1
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
2
|
Yu F, Yang L, Zhang R, Hu F, Yuan Y, Wang Z, Yang W. Low levels of supercoiled mitochondrial DNA are involved in heart failure induced by transverse aortic constriction in mice via an inflammatory response mediated by ZBP1. Exp Cell Res 2024; 442:114187. [PMID: 39069152 DOI: 10.1016/j.yexcr.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Inflammation in the myocardium plays a critical role in cardiac remodeling and the pathophysiology of heart failure (HF). Previous studies have shown that mitochondrial DNA (mtDNA) can exist in different topological forms. However, the specific influence of the ratio of supercoiled/relaxed mtDNA on the inflammatory response in cardiomyocytes remains poorly understood. The aim of this study was to elucidate the differential effects of different mtDNA types on cardiomyocyte inflammation through regulation of ZBP1. MATERIALS AND METHODS A mouse model of HF was established by transverse aortic constriction (TAC) or doxorubicin (Doxo) induction. Histopathological changes were assessed by HE staining. ELISA was used to measure cytokine levels (IL-1β and IL-6). Southern blot analysis was performed to examine the different topology of mtDNA. Pearson correlation analysis was used to determine the correlation between the ratio of supercoiled/relaxed mtDNA and inflammatory cytokines. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of cytokines (IL-1β, IL-6) and Dloop, as an mtDNA marker. RESULTS The ratio of supercoiled to relaxed mtDNA was significantly increased in the myocardium of Doxo-induced mice, whereas no significant changes were observed in TAC-induced mice. The levels of IL-1β and IL-6 were positively correlated with the cytoplasmic mtDNA supercoiled/relaxed circle ratio. Different mtDNA topology has different effects on inflammatory pathways. Low supercoiled mtDNA primarily activates the NF-κB (Ser536) pathway via ZBP1, whereas high supercoiled mtDNA significantly affects the STAT1 and STAT2 pathways. The RIPK3-NF-κB pathway, as a downstream target of ZBP1, mediates the inflammatory response induced by low supercoiled mtDNA. Knockdown of TLR9 enhances the expression of ZBP1, p-NF-κB, and RIPK3 in cardiomyocytes treated with low supercoiled mtDNA, indicating the involvement of TLR9 in the anti-inflammatory role of ZBP1 in low supercoiled mtDNA-induced inflammation. CONCLUSION Different ratios of supercoiled to relaxed mtDNA influence the inflammatory response of cardiomyocytes and contribute to HF through the involvement of ZBP1. ZBP1, together with its downstream inflammatory mechanisms, mediates the inflammatory response induced by a low ratio of supercoiled mtDNA.
Collapse
Affiliation(s)
- Fan Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rongjie Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zixu Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
3
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2024. [PMID: 39158380 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| |
Collapse
|
4
|
Deng Y, Pang X, Chen L, Peng W, Huang X, Huang P, Zhao S, Li Z, Cai X, Huang Q, Zeng J, Feng Y, Chen B. IFI-16 inhibition attenuates myocardial remodeling following myocardial infarction. iScience 2024; 27:110568. [PMID: 39188985 PMCID: PMC11345598 DOI: 10.1016/j.isci.2024.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial remodeling (MR) following myocardial infarction (MI) contributes to heart failure. Inflammation is a key determinant in cardiac remodeling, with potential prognostic improvements by inhibiting inflammatory factors. Pattern recognition receptors, including interferon gamma-inducible protein-16 (IFI-16), play significant roles in this process, yet its specific involvement remains underexplored. This study investigates IFI-16's role in initiating inflammation via the inflammasome and its direct interaction with galectin-3 protein post-MI. Elevated IFI-16 levels were observed in human and rat myocytes and a mouse MI model under hypoxic, nutrient-deprived conditions, correlating with increased inflammation-associated proteins. Suppression of IFI-16/IFI-204 using short hairpin RNA (shRNA) lentivirus or adeno-associated virus decreased inflammatory factor activation, thereby mitigating remodeling and enhancing cardiac function post-MI. Co-immunoprecipitation (coIP) and double-fluorescence staining confirmed IFI-16's ability to interact directly with galectin-3. These findings underscore IFI-16's critical role as a pro-inflammatory factor in post-MI MR, suggesting its inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yi Deng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xiuqing Pang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Li Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Weihang Peng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xiaoyan Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Shuai Zhao
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Zhishang Li
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Xingui Cai
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Qiuping Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Jing Zeng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Yuchao Feng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou City, Guangdong Province 511400, China
| |
Collapse
|
5
|
Alakhras NS, Moreland CA, Wong LC, Raut P, Kamalakaran S, Wen Y, Siegel RW, Malherbe LP. Essential role of pre-existing humoral immunity in TLR9-mediated type I IFN response to recombinant AAV vectors in human whole blood. Front Immunol 2024; 15:1354055. [PMID: 39007143 PMCID: PMC11240241 DOI: 10.3389/fimmu.2024.1354055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Li Chin Wong
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Priyam Raut
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Sid Kamalakaran
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
6
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
7
|
Ghincea A, Woo S, Sheeline Y, Pivarnik T, Fiorini V, Herzog EL, Ryu C. Mitochondrial DNA Sensing Pathogen Recognition Receptors in Systemic Sclerosis Associated Interstitial Lung Disease: A Review. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023; 9:204-220. [PMID: 38230363 PMCID: PMC10791121 DOI: 10.1007/s40674-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
Purpose of the review Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.
