1
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
2
|
Fridy PC, Rout MP, Ketaren NE. Nanobodies: from high-throughput identification to therapeutic development. Mol Cell Proteomics 2024:100865. [PMID: 39433212 DOI: 10.1016/j.mcpro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The camelid single-domain antibody fragment, commonly referred to as a nanobody, achieves the targeting power of conventional monoclonal antibodies (mAbs) at only a fraction of their size. Isolated from camelid species (including llamas, alpacas, and camels), their small size at ∼15 kDa, low structural complexity and high stability compared with conventional antibodies have propelled nanobody technology into the limelight of biologic development. Nanobodies are proving themselves to be a potent complement to traditional mAb therapies, showing success in the treatment of e.g. autoimmune diseases and cancer, and more recently as therapeutic options to treat infectious diseases caused by rapidly evolving biological targets such as the SARS-CoV-2 virus. This review highlights the benefits of applying a proteomic approach to identify diverse nanobody sequences against a single antigen. This proteomic approach coupled with conventional yeast/phage display methods enables the production of highly diverse repertoires of nanobodies able to bind the vast epitope landscape of an antigen, with epitope sampling surpassing that of mAbs. Additionally, we aim to highlight recent findings illuminating the structural attributes of nanobodies that make them particularly amenable to comprehensive antigen sampling and to synergistic activity - underscoring the powerful advantage of acquiring a large, diverse nanobody repertoire against a single antigen. Lastly, we highlight the efforts being made in the clinical development of nanobodies, which have great potential as powerful diagnostic reagents and treatment options, especially when targeting infectious disease agents.
Collapse
Affiliation(s)
- Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Saleem MZ, Jahangir GZ, Saleem A, Zulfiqar A, Khan KA, Ercisli S, Ali B, Saleem MH, Saleem A. Production Technologies for Recombinant Antibodies: Insights into Eukaryotic, Prokaryotic, and Transgenic Expression Systems. Biochem Genet 2024:10.1007/s10528-024-10911-5. [PMID: 39287779 DOI: 10.1007/s10528-024-10911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Recombinant antibodies, a prominent class of recombinant proteins, are witnessing substantial growth in research and diagnostics. Recombinant antibodies are being produced employing diverse hosts ranging from highly complex eukaryotes, for instance, mammalian cell lines (and insects, fungi, yeast, etc.) to unicellular prokaryotic models like gram-positive and gram-negative bacteria. This review delves into these production methods, highlighting approaches like antibody phage display that employs bacteriophages for gene library creation. Recent studies emphasize monoclonal antibody generation through hybridoma technology, utilizing hybridoma cells from myeloma and B-lymphocytes. Transgenic plants and animals have emerged as sources for polyclonal and monoclonal antibodies, with transgenic animals preferred due to their human-like post-translational modifications and reduced immunogenicity risk. Chloroplast expression offers environmental safety by preventing transgene contamination in pollen. Diverse production technologies, such as stable cell pools and clonal cell lines, are available, followed by purification via techniques like affinity chromatography. The burgeoning applications of recombinant antibodies in medicine have led to their large-scale industrial production.
Collapse
Affiliation(s)
| | | | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, 25240, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, 25240, Erzurum, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Aroona Saleem
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
4
|
Hawkes JE, Al-Saedy M, Bouché N, Al-Saedy S, Drew DT, Song EJ. The Psoriasis Treatment Pipeline: An Overview and Update. Dermatol Clin 2024; 42:365-375. [PMID: 38796268 DOI: 10.1016/j.det.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Significant research advances in our understanding of psoriatic disease have led to the development of several highly selective, effective, and safe topical and systemic treatments. These treatments have led to unprecedented levels of disease clearance and control for most patients with psoriasis with cutaneous disease. However, there remains a need for improved treatments for those patients with recalcitrant disease, psoriatic arthritis, or nonplaque disease variants. Recently approved therapies and investigational products in ongoing clinical development programs that target IL-17A/F, IL-23, TYK2, PDE4, AhR or IL-36 cytokine signaling are improving the clinician's ability to care for a broader range of patients affected by psoriasis.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, Integrative Skin Science and Research, Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
| | - Miriam Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Nicole Bouché
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Salsabeal Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Delaney T Drew
- University Hospitals Regional Hospitals, 13207 Ravenna Road, Chardon, OH 44024, USA
| | - Eingun James Song
- Department of Dermatology, Frontier Dermatology, 15906 Mill Creek Boulevard #105, Mill Creek, WA 98012, USA.
| |
Collapse
|
5
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
6
|
Krueger JG, Frew J, Jemec GBE, Kimball AB, Kirby B, Bechara FG, Navrazhina K, Prens E, Reich K, Cullen E, Wolk K. Hidradenitis suppurativa: new insights into disease mechanisms and an evolving treatment landscape. Br J Dermatol 2024; 190:149-162. [PMID: 37715694 DOI: 10.1093/bjd/ljad345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is a chronic disabling and debilitating inflammatory disease with a high unmet medical need. The prevalence of HS reported in most studies is 1-2%, although it is likely to be under-reported and estimates vary globally owing to variance in data collection methods, ethnicity, geographical location and under-diagnosis. HS is characterized by persistent, painful cutaneous nodules, abscesses and draining tunnels commonly affecting the axillary, anogenital, inguinal and perianal/gluteal areas. Over time, chronic uncontrolled inflammation results in irreversible tissue destruction and scarring. Although the pathophysiology of HS has not been fully elucidated, the tumour necrosis factor (TNF)-α and interleukin (IL)-17 pathways have an important role, involving multiple cytokines. Currently, treatment options include topical medications; systemic therapies, including repeated and/or rotational courses of systemic antibiotics, retinoids and hormonal therapies; and various surgical procedures. The anti-TNF-α antibody adalimumab is currently the only biologic approved by both the US Food and Drug Administration and the European Medicines Agency for HS; however, its efficacy varies, with a clinical response reported in approximately 50% of patients in phase III trials. HS is a rapidly evolving field of discovery, with a diverse range of agents with distinct mechanisms of action currently being explored in clinical trials. Several other promising therapeutic targets have recently emerged, and agents targeting the IL-17 and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways are the most advanced in ongoing or completed phase III clinical trials. Alongside limited therapeutic options, significant challenges remain in terms of diagnosis and disease management, with a need for better treatment outcomes. Other unmet needs include significant diagnostic delays, thus missing the therapeutic 'window of opportunity'; the lack of standardized outcome measures in clinical trials; and the lack of established, well-defined disease phenotypes and biomarkers.
Collapse
Affiliation(s)
- James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - John Frew
- Laboratory of Translational Cutaneous Medicine, Ingham Institute for Applied Medical Research, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Alexa B Kimball
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brian Kirby
- Charles Department of Dermatology, St Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - Falk G Bechara
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Errol Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, TheNetherlands
| | - Kristian Reich
- Translational Research in Inflammatory Skin Diseases, Institute for Health Care Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Germany
- MoonLake Immunotherapeutics AG, Zug, Switzerland
| | - Eva Cullen
- MoonLake Immunotherapeutics AG, Zug, Switzerland
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Department of Dermatology, Venereology and Allergology and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. MAbs 2024; 16:2341443. [PMID: 38666503 PMCID: PMC11057648 DOI: 10.1080/19420862.2024.2341443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.
