051. [PMID: 37166062 PMCID: PMC11102808 DOI: 10.1002/bies.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Despite advances in treatments over the last decades, a uniformly reliable and free of side effects therapy of human cancers remains to be achieved. During chromosome replication, a premature halt of two converging DNA replication forks would cause incomplete replication and a cytotoxic chromosome nondisjunction during mitosis. In contrast to normal cells, most cancer cells bear numerous DNA deletions. A homozygous deletion permanently marks a cell and its descendants. Here, we propose an approach to cancer therapy in which a pair of sequence-specific roadblocks is placed solely at two cancer-confined deletion sites that are located ahead of two converging replication forks. We describe this method, termed "replication blocks specific for deletions" (RBSD), and another deletions-based approach as well. RBSD can be expanded by placing pairs of replication roadblocks on several different chromosomes. The resulting simultaneous nondisjunctions of these chromosomes in cancer cells would further increase the cancer-specific toxicity of RBSD.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
10
|
Li Z, Zhang X, Weng W, Zhang G, Ren Q, Tian Y. Cross-talk of RNA modification "writers" describes tumor stemness and microenvironment and guides personalized immunotherapy for gastric cancer. Aging (Albany NY) 2023; 15:5445-5481. [PMID: 37319315 PMCID: PMC10333070 DOI: 10.18632/aging.204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND RNA modifications, TME, and cancer stemness play significant roles in tumor development and immunotherapy. The study investigated cross-talk and RNA modification roles in the TME, cancer stemness, and immunotherapy of gastric cancer (GC). METHODS We applied an unsupervised clustering method to distinguish RNA modification patterns in GC. GSVA and ssGSEA algorithms were applied. The WM_Score model was constructed for evaluating the RNA modification-related subtypes. Also, we conducted an association analysis between the WM_Score and biological and clinical features in GC and explored the WM_Score model's predictive value in immunotherapy. RESULTS We identified four RNA modification patterns with diverse survival and TME features. One pattern consistent with the immune-inflamed tumor phenotype showed a better prognosis. Patients in WM_Score high group were related to adverse clinical outcomes, immune suppression, stromal activation, and enhanced cancer stemness, while WM_Score low group showed opposite results. The WM_Score was correlated with genetic, epigenetic alterations, and post-transcriptional modifications in GC. Low WM_Score was related to enhanced efficacy of anti-PD-1/L1 immunotherapy. CONCLUSIONS We revealed the cross-talk of four RNA modification types and their functions in GC, providing a scoring system for GC prognosis and personalized immunotherapy predictions.
Collapse
Affiliation(s)
- Zhuoqi Li
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Ge Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Qianwen Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Yuan Tian
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
12
|
Barriga FM, Tsanov KM, Ho YJ, Sohail N, Zhang A, Baslan T, Wuest AN, Del Priore I, Meškauskaitė B, Livshits G, Alonso-Curbelo D, Simon J, Chaves-Perez A, Bar-Sagi D, Iacobuzio-Donahue CA, Notta F, Chaligne R, Sharma R, Pe'er D, Lowe SW. MACHETE identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune evasion and metastasis. NATURE CANCER 2022; 3:1367-1385. [PMID: 36344707 PMCID: PMC9701143 DOI: 10.1038/s43018-022-00443-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
The most prominent homozygous deletions in cancer affect chromosome 9p21.3 and eliminate CDKN2A/B tumor suppressors, disabling a cell-intrinsic barrier to tumorigenesis. Half of 9p21.3 deletions, however, also encompass a type I interferon (IFN) gene cluster; the consequences of this co-deletion remain unexplored. To functionally dissect 9p21.3 and other large genomic deletions, we developed a flexible deletion engineering strategy, MACHETE (molecular alteration of chromosomes with engineered tandem elements). Applying MACHETE to a syngeneic mouse model of pancreatic cancer, we found that co-deletion of the IFN cluster promoted immune evasion, metastasis and immunotherapy resistance. Mechanistically, IFN co-deletion disrupted type I IFN signaling in the tumor microenvironment, leading to marked changes in infiltrating immune cells and escape from CD8+ T-cell surveillance, effects largely driven by the poorly understood interferon epsilon. These results reveal a chromosomal deletion that disables both cell-intrinsic and cell-extrinsic tumor suppression and provide a framework for interrogating large deletions in cancer and beyond.
Collapse
Affiliation(s)
- Francisco M Barriga
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noor Sohail
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Timour Baslan
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra N Wuest
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella Del Priore
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Brigita Meškauskaitė
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geulah Livshits
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janelle Simon
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Almudena Chaves-Perez
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ronan Chaligne
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Lin E, Zhu P, Ye C, Huang M, Liu X, Tian K, Tang Y, Zeng J, Cheng S, Liu J, Liu Y, Yu Y. Integrative Analysis of the Genomic and Immune Microenvironment Characteristics Associated With Clear Cell Renal Cell Carcinoma Progression: Implications for Prognosis and Immunotherapy. Front Immunol 2022; 13:830220. [PMID: 35677048 PMCID: PMC9168804 DOI: 10.3389/fimmu.2022.830220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Unlike early clear cell renal cell carcinoma (ccRCC), locally advanced and metastatic ccRCC present poor treatment outcomes and prognosis. As immune checkpoint inhibitors have achieved favorable results in the adjuvant treatment of metastatic ccRCC, we aimed to investigate the immunogenomic landscape during ccRCC progression and its potential impact on immunotherapy and prognosis. Using multi-omics and immunotherapy ccRCC datasets, an integrated analysis was performed to identify genomic alterations, immune microenvironment features, and related biological processes during ccRCC progression and evaluate their relevance to immunotherapy response and prognosis. We found that aggressive and metastatic ccRCC had higher proportions of genomic alterations, including SETD2 mutations, Del(14q), Del(9p), and higher immunosuppressive cellular and molecular infiltration levels. Of these, the Del(14q) might mediate immune escape in ccRCC via the VEGFA-VEGFR2 signaling pathway. Furthermore, immune-related pathways associated with ccRCC progression did not affect the immunotherapeutic response to ccRCC. Conversely, cell cycle pathways not only affected ccRCC progression and prognosis, but also were related to ccRCC immunotherapeutic response resistance. Overall, we described the immunogenomic characteristics of ccRCC progression and their correlations with immunotherapeutic response and prognosis, providing new insights into their prediction and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - ManLi Huang
- Department of Operating Room, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|