Collapse
Affiliation(s)
- Alexander Ghincea
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Samuel Woo
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Yu Sheeline
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Taylor Pivarnik
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Vitoria Fiorini
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Erica L. Herzog
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
- Department of Experimental Pathology, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Changwan Ryu
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
8
|
Tang H, Li H, Li D, Peng J, Zhang X, Yang W. The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway. J Microbiol Biotechnol 2023; 33:1213-1227. [PMID: 37416999 PMCID: PMC10580896 DOI: 10.4014/jmb.2304.04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Tang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Hanmei Li
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Dan Li
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Jing Peng
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Xian Zhang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Weitao Yang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| |
Collapse
|
9
|
Smith M, Meliopoulos V, Tan S, Bub T, Brigleb PH, Sharp B, Crawford JC, Prater MS, Pruett-Miller SM, Schultz-Cherry S. The β6 Integrin Negatively Regulates TLR7-Mediated Epithelial Immunity via Autophagy During Influenza A Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555098. [PMID: 37693589 PMCID: PMC10491108 DOI: 10.1101/2023.08.28.555098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic β6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how β6 regulates epithelial immunity remains undefined. Here, we identify the role of β6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the β6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced β6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of β6-induced autophagy in influencing epithelial immune responses during influenza virus infection.
Collapse
|
10
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Yang C, Li J, Deng Z, Luo S, Liu J, Fang W, Liu F, Liu T, Zhang X, Zhang Y, Meng Z, Zhang S, Luo J, Liu C, Yang D, Liu L, Sukhova GK, Sadybekov A, Katritch V, Libby P, Wang J, Guo J, Shi GP. Eosinophils protect pressure overload- and β-adrenoreceptor agonist-induced cardiac hypertrophy. Cardiovasc Res 2023; 119:195-212. [PMID: 35394031 PMCID: PMC10022866 DOI: 10.1093/cvr/cvac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Blood eosinophil (EOS) counts and EOS cationic protein (ECP) levels associate positively with major cardiovascular disease (CVD) risk factors and prevalence. This study investigates the role of EOS in cardiac hypertrophy. METHODS AND RESULTS A retrospective cross-section study of 644 consecutive inpatients with hypertension examined the association between blood EOS counts and cardiac hypertrophy. Pressure overload- and β-adrenoreceptor agonist isoproterenol-induced cardiac hypertrophy was produced in EOS-deficient ΔdblGATA mice. This study revealed positive correlations between blood EOS counts and left ventricular (LV) mass and mass index in humans. ΔdblGATA mice showed exacerbated cardiac hypertrophy and dysfunction, with increased LV wall thickness, reduced LV internal diameter, and increased myocardial cell size, death, and fibrosis. Repopulation of EOS from wild-type (WT) mice, but not those from IL4-deficient mice ameliorated cardiac hypertrophy and cardiac dysfunctions. In ΔdblGATA and WT mice, administration of ECP mEar1 improved cardiac hypertrophy and function. Mechanistic studies demonstrated that EOS expression of IL4, IL13, and mEar1 was essential to control mouse cardiomyocyte hypertrophy and death and cardiac fibroblast TGF-β signalling and fibrotic protein synthesis. The use of human cardiac cells yielded the same results. Human ECP, EOS-derived neurotoxin, human EOS, or murine recombinant mEar1 reduced human cardiomyocyte death and hypertrophy and human cardiac fibroblast TGF-β signalling. CONCLUSION Although blood EOS counts correlated positively with LV mass or LV mass index in humans, this study established a cardioprotective role for EOS IL4 and cationic proteins in cardiac hypertrophy and tested a therapeutic possibility of ECPs in this human CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqian Fang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Tianxiao Liu