Collapse
|
8
|
Takeuchi T. Structural, nonclinical, and clinical features of ozoralizumab: A novel tumour necrosis factor inhibitor. Mod Rheumatol 2023; 33:1059-1067. [PMID: 37185766 DOI: 10.1093/mr/road038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Tumour necrosis factor (TNF) inhibitors are currently the most widely used biological agents to treat rheumatoid arthritis. Ozoralizumab (OZR), a novel TNF inhibitor, is an antibody using variable heavy-chain domains of heavy-chain antibody (VHHs) and became the first VHH drug approved for the treatment of rheumatoid arthritis in September 2022. VHHs isolated from camelid heavy-chain antibodies can bind antigens with a single molecule. OZR is a trivalent VHH that consists of two anti-human TNFα VHHs and one anti-human serum albumin (anti-HSA) VHH. This review summarizes OZR's unique structural characteristics and nonclinical and clinical data. The clinical data outline the pharmacokinetics, efficacy, relationship between efficacy and pharmacokinetics, and safety of OZR, focusing on a Phase II/III confirmatory study (OHZORA trial).
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Saitama Medical University, Saitama, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Strober B, Paul C, Blauvelt A, Thaçi D, Puig L, Lebwohl M, White K, Vanvoorden V, Deherder D, Gomez NN, Eyerich K. Bimekizumab efficacy and safety in patients with moderate to severe plaque psoriasis: Two-year interim results from the open-label extension of the randomized BE RADIANT phase 3b trial. J Am Acad Dermatol 2023; 89:486-495. [PMID: 37182701 DOI: 10.1016/j.jaad.2023.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Bimekizumab is a monoclonal IgG1 antibody that inhibits interleukin-17A/F. Bimekizumab is more efficacious than secukinumab over 1 year in the treatment of psoriasis. OBJECTIVE Evaluate the safety and efficacy of bimekizumab through 2 years in patients with moderate to severe plaque psoriasis. METHODS The BE RADIANT phase 3b randomized controlled trial consisted of a 48-week double-blinded period, where patients received bimekizumab (320 mg every 4 or 8 weeks) or secukinumab (300 mg weekly to Week 4, then every 4 weeks), and an open-label extension (OLE). From Week 48, all patients received bimekizumab in the OLE. RESULTS At Week 48, more patients achieved complete skin clearance (PASI 100; modified non-responder imputation) with bimekizumab than secukinumab (74.8% vs 52.8%). PASI 100 responses were maintained to Week 96 in continuous bimekizumab patients (70.8%); patients who switched from secukinumab to bimekizumab had increased rates at Week 96 (76.6%). The most common adverse events were: nasopharyngitis, oral candidiasis, and urinary tract infection. Safety data were consistent with the known safety profile of bimekizumab. LIMITATIONS Limited racial diversity; overlap with the COVID-19 pandemic. CONCLUSIONS High PASI 100 responses achieved with bimekizumab over 48 weeks were sustained through Week 96; secukinumab patients who switched to bimekizumab achieved similar responses by Week 96.
Collapse
Affiliation(s)
- Bruce Strober
- Department of Dermatology, Yale University, New Haven, Connecticut; Central Connecticut Dermatology Research, Cromwell, Connecticut.
| | - Carle Paul
- Toulouse University and INSERM Infinity, Toulouse, France
| | | | - Diamant Thaçi
- Insititute and Centre for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Luis Puig
- Hospital de la Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark Lebwohl
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Kilian Eyerich
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Zhou Z, Liao B, Wang S, Tang J, Zhao H, Tong M, Li K, Xiong S. Improved Production of Anti-FGF-2 Nanobody Using Pichia pastoris and Its Effect on Antiproliferation of Keratinocytes and Alleviation of Psoriasis. Arch Immunol Ther Exp (Warsz) 2023; 71:20. [PMID: 37632545 DOI: 10.1007/s00005-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 08/28/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is not only an angiogenic factor, but also a mitogen for epidermal keratinocytes. FGF-2 has been shown to be positively immunoreactive in the basal layer of psoriatic lesions. In previous work, we used the Escherichia coli (E. coli) expression system to biosynthesize a biologically active anti-FGF-2 nanobody (Nb) screened by phage display technology, but the low yield limited its clinical application. In this study, we aimed to increase the yield of anti-FGF-2 Nb, and evaluate its therapeutic potential for psoriasis by inhibiting FGF-2-mediated mitogenic signaling in psoriatic epidermal keratinocytes. We demonstrated a 16-fold improvement in the yield of anti-FGF-2 Nb produced in the Pichia pastoris (P. pastoris) compared to the E. coli expression system. In vitro, the FGF-2-induced HaCaT cell model (FHCM) was established to mimic the key feature of keratinocyte overproliferation in psoriasis. Anti-FGF-2 Nb was able to effectively inhibit the proliferation and migration of FHCM. In vivo, anti-FGF-2 Nb attenuated the severity of imiquimod (IMQ)-induced psoriatic lesions in mice, and also improved the inflammatory microenvironment by inhibiting the secretion of inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α), chemokines (CXCL1 and CCL20), and neutrophil infiltration in skin lesions. These were mainly related to the suppression of FGF-2-mediated mitogenic signaling in psoriatic keratinocytes. In conclusion, we have improved the production of anti-FGF-2 Nb and demonstrated the modality of attenuating the abnormal proliferative behavior of psoriatic keratinocytes by inhibiting FGF-2-mediated mitogenic signaling, which offers the possibility of treating psoriasis.
Collapse
Affiliation(s)
- Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Baixin Liao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Tang
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hui Zhao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingjie Tong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Keting Li
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Sheng Xiong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
12
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
13
|
Takeuchi T, Chino Y, Kawanishi M, Nakanishi M, Watase H, Mano Y, Sato Y, Uchida S, Tanaka Y. Efficacy and pharmacokinetics of ozoralizumab, an anti-TNFα NANOBODY ® compound, in patients with rheumatoid arthritis: 52-week results from the OHZORA and NATSUZORA trials. Arthritis Res Ther 2023; 25:60. [PMID: 37055803 PMCID: PMC10099673 DOI: 10.1186/s13075-023-03036-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Ozoralizumab (OZR), a tumor necrosis factor alpha (TNFα) inhibitor, is a NANOBODY® compound that binds to TNFα and human serum albumin. The main objective of this study was to analyze the pharmacokinetics (PK) of the drug and its correlation with clinical efficacy in patients with rheumatoid arthritis (RA). METHODS Efficacy data were analyzed from the OHZORA trial, in which OZR 30 or 80 mg was administered to Japanese patients with RA at 4-week intervals for 52 weeks in combination with methotrexate (MTX; n = 381), and the NATSUZORA trial, in which OZR 30 or 80 mg was administered without concomitant MTX (n = 140). Effects of patient baseline characteristics and anti-drug antibodies (ADAs) on the PK and efficacy of OZR were investigated, and a post hoc analysis of PK effects on drug efficacy was performed. RESULTS The maximum plasma concentration (Cmax) was reached in 6 days in both the 30 and 80 mg groups, with an elimination half-life of 18 days. The Cmax and area under the plasma concentration-time curve increased in a dose-dependent manner, and the trough concentration reached steady state by week 16. The exposure of OZR correlated negatively with patient body weight and was not affected by other patient baseline characteristics. Effects of ADAs on the exposure and efficacy of OZR were limited in both trials. However, antibodies that neutralize the binding to TNFα had some effect on the exposure and efficacy of OZR in the NATSUZORA trial. The receiver operating characteristic analysis of the effect of trough concentration on the American College of Rheumatology 20% and 50% improvement rates was retrospectively performed, and a cutoff trough concentration of approximately 1 μg/mL at week 16 was obtained in both trials. The efficacy indicators in the subgroup with trough concentration ≥ 1 μg/mL were higher than those in the < 1 μg/mL subgroup at week 16, while no clear cutoff was obtained at week 52 in both trials. CONCLUSIONS OZR showed a long half-life and favorable PK properties. A post hoc analysis suggested sustained efficacy independent of trough concentration by subcutaneous administration of OZR 30 mg at 4-week intervals for 52 weeks. TRIAL REGISTRATION JapicCTI, OHZORA trial: JapicCTI-184029, registration date July 9, 2018; NATSUZORA trial: JapicCTI-184031, registration date July 9, 2018.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Keio University School of Medicine, Tokyo, Japan.
