1
|
Tan S, Yang J, Hu S, Lei W. Cell-cell interactions in the heart: advanced cardiac models and omics technologies. Stem Cell Res Ther 2024; 15:362. [PMID: 39396018 PMCID: PMC11470663 DOI: 10.1186/s13287-024-03982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
A healthy heart comprises various cell types, including cardiomyocytes, endothelial cells, fibroblasts, immune cells, and among others, which work together to maintain optimal cardiac function. These cells engage in complex communication networks, known as cell-cell interactions (CCIs), which are essential for homeostasis, cardiac structure, and efficient function. However, in the context of cardiac diseases, the heart undergoes damage, leading to alterations in the cellular composition. Such pathological conditions trigger significant changes in CCIs, causing cell rearrangement and the transition between cell types. Studying these interactions can provide valuable insights into cardiac biology and disease mechanisms, enabling the development of new therapeutic strategies. While the development of cardiac organoids and advanced 3D co-culture technologies has revolutionized in vitro studies of CCIs, recent advancements in single-cell and spatial multi-omics technologies provide researchers with powerful and convenient tools to investigate CCIs at unprecedented resolution. This article provides a concise overview of CCIs observed in both normal and injured heart, with an emphasis on the cutting-edge methods used to study these interactions. It highlights recent advancements such as 3D co-culture systems, single-cell and spatial omics technologies, that have enhanced the understanding of CCIs. Additionally, it summarizes the practical applications of CCI research in advancing cardiovascular therapies, offering potential solutions for treating heart disease by targeting intercellular communication.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Essandoh K, Teuber JP, Brody MJ. Regulation of cardiomyocyte intracellular trafficking and signal transduction by protein palmitoylation. Biochem Soc Trans 2024; 52:41-53. [PMID: 38385554 PMCID: PMC10903464 DOI: 10.1042/bst20221296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Despite the well-established functions of protein palmitoylation in fundamental cellular processes, the roles of this reversible post-translational lipid modification in cardiomyocyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and removed by select thioesterases of the lysophospholipase and α/β-hydroxylase domain (ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential functions for these enzymes in regulating cardiac development, homeostasis, and pathogenesis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of ion channels and transporters to impact their trafficking or gating properties as well as indirectly through modification of regulators of channels, transporters, and calcium handling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering palmitoylation-dependent regulation of small GTPases through direct modification and sarcolemmal targeting of the small GTPases themselves or by modification of regulators of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA is sensed and transduced into an inflammatory transcriptional output through palmitoylation-dependent activation of the cGAS-STING pathway, which has been targeted pharmacologically in preclinical models of heart disease. Further research is needed to fully understand the complex regulatory mechanisms governed by protein palmitoylation in cardiomyocytes and potential emerging therapeutic targets.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, U.S.A
| |
Collapse
|
3
|
Gan S, Zhao L, Salman O, Wang Z, Ebert C, Azzo JD, Dib MJ, Zamani P, Cohen JB, Kammerhoff K, Schafer P, Seiffert DA, Ramirez-Valle F, Gordon DA, Cvijic ME, Gunawardhana K, Liu L, Chang CP, Cappola TP, Chirinos JA. Proteomic Correlates of the Urinary Protein/Creatinine Ratio in Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2023; 206:312-319. [PMID: 37734292 PMCID: PMC10874232 DOI: 10.1016/j.amjcard.2023.08.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Proteinuria is common in heart failure with preserved ejection fraction (HFpEF), but its biologic correlates are poorly understood. We assessed the relation between 49 plasma proteins and the urinary protein/creatinine ratio (UPCR) in 365 participants in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial. Linear regression and network analysis were used to represent relations between protein biomarkers and UPCR. Higher UPCR was associated with older age, a greater proportion of female gender, smaller prevalence of previous myocardial infarction, and greater prevalence of diabetes, insulin use, smoking, and statin use, in addition to a lower estimated glomerular filtration rate, hematocrit, and diastolic blood pressure. Growth differentiation factor 15 (GDF-15; β = 0.15, p <0.0001), followed by N-terminal proatrial natriuretic peptide (NT-proANP; β = 0.774, p <0.0001), adiponectin (β = 0.0005, p <0.0001), fibroblast growth factor 23 (FGF-23, β = 0.177; p <0.0001), and soluble tumor necrosis factor receptors I (β = 0.002, p <0.0001) and II (β = 0.093, p <0.0001) revealed the strongest associations with UPCR. Network analysis showed that UPCR is linked to various proteins primarily through FGF-23, which, along with GDF-15, indicated node characteristics with strong connectivity, whereas UPCR did not. In a model that included FGF-23 and UPCR, the former was predictive of the risk of death or heart-failure hospital admission (standardized hazard ratio 1.83, 95% confidence interval 1.49 to 2.26, p <0.0001) and/or all-cause death (standardized hazard ratio 1.59, 95% confidence interval 1.22 to 2.07, p = 0.0005), whereas UPCR was not prognostic. Proteinuria in HFpEF exhibits distinct proteomic correlates, primarily through its association with FGF-23, a well-known prognostic marker in HFpEF. However, in contrast to FGF-23, UPCR does not hold independent prognostic value.