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Xian Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Yuanyuan Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Zhaojie Meng
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Shuya Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Jianfang Luo
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 510000, China
| | - Conglin Liu
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Dafeng Yang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Galina K Sukhova
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jing Wang
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| | - Junli Guo
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| | - Guo-Ping Shi
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| |
Collapse
|
12
|
Toll-like receptor 9 signaling after myocardial infarction: Role of p66ShcA adaptor protein. Biochem Biophys Res Commun 2023; 644:70-78. [PMID: 36634584 DOI: 10.1016/j.bbrc.2022.12.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous DNA, inducing inflammation by NFκB. The p66ShcA adaptor protein plays an important role in both ischemic myocardial damage and immune responses. We hypothesized that p66ShcA adaptor protein promotes DNA-sensing signaling via the TLR9 pathway after myocardial infarction. TLR9 protein expression increased in cardiac tissue from patients with end-stage heart failure due to ischemic heart disease. Myocardial ischemia in mice in vivo induced gene expression of key TLR9 pathway proteins (MyD88 and Unc93b1). In this model, a functional link between TLR9 and p66ShcA was revealed as; (i) ischemia-induced upregulation of TLR9 protein was abrogated in myocardium of p66ShcA knockout mice; (ii) when p66ShcA was overexpressed in NFkB reporter cells stably expressing TLR9, NFkB-activation increased during stimulation with the TLR9 agonist CpG B; (iii) in cardiac fibroblasts, p66ShcA overexpression caused TLR9 upregulation. Co-immunoprecipitation showed that ShcA proteins and TLR9 may be found in the same protein complex, which was dissipated upon TLR9 stimulation in vivo. A proximity assay confirmed the co-localization of TLR9 and ShcA proteins. The systemic immune response after myocardial ischemia was dampened in p66ShcA knockout mice as interleukin-4, -17 and -22 expression in mononuclear cells isolated from spleens was reduced. In conclusion, p66ShcA adaptor may be an interaction partner and a regulator of the TLR9 pathway post-infarction.
Collapse
|
13
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
14
|
Jiang X, Ning P, Yan F, Wang J, Cai W, Yang F. Impact of myeloid differentiation protein 1 on cardiovascular disease. Biomed Pharmacother 2023; 157:114000. [PMID: 36379121 DOI: 10.1016/j.biopha.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of disability and mortality worldwide and a significant global burden. Many lines of evidence suggest complex remodeling responses to cardiovascular disease, such as myocardial ischemia, hypertension and valve disease, which lead to poor clinical outcomes, including heart failure, arrhythmia and sudden cardiac death (SCD). The mechanisms underlying cardiac remodeling are closely related to reactive oxygen species (ROS) and inflammation. Myeloid differentiation protein 1 (MD1) is a secreted glycoprotein known as lymphocyte antigen 86. The complex of MD1 and radioprotective 105 (RP105) is an important regulator of inflammation and is involved in the modulation of vascular remodeling and atherosclerotic plaque development. A recent study suggested that the expression of MD1 in hypertrophic cardiomyopathy (HCM) patients is decreased compared with that in donor hearts. Therefore, MD1 may play an important role in the pathological processes of cardiovascular disease and have potential clinical value. Here, this review aims to discuss the current knowledge regarding the role of MD1 in the regulation of cardiac pathophysiology.