- Saitama Medical University, Saitama, Japan.
| | | | | | | | | | - Yoko Mano
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yuri Sato
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
14
|
Ma H, Zhang W, Liu K, Xu B, Li M, Meng Q, An Z, Chen B. Generation and characterization of QLS22001, a humanized monoclonal antibody that neutralizes IL-17A and IL-17F with an extended half-life. Int Immunopharmacol 2023; 117:109947. [PMID: 37012892 DOI: 10.1016/j.intimp.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Therapeutic intervention to block IL-17A signaling has proven to be an effective treatment for numerous autoimmune diseases, including psoriasis, psoriatic arthritis, and axial spondylarthritis. Among the IL-17 family members, IL-17F, which shares 55% sequence homology with IL-17A, has been reported to functionally overlap with IL-17A in many inflammatory diseases. In this study, we describe the generation and characterization of QLS22001, a humanized monoclonal IgG1 antibody with an extended half-life and high affinity for both IL-17A and IL-17F. QLS22001 effectively blocks IL-17A and IL-17F mediated signaling pathways both in vitro and in vivo. Briefly, the YTE (M225Y/S254T/T256E) modification was introduced into the Fc fragment of QLS22001 WT Fc to prolong its half-life, and the resulting construct was named QLS22001. Functionally, it significantly inhibits IL-17A- and IL-17F-stimulated signaling in cell-based IL-6 release and reporter assays. The dual neutralization of the endogenous IL-17A and IL-17F produced by Th17 cells, as opposed to the selective blockade of IL-17A alone, results in a greater suppression of inflammatory cytokine secretion, according to in vitro blockade assays. Furthermore, in an in vivo mouse pharmacodynamic study, QLS22001 blocked human IL-17A-induced mouse keratinocyte chemoattractant (KC) release. In cynomolgus monkey pharmacokinetics evaluation, QLS22001 showed linear pharmacokinetic characteristics with a mean half-life of 31.2 days, while its parent antibody, QLS22001 WT Fc, had a mean half-life of 17.2 days. In addition, QLS22001 does not induce cytokine release in a human whole-blood assay. Collectively, these data provide a comprehensive preclinical characterization of QLS22001 and support its clinical development.
Collapse
Affiliation(s)
- Huimin Ma
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Wei Zhang
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Ke Liu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Baoxin Xu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Minyu Li
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Qingyun Meng
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Zhenming An
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Bo Chen
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China.
| |
Collapse
|
15
|
Jiang C, Zhou H, Zhang W, Xia Y, Li B, Ni X, Wang G, Zhang W, Chen B, He Z, Zhang M, Chen R, Jin H, Deng L. Efficacy, Safety and Pharmacokinetics of IL-17 Monoclonal Antibody Injection (AK111) in Patients with Moderate-to-Severe Plaque Psoriasis: A Randomized, Double-Blinded, Placebo-Controlled Phase Ib Multidose Escalation Clinical Study. Dermatol Ther (Heidelb) 2023; 13:555-567. [PMID: 36566344 PMCID: PMC9884719 DOI: 10.1007/s13555-022-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To evaluate the safety, tolerability, immunogenicity, and induced expression of skin biomarkers of AK111 injection after multiple administrations in subjects with moderate-to-severe plaque psoriasis. METHODS This study is a randomized, double-blinded, placebo-parallel-controlled study using a dose escalation mode of multiple doses. A total of 48 subjects were sequentially randomized to receive each AK111 dose regimen (75 mg, 150 mg, 300 mg, 450 mg) or the corresponding placebo. All subjects were treated with the study drug at weeks 0, 1, 4, and 8 and were unblinded at week 12, with the placebo group ending and the AK111 group being followed up to 20 weeks. RESULTS At week 12, compared with placebo, the percentage of subjects achieving Psoriasis Area and Severity Index 75 (PASI75) and static Physician Global Assessment (sPGA) 0/1 in the AK111 75 mg-450 mg dose groups was significantly increased, and higher PASI90 was achieved in the 150 mg, 300 mg, and 450 mg dose groups than in the 75 mg group. All efficacy indicators were maintained at week 20. The incidence of treatment-emergent anti-drug antibodies (ADAs) was 0% (0/48). Neutralizing antibodies (NAbs) were not detected in any subject. The proportion of subjects who reported any treatment-emergent adverse event (TEAE) was 75.0% in the AK111 group, similar to the 66.7% in the placebo group. The most commonly reported adverse events were hyperglycemia, elevated blood pressure, and hypokalemia. The AK111 pharmacokinetics showed approximate dose proportionality with regard to the maximum observed concentration (Cmax) and area under the curve from 0 to the time of the last quantifiable concentration (AUC0-t) following subcutaneous injection doses of 150-450 mg. CONCLUSIONS After moderate-to-severe plaque psoriasis subjects received multiple subcutaneous AK111 injections of 150-450 mg, AK111 exposure increased in a roughly dose-proportional relationship. AK111 was safe and tolerable. In subjects with moderate-to-severe plaque psoriasis, AK111 demonstrated encouraging preliminary efficacy, which was sustained for a relatively long time after the last dose administration. CLINICAL TRIAL REGISTRATION The clinical trial identification number is NCT05504317.
Collapse
Affiliation(s)
- Congjun Jiang
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, 613, Huangpu Avenue West, Guanzhou, 510630, Guangdong Province, China
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Huan Zhou
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wanlu Zhang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yu Xia
- Akeso Biopharma, Inc., Zhongshan, China
| | | | - Xiang Ni
- Akeso Biopharma, Inc., Zhongshan, China
| | | | | | | | - Zhimei He
- Akeso Biopharma, Inc., Zhongshan, China
| | - Min Zhang
- Akeso Biopharma, Inc., Zhongshan, China
| | - Rui Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, 41, Damicang Hutong, Beijing, 100032, China.
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Disease, 15 East Dan Three No, Beijing, 100730, China.
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, 613, Huangpu Avenue West, Guanzhou, 510630, Guangdong Province, China.
| |
Collapse
|
16
|
Tundisi LL, Ataide JA, Costa JSR, Coêlho DDF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, Mazzola PG. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222:113043. [PMID: 36455361 DOI: 10.1016/j.colsurfb.2022.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.