Collapse
Affiliation(s)
- Xiaobo Jiang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Ning
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Fang Yan
- Geriatric Department, Chengdu Fifth People's Hospital, Chengdu 611137, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Jianfeng Wang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Cai
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Yang
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| |
Collapse
|
15
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: A friend or a foe. Life Sci 2022; 307:120874. [PMID: 35963302 DOI: 10.1016/j.lfs.2022.120874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
The innate immune system is a primary protective line in our body. It confers its protection through different pattern recognition receptors (PRRs), especially toll like receptors (TLRs). Toll like receptor 9 (TLR9) is an intracellular TLR, expressed in different immunological and non-immunological cells. Release of cellular components, such as proteins, nucleotides, and DNA confers a beneficial inflammatory response and maintains homeostasis for removing cellular debris during normal physiological conditions. However, during pathological cellular damage and stress signals, engagement between mtDNA and TLR9 acts as an alarm for starting inflammatory and autoimmune disorders. The controversial role of TLR9 in different diseases baffled scientists if it has a protective or deleterious effect after activation during insults. Targeting the immune system, especially the TLR9 needs further investigation to provide a therapeutic strategy to control inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Nada Monir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Oliva A, Meroño C, Traba J. Mitochondrial function and dysfunction in innate immunity. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kobia FM, Maiti K, Obimbo MM, Smith R, Gitaka J. Potential pharmacologic interventions targeting TLR signaling in placental malaria. Trends Parasitol 2022; 38:513-524. [DOI: 10.1016/j.pt.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
19
|
Nakao Y, Aono J, Hamaguchi M, Takahashi K, Sakaue T, Inoue K, Ikeda S, Yamaguchi O. O-ring-induced transverse aortic constriction (OTAC) is a new simple method to develop cardiac hypertrophy and heart failure in mice. Sci Rep 2022; 12:85. [PMID: 34997065 PMCID: PMC8742050 DOI: 10.1038/s41598-021-04096-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Suture-based transverse aortic constriction (TAC) in mice is one of the most frequently used experimental models for cardiac pressure overload-induced heart failure. However, the incidence of heart failure in the conventional TAC depends on the operator's skill. To optimize and simplify this method, we proposed O-ring-induced transverse aortic constriction (OTAC) in mice. C57BL/6J mice were subjected to OTAC, in which an o-ring was applied to the transverse aorta (between the brachiocephalic artery and the left common carotid artery) and tied with a triple knot. We used different inner diameters of o-rings were 0.50 and 0.45 mm. Pressure overload by OTAC promoted left ventricular (LV) hypertrophy. OTAC also increased lung weight, indicating severe pulmonary congestion. Echocardiographic findings revealed that both OTAC groups developed LV hypertrophy within one week after the procedure and gradually reduced LV fractional shortening. In addition, significant elevations in gene expression related to heart failure, LV hypertrophy, and LV fibrosis were observed in the LV of OTAC mice. We demonstrated the OTAC method, which is a simple and effective cardiac pressure overload method in mice. This method will efficiently help us understand heart failure (HF) mechanisms with reduced LV ejection fraction (HFrEF) and cardiac hypertrophy.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Constriction
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Heart Failure, Systolic/etiology
- Heart Failure, Systolic/genetics
- Heart Failure, Systolic/metabolism
- Heart Failure, Systolic/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Myocardium/metabolism
- Myocardium/pathology
- Stroke Volume
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Yasuhisa Nakao
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Jun Aono
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Mika Hamaguchi
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kayo Takahashi
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Katsuji Inoue
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Nephrology and Hypertension, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
20
|
A photonic dual nano-hybrid assay for detection of cell-free circulating mitochondrial DNA. J Pharm Biomed Anal 2021; 208:114441. [PMID: 34749106 DOI: 10.1016/j.jpba.2021.114441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
Circulating cell free mitochondrial DNA (ccf-mtDNA) has emerged as a potential marker for diagnosis and prognosis of different chronic and age associated non-communicable diseases. Therefore, owing to its biomarker potential, we herein assessed a novel nano-photonic dual hybrid assay system for rapid and specific detection of ccf-mtDNA. The assay comprised of two systems, i.e. a capture and screen facet containing aminopyrene tethered carbon quantum dots for effective screening of circulating cell free nucleic acids (ccf-NAs) and a quantum dot conjugated probe for precise detection of ccf-mtDNA in the screened ccf-NAs. Our observations suggested that the developed dual-assay system possesses high feasibility and selectivity in screening of ccf-NAs and estimation of ccfmtDNA in a given sample. It also offers high versatility of measurement in different analytical platforms, indicating the translational potential of the method for possible disease risk assessment in control and field settings.
Collapse
|
21
|
Dias AA, Silva CADME, da Silva CO, Linhares NRC, Santos JPS, Vivarini ADC, Marques MÂDM, Rosa PS, Lopes UG, Berrêdo-Pinho M, Pessolani MCV. TLR-9 Plays a Role in Mycobacterium leprae-Induced Innate Immune Activation of A549 Alveolar Epithelial Cells. Front Immunol 2021; 12:657449. [PMID: 34456901 PMCID: PMC8397448 DOI: 10.3389/fimmu.2021.657449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human β-defensin-2 (hβD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.
Collapse
Affiliation(s)
- André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Camila Oliveira da Silva
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - João Pedro Sousa Santos
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Ângela de Mello Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University (CSU), Fort Collins, CO, United States
| | | | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Márcia Berrêdo-Pinho
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Marunouchi T, Nishiumi C, Iinuma S, Yano E, Tanonaka K. Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL pathway during the development of heart failure in mice. Eur J Pharmacol 2021; 898:173987. [PMID: 33640405 DOI: 10.1016/j.ejphar.2021.173987] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Necroptosis is a programmed form of necrotic cell death. Necroptosis is regulated by the necroptosis-regulating proteins including receptor-interacting protein (RIP) 1, RIP3, and mixed lineage kinase domain-like (MLKL), the activities of which are modulated by the molecular chaperone heat-shock protein (Hsp) 90. Presently, to clarify the relationship between Hsp90 and necroptotic pathway proteins, RIP1, RIP3, and MLKL in the development of heart failure, we examined the effects of Hsp90 inhibitor treatment on the RIP1-RIP3-MLKL pathway in mice following transverse aortic constriction (TAC). In this study, TAC mice showed typical signs of heart failure at the 8th week after the operation. In the failing heart, the levels of these regulatory proteins and those of their phosphorylated forms were increased, suggesting that necroptosis contributed to the development of heart failure in the TAC mice. The increases in RIP1, RIP3, and MLKL after TAC were reversed by the administration of an Hsp90 inhibitor. Furthermore, the rise in the phosphorylation levels of these 3 proteins were attenuated by the Hsp90 inhibitor. Concomitantly, cardiac functions were preserved. We also found that exposure of cultured adult mouse cardiomyocytes to the Hsp90 inhibitor attenuated necrotic cell death induced by tumor necrosis factor-α via suppression of RIP1, RIP3, and MLKL activation in in vitro experiments. Taken together, our findings suggest that inhibition of Hsp90 should have therapeutic effects by reducing the activation of RIP1-RIP3-MLKL pathway in the hypertrophied heart and thus could be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Chiharu Nishiumi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Saki Iinuma
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Emi Yano
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan.
| |
Collapse
|
23
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Duerr GD, Wu S, Schneider ML, Marggraf V, Weisheit CK, Velten M, Verfuerth L, Frede S, Boehm O, Treede H, Dewald O, Baumgarten G, Kim SC. CpG postconditioning after reperfused myocardial infarction is associated with modulated inflammation, less apoptosis, and better left ventricular function. Am J Physiol Heart Circ Physiol 2020; 319:H995-H1007. [PMID: 32857588 DOI: 10.1152/ajpheart.00269.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconditioning attenuates inflammation and fibrosis in myocardial infarction (MI). The aim of this study was to investigate whether postconditioning with the cytosine-phosphate-guanine (CpG)-containing Toll-like receptor-9 (TLR9) ligand 1668-thioate (CpG) can modulate inflammation and remodeling in reperfused murine MI. Thirty minutes of left descending coronary artery (LAD) occlusion was conducted in 12-wk-old C57BL/6 mice. Mice were treated with CpG intraperitoneally 5 min before reperfusion. The control group received PBS; the sham group did not undergo ischemia. M-mode echocardiography (3, 7, and 28 days) and Millar left ventricular (LV) catheterization were performed (7 and 28 days) before the hearts were excised and harvested for immunohistochemical (6 h, 24 h, 3 days, 7 days, and 28 days), gene expression (6 h, 24 h, and 3 days; Taqman RT-qPCR), protein, and FACS analysis (24 h and 3 days). Mice treated with CpG showed significantly better LV function after 7 and 28 days of reperfusion. Protein and mRNA expressions of proinflammatory and anti-inflammatory cytokines were significantly induced after CpG treatment. Histology revealed fewer macrophages in CpG mice after 24 h, confirmed by FACS analysis with a decrease in both classically M1- and alternative M2a-monocytes. CpG treatment reduced apoptosis and cardiomyocyte loss and was associated with induction of adaptive mechanisms, e.g., of heme-oxigenase-1 and β-/α-myosin heavy chain (MHC) ratio. Profibrotic markers collagen type Iα (Col-Ια) and Col-III induction was abrogated in CpG mice, accompanied by fewer myofibroblasts. This led to the formation of a smaller scar. Differential matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) expression contributed to attenuated remodeling in CpG, resulting in preserved cardiac function in a Toll-like receptor 1- and TLR9-dependent manner. Our study suggests a cardioprotective mechanism of CpG postconditioning, involving Toll-like receptor-driven modulation of inflammation. This is followed by attenuated remodeling and preserved LV function.NEW & NOTEWORTHY Cytosine-phosphate-guanine (CpG) postconditioning seems to mediate inflammation via Toll-like receptor-1 and Toll-like receptor-9 signaling. Enhanced cytokine and chemokine expressions are partly attenuated by IL-10 and matrix metalloproteinase-8 (MMP8) induction, being associated with lower macrophage infiltration and M1-monocyte differentiation. Furthermore, switch from α- to β-MHC and balanced MMP/TIMP expression led to lesser cardiomyocyte apoptosis, smaller scar size, and preserved cardiac function. Data of pharmacological postconditioning have been widely disappointing to date. Our study suggests a new pathway promoting myocardial postconditioning via Toll-like receptor activation.
Collapse
Affiliation(s)
- Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Shuijing Wu
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Max Lukas Schneider
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Vanessa Marggraf
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | | | - Markus Velten
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Luise Verfuerth
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Hendrik Treede
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Oliver Dewald
- Department of Cardiac Surgery, University Hospital of Oldenburg, Oldenburg, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology, Johanniter-Krankenhaus Bonn, Bonn, Germany
| | - Se-Chan Kim
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| |
Collapse
|
25
|
Wang X, Guo D, Li W, Zhang Q, Jiang Y, Wang Q, Li C, Qiu Q, Wang Y. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure. J Cell Mol Med 2020; 24:10677-10692. [PMID: 32757377 PMCID: PMC7521313 DOI: 10.1111/jcmm.15688] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) represents a major public health burden. Inflammation has been shown to be a critical factor in the progression of HF, regardless of the aetiology. Disappointingly, the majority of clinical trials targeting aspects of inflammation in patients with HF have been largely negative. Many clinical researches demonstrate that danshen has a good efficacy on HF, and however, whether danshen exerts anti‐inflammatory effects against HF remains unclear. In our study, the employment of a water extracted and alcohol precipitated of danshen extract attenuated cardiac dysfunction and inflammation response in acute myocardial infarction‐induced HF rats. Transcriptome technique and validation results revealed that TLR4 signalling pathway was involved in the anti‐inflammation effects of danshen. In vitro, danshen reduced the release of inflammatory mediators in LPS‐stimulated RAW264.7 macrophage cells. Besides, the LPS‐stimulated macrophage conditioned media was applied to induce cardiac H9C2 cells injury, which could be attenuated by danshen. Furtherly, knock‐down and overexpression of TLR4 were utilized to confirm that danshen ameliorated inflammatory injury via MyD88‐dependent TLR4‐TRAF6‐NF‐κB signalling pathway in cardiomyocytes. Furthermore, by utilizing co‐immunoprecipitation, danshen was proved to suppress MD2/TLR4 complex formation and MyD88 recruitment. In conclusion, our results demonstrated that danshen ameliorates inflammatory injury by controlling MD2/TLR4‐MyD88 complex formation and TLR4‐TRAF6‐NF‐κB signalling pathway in acute myocardial infarction‐induced HF.