Collapse
Affiliation(s)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Raquel Bester Liszbinski
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
17
|
Wang J, Wang C, Liu L, Hong S, Ru Y, Sun X, Chen J, Zhang M, Lin N, Li B, Li X. Adverse events associated with anti-IL-17 agents for psoriasis and psoriatic arthritis: a systematic scoping review. Front Immunol 2023; 14:993057. [PMID: 36817423 PMCID: PMC9928578 DOI: 10.3389/fimmu.2023.993057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Background Anti-interleukin (IL)-17 biological agents (BAs) have significant efficacy in the treatment of psoriasis and psoriatic arthritis; however, adverse events (AEs) are common, and their safety has not been systematically evaluated. Objectives The purpose of this systematic review and meta-analysis was to summarize the number and corresponding rates of AEs caused by anti-IL-17 BAs in patients with psoriasis and psoriatic arthritis to improve clinical decision-making regarding their use. Methods PubMed, Embase, Cochrane Library, and Web of Science databases were independently searched by three authors for articles on the treatment of psoriasis with anti-IL-17 BAs that were published before March 1, 2022, and included at least one AE. Dichotomous variables and 95% confidence intervals (CI) were analyzed using R software (version 4.1.3) and the Meta and Metafor software packages. Funnel plots and meta-regression were used to test for the risk of bias, I2 was used to assess the magnitude of heterogeneity, and subgroup analysis was used to reduce heterogeneity. Results A total of 57 studies involving 28,424 patients with psoriasis treated with anti-IL-17 BAs were included in the meta-analysis. Subgroup analysis showed that anti-IL-17A (73.48%) and anti-IL-17A/F (73.12%) BAs were more likely to cause AEs than anti-IL-17R BAs (65.66%). The incidence of AEs was as high as 72.70% with treatment durations longer than one year, and long-term use of medication had the potential to lead to mental disorders. Infection (33.16%), nasopharyngitis (13.74%), and injection site reactions (8.28%) were the most common AEs. Anti-IL-17 BAs were most likely to cause type α (33.52%) AEs. Type δ AEs (1.01%) were rarely observed. Conclusions Anti-IL-17 BAs used for the treatment of psoriasis and psoriatic arthritis caused a series of AEs, but the symptoms were generally mild.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chunxiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Seokgyeong Hong
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiale Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Naixuan Lin
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Bai Z, Wang J, Li J, Yuan H, Wang P, Zhang M, Feng Y, Cao X, Cao X, Kang G, de Marco A, Huang H. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Comput Struct Biotechnol J 2022; 21:601-613. [PMID: 36659922 PMCID: PMC9822835 DOI: 10.1016/j.csbj.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Random mutagenesis is the natural opportunity for proteins to evolve and biotechnologically it has been exploited to create diversity and identify variants with improved characteristics in the mutant pools. Rational mutagenesis based on biophysical assumptions and supported by computational power has been proposed as a faster and more predictable strategy to reach the same aim. In this work we confirm that substantial improvements in terms of both affinity and stability of nanobodies can be obtained by using combinations of algorithms, even for binders with already high affinity and elevated thermal stability. Furthermore, in silico approaches allowed the development of an optimized bispecific construct able to bind simultaneously the two clinically relevant antigens TNF-α and IL-23 and, by means of its enhanced avidity, to inhibit effectively the apoptosis of TNF-α-sensitive L929 cells. The results revealed that salt bridges, hydrogen bonds, aromatic-aromatic and cation-pi interactions had a critical role in increasing affinity. We provided a platform for the construction of high-affinity bispecific constructs based on nanobodies that can have relevant applications for the control of all those biological mechanisms in which more than a single antigen must be targeted to increase the treatment effectiveness and avoid resistance mechanisms.
Collapse
Affiliation(s)
- Zixuan Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Jiaqi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Miao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China,China Resources Biopharmaceutical Company Limited, Beijing, China
| | - Yuanhang Feng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiangtong Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiangan Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China,Corresponding authors at: Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia,Corresponding author.
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China,Corresponding authors at: Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
19
|
Ocker L, Abu Rached N, Seifert C, Scheel C, Bechara FG. Current Medical and Surgical Treatment of Hidradenitis Suppurativa-A Comprehensive Review. J Clin Med 2022; 11:7240. [PMID: 36498816 PMCID: PMC9737445 DOI: 10.3390/jcm11237240] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease presenting with recurrent inflammatory lesions in intertriginous body regions. HS has a pronounced impact on patients' quality of life and is associated with a variety of comorbidities. Treatment of HS is often complex, requiring an individual approach with medical and surgical treatments available. However, especially in moderate-to-severe HS, there is an urgent need for new treatment approaches. In recent years, increased research has led to the identification of new potential therapeutic targets. This review aims to give a comprehensive and practical overview of current treatment options for HS. Furthermore, the clinically most advanced novel treatment approaches will be discussed.
Collapse
Affiliation(s)
- Lennart Ocker
- International Centre for Hidradenitis Suppurativa/Acne Inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | | | | | | | - Falk G. Bechara
- International Centre for Hidradenitis Suppurativa/Acne Inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
20
|
Chen J, Huang C, Zhao W, Ren J, Ji F, Jia L. SnoopLigase Enables Highly Efficient Generation of C-C-Linked Bispecific Nanobodies Targeting TNF-α and IL-17A. Bioconjug Chem 2022; 33:1446-1455. [PMID: 35938675 DOI: 10.1021/acs.bioconjchem.2c00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bispecific antibodies (bis-Nbs) have been extensively developed since the concept was devised over the decades. Taking advantage of the superior characteristics of nanobodies, bis-Nbs exhibit an emerging tendency to become the new generation of research and diagnostic tools. Traditional strategies to connect the homo- or heterogeneous monomers are commonly applied, but there are still technical issues to generate the bispecific molecules as efficiently as designed. Here, we utilize SnoopLigase to directly tether the C terminus (C-C) of the tagged nanobodies against tumor necrosis factor-α (TNF-α) and interleukin-17A (IL-17A). Under optimal conditions, the yield of C-C-linked bis-Nbs can reach as high as 70% due to the existence of SnoopLigase. The prepared bis-Nbs possessed similar or even higher affinity as the monomers and significantly inhibited the proliferation and migration of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) induced by TNF-α and IL-17A. This study provides an innovative route for using SnoopLigase to realize a highly efficient generation of C-C-linked bis-Nbs. The approach can be applied to different and multicomponent systems for their potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiewen Chen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Wei Zhao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
21
|
Li B, Qin X, Mi LZ. Nanobodies: from structure to applications in non-injectable and bispecific biotherapeutic development. NANOSCALE 2022; 14:7110-7122. [PMID: 35535618 DOI: 10.1039/d2nr00306f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing demand for convenient, miniaturized and multifunctional antibodies necessitates the development of novel antigen-recognition molecules for biological and medical studies. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, as a new tool, complement the conventional antibodies and are in the stage of rapid development. The outstanding advantages of nanobodies include a stable structure, easy production, excellent water solubility, high affinity toward antigens and low immunogenicity. With promising application potential, nanobodies are now increasingly applied to various studies, including protein structure analysis, microscopic imaging, medical diagnosis, and drug development. The approval of the first nanobody drug Caplacizumab by the FDA disclosed the therapeutic potential of nanobodies. The outbreak of COVID-19 accelerated the development of nanobody drugs in non-injectable and bispecific biotherapeutic applications. Herein, we reviewed recent studies on the nanobody structure, screening and their applications in protein structure analysis and nanobody drugs, especially on non-injectable nanobody and bispecific nanobody development.