Collapse
Affiliation(s)
- Xiaoping Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Nishimoto S, Fukuda D, Sata M. Emerging roles of Toll-like receptor 9 in cardiometabolic disorders. Inflamm Regen 2020; 40:18. [PMID: 32714475 PMCID: PMC7374824 DOI: 10.1186/s41232-020-00118-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests that damage-associated molecule patterns (DAMPs) and their receptors, pattern recognition receptors (PRRs), are associated with the progression of cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis. Cardiometabolic disorders share sterile chronic inflammation as a major cause; however, the exact mechanisms are still obscure. Toll-like receptor 9 (TLR9), one of the nucleic acid-sensing TLRs, recognizes DNA fragments derived from pathogens and contributes to self-defense by activation of the innate immune system. In addition, previous studies demonstrated that TLR9 recognizes DNA fragments released from host cells, accelerating sterile inflammation, which is associated with inflammatory diseases such as autoimmune diseases. In obese adipose tissue and atherosclerotic vascular tissue, various stresses release DNA fragments and/or nuclear proteins as DAMPs from degenerated adipocytes and vascular cells. Recent studies indicated that the activation of TLR9 in immune cells including macrophages and dendritic cells by recognition of these DAMPs promotes inflammation in these tissues, which causes cardiometabolic disorders. This review discusses recent advances in understanding the role of sterile inflammation associated with TLR9 and its endogenous ligands in cardiometabolic disorders. New insights into innate immunity may provide better understanding of cardiometabolic disorders and new therapeutic options for these major health threats in recent decades.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503 Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Cirrhotic cardiomyopathy is a syndrome of depressed cardiac function in patients with cirrhosis. We aimed to review the historical background, pathophysiology and pathogenesis, diagnostic definitions, clinical relevance, and management of this syndrome. RECENT FINDINGS An inflammatory phenotype underlies the pathogenesis: gut bacterial translocation with endotoxemia stimulates cytokines and cardiodepressant factors, such as nitric oxide and endocannabinoids. Cardiomyocyte plasma membrane biochemical and biophysical changes also play a pathogenic role. These factors lead to impaired beta-adrenergic function. Proposed new echocardiographic criteria for the diagnosis of cirrhotic cardiomyopathy include systolic global longitudinal strain and indices of diastolic dysfunction. Cardiac dysfunction participates in the pathogenesis of hepatorenal syndrome and increased morbidity/mortality of cirrhotic patients to hemorrhage, infection, and surgery, including liver transplantation. There is no specific treatment, although β-adrenergic blockade and supportive management have been proposed, but it needs further study. Cirrhotic cardiomyopathy is a clinically relevant syndrome afflicting patients with established cirrhosis. Optimum management remains unclear, and further study is needed in this area.
Collapse
Affiliation(s)
- Ki Tae Yoon
- Liver Unit, University Calgary Cumming School of Medicine, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.,Liver Center, Department of Internal Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan, Gyeongnam, 50612, South Korea
| | - Hongqun Liu
- Liver Unit, University Calgary Cumming School of Medicine, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Samuel S Lee
- Liver Unit, University Calgary Cumming School of Medicine, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
28
|
Mitochondrial DNA: A Key Regulator of Anti-Microbial Innate Immunity. Genes (Basel) 2020; 11:genes11010086. [PMID: 31940818 PMCID: PMC7017290 DOI: 10.3390/genes11010086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
During the last few years, mitochondrial DNA has attained much attention as a modulator of immune responses. Due to common evolutionary origin, mitochondrial DNA shares various characteristic features with DNA of bacteria, as it consists of a remarkable number of unmethylated DNA as 2′-deoxyribose cytidine-phosphate-guanosine (CpG) islands. Due to this particular feature, mitochondrial DNA seems to be recognized as a pathogen-associated molecular pattern by the innate immune system. Under the normal physiological situation, mitochondrial DNA is enclosed in the double membrane structure of mitochondria. However, upon pathological conditions, it is usually released into the cytoplasm. Growing evidence suggests that this cytosolic mitochondrial DNA induces various innate immune signaling pathways involving NLRP3, toll-like receptor 9, and stimulator of interferon genes (STING) signaling, which participate in triggering downstream cascade and stimulating to produce effector molecules. Mitochondrial DNA is responsible for inflammatory diseases after stress and cellular damage. In addition, it is also involved in the anti-viral and anti-bacterial innate immunity. Thus, instead of entire mitochondrial importance in cellular metabolism and energy production, mitochondrial DNA seems to be essential in triggering innate anti-microbial immunity. Here, we describe existing knowledge on the involvement of mitochondrial DNA in the anti-microbial immunity by modulating the various immune signaling pathways.
Collapse
|