Collapse
Affiliation(s)
- Bingxuan Li
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaohong Qin
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
22
|
Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. NANOSCALE 2022; 14:1054-1074. [PMID: 35018939 PMCID: PMC8863106 DOI: 10.1039/d1nr03831a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
COVID-19 has caused a global pandemic and millions of deaths. It is imperative to develop effective countermeasures against the causative viral agent, SARS-CoV-2 and its many variants. Vaccines and therapeutic antibodies are the most effective approaches for preventing and treating COVID-19, respectively. SARS-CoV-2 enters host cells through the activities of the virus-surface spike (S) protein. Accordingly, the S protein is a prime target for vaccines and therapeutic antibodies. Dealing with particles with dimensions on the scale of nanometers, nanotechnology has emerged as a critical tool for rapidly designing and developing safe, effective, and urgently needed vaccines and therapeutics to control the COVID-19 pandemic. For example, nanotechnology was key to the fast-track approval of two mRNA vaccines for their wide use in human populations. In this review article, we first explore the roles of nanotechnology in battling COVID-19, including protein nanoparticles (for presentation of protein vaccines), lipid nanoparticles (for formulation with mRNAs), and nanobodies (as unique therapeutic antibodies). We then summarize the currently available COVID-19 vaccines and therapeutics based on nanotechnology.
Collapse
Affiliation(s)
- Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
23
|
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol 2022; 12:838082. [PMID: 35116045 PMCID: PMC8804282 DOI: 10.3389/fimmu.2021.838082] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.
Collapse
Affiliation(s)
- Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
24
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
25
|
Shobeiri SS, Khorrami M, Sankian M. Plaque-type psoriasis inhibitors. Int Immunopharmacol 2021; 101:108326. [PMID: 34782274 DOI: 10.1016/j.intimp.2021.108326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is a common inflammatory skin disorder, which is mediated by the immune system and affects 1-4% of the world's population. Psoriasis is caused by a complex interaction between the immune system, autoantigens, psoriasis-associated genetic factors, and various environmental factors. As a chronic disease requiring long-term treatment, psoriasis is associated with follow-up costs and an economic burden on the patients, their families, and healthcare systems. The current treatments for moderate-to-severe plaque psoriasis include topical therapy, phototherapy, and systemic drugs consisting of biological/non-biological drugs. Within the past two decades, recent biological therapies for psoriasis have rapidly advanced. Moreover, new bispecific agents have the potential for better disease control, while small molecule drugs offer a future alternative to biological drugs and the more cost-effective, long-term treatment of the disease. The present study aimed to review updated data regarding the inhibitors used to improve plaque psoriasis that contain biologics, bispecific agents, small molecules, and aptamers (either approved or in the research phase).
Collapse
Affiliation(s)
- Saeideh Sadat Shobeiri
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Yao G, Huang C, Ji F, Ren J, Zang B, Jia L. Nanobody-loaded immunosorbent for highly-specific removal of interleukin-17A from blood. J Chromatogr A 2021; 1654:462478. [PMID: 34450522 DOI: 10.1016/j.chroma.2021.462478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Elimination of overproduced cytokines from blood can relieve immune system disorders caused by hypercytokinemia. Due to the central roles of interleukin-17A (IL-17A) plays in regulating the immunity and inflammatory responses in humans, here, a novel immunosorbent containing anti-IL-17A nanobodies (Nbs) was constructed for IL-17A removal from blood. The theoretical maximum adsorption capacity estimated from the Langmuir isotherm is up to 11.55 mg/g gel, which is almost consistent with the saturated adsorption capacity determined in dynamic adsorption. The in vitro plasma perfusion test demonstrated a remarkable adsorptive performance of the Nb-coupled sorbent since more than 75% IL-17A could be eliminated under the plasma/sorbent ratio of 1000:1. These results indicated the Nb-loaded immunosorbent can provide a simple and economic platform technology for immunoaffinity depletion of single or even multiple cytokines from plasma.
Collapse
Affiliation(s)
- Guangshuai Yao
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Berlin Zang
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
27
|
Silva-Pilipich N, Smerdou C, Vanrell L. A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Microorganisms 2021; 9:microorganisms9091956. [PMID: 34576851 PMCID: PMC8465657 DOI: 10.3390/microorganisms9091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanobodies are camelid-derived single-domain antibodies that present some advantages versus conventional antibodies, such as a smaller size, and higher tissue penetrability, stability, and hydrophilicity. Although nanobodies can be delivered as proteins, in vivo expression from adeno-associated viral (AAV) vectors represents an attractive strategy. This is due to the fact that AAV vectors, that can provide long-term expression of recombinant genes, have shown an excellent safety profile, and can accommodate genes for one or several nanobodies. In fact, several studies showed that AAV vectors can provide sustained nanobody expression both locally or systemically in preclinical models of human diseases. Some of the pathologies addressed with this technology include cancer, neurological, cardiovascular, infectious, and genetic diseases. Depending on the indication, AAV-delivered nanobodies can be expressed extracellularly or inside cells. Intracellular nanobodies or “intrabodies” carry out their function by interacting with cell proteins involved in disease and have also been designed to help elucidate cellular mechanisms by interfering with normal cell processes. Finally, nanobodies can also be used to retarget AAV vectors, when tethered to viral capsid proteins. This review covers applications in which AAV vectors have been used to deliver nanobodies, with a focus on their therapeutic use.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| | - Lucía Vanrell
- Biotechnology Laboratory, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, Montevideo 11100, Uruguay
- Nanogrow Biotech, CIE BIO Incubator, Mercedes 1237, Montevideo 11100, Uruguay
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| |
Collapse
|
28
|
Iznardo H, Puig L. Dual inhibition of IL-17A and IL-17F in psoriatic disease. Ther Adv Chronic Dis 2021; 12:20406223211037846. [PMID: 34408825 PMCID: PMC8366125 DOI: 10.1177/20406223211037846] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023] Open
Abstract
Psoriasis and psoriatic arthritis are chronic immune-mediated disorders with involvement of interleukin (IL)-17 cytokines in their pathogenesis. IL-17A has been considered to be the most biologically active, but IL-17F is also over-expressed in skin and synovial tissues of patients with these diseases. Many therapeutic advances have been made in the past years, but some needs remain unmet. Dual inhibitor and bispecific antibodies simultaneously targeting IL-17A and IL-17F could provide better disease control. Herein we review current evidence on bimekizumab and sonelokimab. The antigen-binding site of bimekizumab neutralizes both IL-17A and IL-17F; phase I, II, and III studies have demonstrated its efficacy and safety in psoriasis and psoriatic arthritis. Sonelokimab is a trivalent nanobody targeting IL-17A and IL-17F; phase I and II studies with this molecule have yielded promising results in psoriasis.
Collapse
Affiliation(s)
- Helena Iznardo
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret, 167, Barcelona 08025, Spain
| |
Collapse
|
29
|
Cheng L, Zhang X, Chen Y, Wang D, Zhang D, Yan S, Wang H, Xiao M, Liang T, Li H, Xu M, Hou X, Dai J, Wu X, Li M, Lu M, Wu D, Tian R, Zhao J, Zhang Y, Cao W, Wang J, Yan X, Zhou X, Liu Z, Xu Y, He F, Li Y, Yu X, Zhang S. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct Target Ther 2021; 6:304. [PMID: 34404759 PMCID: PMC8368053 DOI: 10.1038/s41392-021-00718-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Hou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Minya Lu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dong Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Shuyang Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Baylet A, Vyumvuhore R, Laclaverie M, Marchand L, Mainzer C, Bordes S, Closs-Gonthier B, Delpy L. Transcutaneous penetration of a single-chain variable fragment (scFv) compared to a full-size antibody: potential tool for atopic dermatitis (AD) treatment. Allergy Asthma Clin Immunol 2021; 17:73. [PMID: 34281610 PMCID: PMC8290589 DOI: 10.1186/s13223-021-00574-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Currently, several biologics are used for the treatment of cutaneous pathologies such as atopic dermatitis (AD), psoriasis or skin cancers. The main administration routes are subcutaneous and intravenous injections. However, little is known about antibody penetration through the skin. The aim was to study the transcutaneous penetration of a reduced-size antibody as a single-chain variable fragment (scFv) compared to a whole antibody (Ab) and to determine its capacity to neutralize an inflammatory cytokine involved in AD such as human interleukin-4 (hIL-4). Transcutaneous penetration was evaluated by ex vivo studies on tape-stripped pig ear skin. ScFv and Ab visualization through the skin was measured by Raman microspectroscopy. In addition, hIL-4 neutralization was studied in vitro using HEK-Blue™ IL-4/IL-13 cells and normal human keratinocytes (NHKs). After 24 h of application, analysis by Raman microspectroscopy showed that scFv penetrated into the upper dermis while Ab remained on the stratum corneum. In addition, the anti-hIL4 scFv showed very efficient and dose-dependent hIL-4 neutralization. Thus, scFv penetrates through to the upper papillary dermis while Ab mostly remains on the surface, the anti-hIL4 scFv also neutralizes its target effectively suggesting its potential use as topical therapy for AD.
Collapse
Affiliation(s)
- Audrey Baylet
- Unité Mixte de Recherche CNRS, 7276-INSERM U1262-Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025, Limoges, France.,Silab R&D Department, Brive, France
| | | | | | | | | | | | | | - Laurent Delpy
- Unité Mixte de Recherche CNRS, 7276-INSERM U1262-Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025, Limoges, France.
| |
Collapse
|
31
|
Wanner N, Eden T, Liaukouskaya N, Koch-Nolte F. Nanobodies: new avenue to treat kidney disease. Cell Tissue Res 2021; 385:445-456. [PMID: 34131806 PMCID: PMC8205650 DOI: 10.1007/s00441-021-03479-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Current therapeutic options for renal diseases are limited, and the search for disease-specific treatments is ongoing. Nanobodies, single-domain antibodies with many advantages over conventional antibodies, provide flexible, easy-to-format biologicals with many possible applications. Here, we discuss the potential use of nanobodies for renal diseases.
Collapse
Affiliation(s)
- Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Nastassia Liaukouskaya
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
32
|
Papp KA, Weinberg MA, Morris A, Reich K. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. Lancet 2021; 397:1564-1575. [PMID: 33894834 DOI: 10.1016/s0140-6736(21)00440-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sonelokimab (also known as M1095) is a novel trivalent nanobody comprised of monovalent camelid-derived (ie, from the Camelidae family of mammals, such as camels, llamas, and alpacas) nanobodies specific to human interleukin (IL)-17A, IL-17F, and human serum albumin. Nanobodies are a novel class of proprietary therapeutic proteins based on single-domain, camelid, heavy-chain-only antibodies. We assessed the efficacy, safety, and tolerability of sonelokimab across four dosage regimens compared with placebo in patients with plaque-type psoriasis. Secukinumab served as an active control. METHODS This multicentre, randomised, placebo-controlled, phase 2b trial was done at 41 clinics and research sites in Bulgaria, Canada, Czech Republic, Germany, Hungary, Poland, and the USA. Participants (aged 18-75 years) with stable moderate to severe plaque-type psoriasis (defined as an Investigator's Global Assessment [IGA] score of ≥3, a body surface area involvement of ≥10%, and a Psoriasis Area and Severity Index score of ≥12) for more than 6 months before randomisation, who were candidates for systemic biological therapy were included. Participants previously treated with more than two biologics or any therapy targeting IL-17 were excluded. Randomisation was stratified by weight (≤90 kg or >90 kg) and previous use of biologics. Investigators, participants, and vendors remained masked for the duration of the study, with the exception of each site's study drug administrator (who did not complete any other assessments in the study) and a study monitor who only assessed drug preparation, administration, and accountability. The study sponsor remained masked until all week 24 data were clean and locked. Participants were randomly assigned (1:1:1:1:1:1) using a centralised interactive response technology system to one of six parallel treatment groups: placebo group, sonelokimab 30 mg group, sonelokimab 60 mg group, sonelokimab 120 mg normal load group, sonelokimab 120 mg augmented load group, or secukinumab 300 mg group. All participants underwent a 4-week screening period, a 12-week placebo-controlled induction period, a 12-week dose maintenance or escalation period, and a 24-week response assessment or dose-holding period. During the placebo-controlled induction period (weeks 0-12), participants received either placebo (at weeks 0, 1, 2, 3, 4, 6, 8, and 10), sonelokimab 30 mg, 60 mg, or 120 mg normal load (at weeks 0, 2, 4, and 8), sonelokimab 120 mg augmented load (at weeks 0, 2, 4, 6, 8, and 10), or secukinumab 300 mg (at weeks 0, 1, 2, 3, 4, and 8), with placebo given at weeks 1, 3, 6, and 10 in the sonelokimab 30 mg, 60 mg, and 120 mg normal load groups, at weeks 1 and 3 in the sonelokimab 120 mg augmented load group, and at weeks 6 and 10 in the secukinumab 300 mg group. During the dose maintenance or escalation period (weeks 12-24), participants assigned to the placebo group received sonelokimab 120 mg (at weeks 12, 14, 16, and then every 4 weeks); those assigned to sonelokimab 30 mg or 60 mg groups with an IGA score of more than 1 were escalated to 120 mg and then every 4 weeks, and those with an IGA score of 1 or less stayed on the assigned dose at week 12 and then every 4 weeks; those assigned to the sonelokimab 120 mg groups received sonelokimab 120 mg at week 12 and then every 8 weeks (normal load group) or every 4 weeks (augmented load); and those assigned to the secukinumab 300 mg group received secukinumab 300 mg at week 12 and then every 4 weeks. During this period, placebo was given at week 14 in all groups, except in participants who initially received placebo, and at week 16 in the sonelokimab 120 mg normal load group. In the response assessment with dose-holding period (weeks 24-48), participants in the sonelokimab 30 mg or 60 mg groups who had dose escalation to 120 mg remained on the same regimen regardless of the IGA score at week 24. Participants in the secukinumab 300 mg group also remained on the same regimen regardless of IGA score at week 24. Participants in the sonelokimab 30 mg and 60 mg groups without dose escalation, and all participants in the two sonelokimab 120 mg groups (including placebo rollover patients) were eligible to stop the study drug at week 24. Those participants with an IGA score of 0 at week 24 received placebo; these participants resumed the previous dose of sonelokimab every 4 weeks when they had an IGA score of 1 or more (assessed every 4 weeks). Participants in these groups with an IGA score of 1 or more at week 24 continued on the same dosage. All study treatments were administered as subcutaneous injections. The final dose in all groups was given at week 44. The primary outcome was the proportion of participants in the sonelokimab groups with an IGA of clear or almost clear (score 0 or 1) at week 12 compared with the placebo group. The primary outcome and safety outcomes were assessed on an intention-to-treat basis. The study was not powered for formal comparisons between sonelokimab and secukinumab groups. This trial is registered with ClinicalTrials.gov, NCT03384745. FINDINGS Between Aug 15, 2018, and March 27, 2019, 383 patients were assessed for eligibility, 313 of whom were enrolled and randomly assigned to the placebo group (n=52), the sonelokimab 30 mg group (n=52), the sonelokimab 60 mg group (n=52), the sonelokimab 120 mg normal load group (n=53), the sonelokimab 120 mg augmented load group (n=51), or the secukinumab 300 mg group (n=53). Baseline characteristics of participants were similar among the groups. At week 12, none (0·0% [95% CI 0·0-6·8]) of the 52 participants in the placebo group had an IGA score of 0 or 1 versus 25 (48·1% [34·0-62·4], p<0·0001) of 52 participants in the sonelokimab 30 mg group, 44 (84·6% [71·9-93·1], p<0·0001) of 52 participants in the sonelokimab 60 mg group, 41 (77·4% [63·8-87·7], p<0·0001) of 53 participants in the sonelokimab 120 mg normal load group, 45 (88·2% [76·1-95·6], p<0·0001) of 51 participants in the sonelokimab 120 mg augmented load group, and 41 (77·4% [63·8-87·7], p<0·0001) of 53 participants in the secukinumab 300 mg group. During the placebo-controlled induction period, 155 (49·5%) of 313 participants had one or more mostly mild to moderate adverse event; the most frequent adverse events in all participants on sonelokimab during weeks 0-12 were nasopharyngitis (28 [13·5%] of 208 participants), pruritus (14 [6·7%] participants), and upper respiratory tract infection (nine [4·3%] participants). One patient from all sonelokimab-containing groups had Crohn's disease that developed during weeks 12-52. Over 52 weeks, sonelokimab safety was similar to secukinumab, with the possible exception of manageable Candida infections (one [1·9%] of 53 participants in the secukinumab group had a Candida infection vs 19 [7·4%] of 257 participants in all sonelokimab-containing groups). INTERPRETATION Treatment with sonelokimab doses of 120 mg or less showed significant clinical benefit over placebo, with rapid onset of treatment effect, durable improvements, and an acceptable safety profile. FUNDING Avillion.
Collapse
Affiliation(s)
- Kim A Papp
- Probity Medical Research, Waterloo, ON, Canada.
| | | | | | - Kristian Reich
- Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
34
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
35
|
Liu M, Li L, Jin D, Liu Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1697. [PMID: 33470555 DOI: 10.1002/wnan.1697] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In spite of the successful use of monoclonal antibodies (mAbs) in clinic for tumor treatment, their applications are still hampered in therapeutic development due to limitations, such as tumor penetration and high cost of manufacture. Nanobody, a single domain antibody that holds the strong antigen targeting and binding capacity, has demonstrated various advantages relative to antibody. Nanobody is considered as a next-generation of antibody-derived tool in the antigen related recognition and modulation. A number of nanobodies have been developed and evaluated in different stages of clinical trials for cancer treatment. Here we summarized the current progress of nanobody in tumor diagnosis and therapeutics, particularly on the conjugation of nanobody with functional moieties. The nanobody conjugation of diagnostic agents, such as radionuclide and optical tracers, can achieve specific tumor imaging. The nanobody-drug conjugates can enhance the therapeutic efficacy of anti-tumor drugs and reduce the adverse effects. The decoration of nanobody on nanodrug delivery systems can further improve the drug targeting to specific tumors. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Honma M, Hayashi K. Psoriasis: Recent progress in molecular‐targeted therapies. J Dermatol 2021; 48:761-777. [DOI: 10.1111/1346-8138.15727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Masaru Honma
- Department of Dermatology Asahikawa Medical University Hospital Asahikawa Japan
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| | - Kei Hayashi
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| |
Collapse
|
37
|
Abstract
In inflammatory rheumatic disorders, the immune system attacks and damages the connective tissues and invariably internal organs. During the past decade, remarkable advances having been made towards our understanding on the cellular and molecular mechanisms involved in rheumatic diseases. The discovery of IL-23/IL-17 axis and the delineation of its important role in the inflammation led to the introduction of many needed new therapeutic tools. We will present an overview of the rationale for targeting therapeutically the IL-23/IL-17 axis in rheumatic diseases and the clinical benefit which has been realized so far. Finally, we will discuss the complex interrelationship between IL-23 and IL-17 and the possible uncoupling in certain disease settings.
Collapse
|
38
|
Baylet A, Laclaverie M, Marchand L, Bordes S, Closs-Gonthier B, Delpy L. Immunotherapies in cutaneous pathologies: an overview. Drug Discov Today 2020; 26:248-255. [PMID: 33137480 DOI: 10.1016/j.drudis.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Skin is a vital protective organ, the main role of which is to provide a physical barrier and to prevent the entry of pathogens. Various pathologies, such as atopic dermatitis (AD), psoriasis (PSO), or skin cancers, can affect the skin, and all show a high and increasing prevalence. Many antibodies are currently used in the treatment of these diseases. However, various studies are underway for the development of new biologics directed against specific targets. In this review, we describe current biologics used in skin pathologies as well as antibodies in development. We also discuss various immunotherapy examples that use new delivery technologies, such as microneedle patch, nanoparticles (NPs), liposomes, or gel formulation.
Collapse
Affiliation(s)
- Audrey Baylet
- Unité Mixte de Recherche CNRS 7276 - INSERM U1262 - Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025 Limoges, France; Silab R&D Department, Brive, France
| | | | | | | | | | - Laurent Delpy
- Unité Mixte de Recherche CNRS 7276 - INSERM U1262 - Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025 Limoges, France.
| |
Collapse
|
39
|
Abstract
Today, bio-medical efforts are entering the subcellular level, which is witnessed with the fast-developing fields of nanomedicine, nanodiagnostics and nanotherapy in conjunction with the implementation of nanoparticles for disease prevention, diagnosis, therapy and follow-up. Nanoparticles or nanocontainers offer advantages including high sensitivity, lower toxicity and improved safety—characteristics that are especially valued in the oncology field. Cancer cells develop and proliferate in complex microenvironments leading to heterogeneous diseases, often with a fatal outcome for the patient. Although antibody-based therapy is widely used in the clinical care of patients with solid tumours, its efficiency definitely needs improvement. Limitations of antibodies result mainly from their big size and poor penetration in solid tissues. Nanobodies are a novel and unique class of antigen-binding fragments, derived from naturally occurring heavy-chain-only antibodies present in the serum of camelids. Their superior properties such as small size, high stability, strong antigen-binding affinity, water solubility and natural origin make them suitable for development into next-generation biodrugs. Less than 30 years after the discovery of functional heavy-chain-only antibodies, the nanobody derivatives are already extensively used by the biotechnology research community. Moreover, a number of nanobodies are under clinical investigation for a wide spectrum of human diseases including inflammation, breast cancer, brain tumours, lung diseases and infectious diseases. Recently, caplacizumab, a bivalent nanobody, received approval from the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for treatment of patients with thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
40
|
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm 2020; 36:109-122. [PMID: 32936001 DOI: 10.1089/cbr.2020.3941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy is a fast evolving treatment strategy to reduce unwanted damage to healthy tissues, while increasing efficacy and specificity. Driven by state-of-the-art technology, this therapeutic approach is especially true of cancer. Antibodies with their remarkable specificity have revolutionized therapeutic strategies for autoimmune conditions and cancer, particularly blood-borne cancers, but have severe limitations in treating solid tumors. This is mainly due to their large molecular size, low stability, tumor-tissue penetration difficulties, and pharmacokinetic properties. The tumor microenvironment, rich in immune-suppressing molecules is also a major barrier in targeting solid tumors by antibody-based drugs. Nanobodies have recently emerged as an alternative therapeutic agent to overcome some of the drawbacks of traditional antibody treatment. Nanobodies are the VHH domains found on the heavy-chain only antibodies of camelids and are the smallest naturally available antibody fragments with excellent antigen-binding specificity and affinity, equivalent to conventional antibodies but with molecular weights as low as 15 kDa. The compact size, high stability, enhanced hydrophilicity, particularly in framework regions, excellent epitope interactions with protruding CDR3 regions, and improved tissue penetration make nanobodies the next-generation therapeutics (Nano-BioDrugs). In this review, the authors discuss the interesting properties of nanobodies and their advantages over their conventional counterparts and provide insight into how nanobodies are being utilized as agonists and antagonists, bispecific constructs, and drug and enzyme-conjugates to combat the tumor microenvironment and treat disease.
Collapse
Affiliation(s)
- Nuthan V Bathula
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hemashree Bommadevara
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Toussi A, Maverakis N, Le ST, Sarkar S, Raychaudhuri SK, Raychaudhuri SP. Updated therapies for the management of Psoriatic Arthritis. Clin Immunol 2020; 220:108536. [PMID: 32681979 DOI: 10.1016/j.clim.2020.108536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Psoriatic arthritis (PsA) is a large volume of our clinical practice and its management can be challenging. Traditional DMARDs have been used over last six decades and observational studies have substantiated an effective use of many of these drugs. However, in last two decades use of anti-TNF agents has brought a new dimension in treatment of PsA and in many other autoimmune diseases. Regulatory role of the Th17 cells and its cytokines in the pathogenesis of PsA has successfully paved the foundations of anti-IL antibody based therapies in PsA. Newer therapies targeting the IL-23/IL-17 cytokines and its signaling proteins are now in development and bringing new promises for management of PsA. Herein, we provide an overview of the landscape of drug therapies, including IL-17, IL-12/23, IL-23 inhibitors, and janus kinase (JAK) inhibitors, as well as those in development, such as RORγt inhibitors, anti-NGF agents, mTOR inhibitors and T cell ion-channel blockers.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States; School of Medicine, University of California, Davis, Sacramento, CA, United States
| | | | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Soumajyoti Sarkar
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Sacramento, CA, United States
| | - Smriti K Raychaudhuri
- School of Medicine, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology and Immunology, VA Sacramento Medical Center, CA, United States
| | - Siba P Raychaudhuri
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology and Immunology, VA Sacramento Medical Center, CA, United States.
| |
Collapse
|
42
|
Prinz I, Sandrock I, Mrowietz U. Interleukin-17 cytokines: Effectors and targets in psoriasis-A breakthrough in understanding and treatment. J Exp Med 2020; 217:jem.20191397. [PMID: 31727784 PMCID: PMC7037256 DOI: 10.1084/jem.20191397] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the steps from basic research on IL-17 family cytokines to understanding their role in psoriasis pathogenesis to the approval of a number of monoclonal antibodies targeting IL-17 pathways as first line treatment of psoriasis and psoriatic arthritis. The IL-17 cytokine family comprising IL-17A to IL-17F and receptor subunits IL-17RA to IL-17RE represents a genetically ancient intercellular network regulating local tissue homeostasis. Its pivotal role in antifungal defense and its central position in the pathogenesis of inflammatory diseases including psoriasis were discovered only relatively late in the early 2000s. Since the connection of dysregulated IL-17 and psoriasis pathogenesis turned out to be particularly evident, a number of monoclonal antibodies targeting IL-17 pathways have been approved and are used as first line treatment of moderate-to-severe plaque psoriasis and psoriatic arthritis, and further agents are currently in clinical development.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany.,Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrich Mrowietz
- Psoriasis Center at the Department of Dermatology and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
43
|
Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date. BioDrugs 2020; 34:111-119. [DOI: 10.1007/s40259-019-00400-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Quoi de neuf en thérapeutique dermatologique ? Ann Dermatol Venereol 2019; 146:12S46-12S51. [DOI: 10.1016/s0151-9638(20)30106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Ly K, Smith MP, Thibodeaux Q, Reddy V, Liao W, Bhutani T. Anti IL-17 in psoriasis. Expert Rev Clin Immunol 2019; 15:1185-1194. [PMID: 31603358 DOI: 10.1080/1744666x.2020.1679625] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Psoriasis is a chronic, immune-mediated disease with significant associated comorbidities. Its pathogenesis is likely multifactorial, however, the interleukin-23/T helper 17 pathway has been identified as a critical axis in its pathogenesis. Interleukin-17A is the primary effector of this pathway and overexpression of IL-17A results in epidermal hyperplasia and an overly robust inflammatory response, resulting in the skin plaques and systemic inflammation seen in psoriasis. Targeted anti IL-17 therapies have demonstrated efficacy in the treatment of moderate-to-severe plaque psoriasis.Areas covered: A PubMed search was conducted for relevant literature. Secukinumab, ixekizumab, and brodalumab are anti IL-17 inhibitors currently approved for the treatment of moderate-to-severe plaque psoriasis. The efficacy and safety data from key phase III clinical trials are reviewed here.Expert opinion: By targeting a key mediator of the interleukin-23/T helper 17 pathway, IL-17 antagonists are an effective treatment for plaque psoriasis. It has demonstrated efficacy and a favorable safety profile in key phase III clinical trials. In addition to efficacy, IL-17 antagonists have also shown long-term maintenance of treatment response and a quick onset of action. The efficacy of IL-17 inhibitors in the treatment of moderate-to-severe psoriasis underscores the importance of the IL-23/Th17 pathway in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Karen Ly
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mary P Smith
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Quinn Thibodeaux
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Vidhatha Reddy
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Chiricozzi A, De Simone C, Fossati B, Peris K. Emerging treatment options for the treatment of moderate to severe plaque psoriasis and psoriatic arthritis: evaluating bimekizumab and its therapeutic potential. PSORIASIS-TARGETS AND THERAPY 2019; 9:29-35. [PMID: 31214486 PMCID: PMC6538010 DOI: 10.2147/ptt.s179283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Plaque psoriasis (PsO) is a chronic inflammatory skin disorder that may be associated with several comorbidities, including arthritis. The increasing knowledge of psoriasis pathogenesis led to the identification of novel targeted therapeutic interventions. Among them, anti-IL-17A and anti-IL-17F antibodies are currently being investigated for the treatment of PsO and/or psoriatic arthritis (PsA). Bimekizumab is one of these agents, capable ofsimultaneously neutralizing both IL-17A and IL-17F cytokines. In this review we included preclinical and clinical data related to this highly promising agent that shows a peculiar molecular structure differing from other bispecific agents.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- Institute of Dermatology, Catholic University, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Clara De Simone
- Institute of Dermatology, Catholic University, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Fossati
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|