Collapse
Affiliation(s)
- Sushrima Gan
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | - Oday Salman
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhaoqing Wang
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | - Joe David Azzo
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marie Joe Dib
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Payman Zamani
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics
| | | | - Peter Schafer
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | | | | | | | | | - Laura Liu
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | - Thomas P Cappola
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
5
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
6
|
Masurkar N, Bouvet M, Logeart D, Jouve C, Dramé F, Claude O, Roux M, Delacroix C, Bergerot D, Mercadier JJ, Sirol M, Gellen B, Livrozet M, Fayol A, Robidel E, Trégouët DA, Marazzi G, Sassoon D, Valente M, Hulot JS. Novel Cardiokine GDF3 Predicts Adverse Fibrotic Remodeling After Myocardial Infarction. Circulation 2023; 147:498-511. [PMID: 36484260 DOI: 10.1161/circulationaha.121.056272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Myocardial infarction (MI) induces a repair response that ultimately generates a stable fibrotic scar. Although the scar prevents cardiac rupture, an excessive profibrotic response impairs optimal recovery by promoting the development of noncontractile fibrotic areas. The mechanisms that lead to cardiac fibrosis are diverse and incompletely characterized. We explored whether the expansion of cardiac fibroblasts after MI can be regulated through a paracrine action of cardiac stromal cells. METHODS We performed a bioinformatic secretome analysis of cardiac stromal PW1+ cells isolated from normal and post-MI mouse hearts to identify novel secreted proteins. Functional assays were used to screen secreted proteins that promote fibroblast proliferation. The expressions of candidates were subsequently analyzed in mouse and human hearts and plasmas. The relationship between levels of circulating protein candidates and adverse post-MI cardiac remodeling was examined in a cohort of 80 patients with a first ST-segment-elevation MI and serial cardiac magnetic resonance imaging evaluations. RESULTS Cardiac stromal PW1+ cells undergo a change in paracrine behavior after MI, and the conditioned media from these cells induced a significant increase in the proliferation of fibroblasts. We identified a total of 12 candidates as secreted proteins overexpressed by cardiac PW1+ cells after MI. Among these factors, GDF3 (growth differentiation factor 3), a member of the TGF-β (transforming growth factor-β) family, was markedly upregulated in the ischemic hearts. Conditioned media specifically enriched with GDF3 induced fibroblast proliferation at a high level by stimulation of activin-receptor-like kinases. In line with the secretory nature of this protein, we next found that GDF3 can be detected in mice and human plasma samples, with a significant increase in the days after MI. In humans, higher GDF3 circulating levels (measured in the plasma at day 4 after MI) were significantly associated with an increased risk of adverse remodeling 6 months after MI (adjusted odds ratio, 1.76 [1.03-3.00]; P=0.037), including lower left ventricular ejection fraction and a higher proportion of akinetic segments. CONCLUSIONS Our findings define a mechanism for the profibrotic action of cardiac stromal cells through secreted cardiokines, such as GDF3, a candidate marker of adverse fibrotic remodeling after MI. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT01113268.
Collapse
Affiliation(s)
- Nihar Masurkar
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Marion Bouvet
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Damien Logeart
- Hôpital Lariboisière (D.L., M.S.), Université de Paris, Cité' France
| | - Charlène Jouve
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Fatou Dramé
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Olivier Claude
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Maguelonne Roux
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition, France (M.R.)
| | - Clément Delacroix
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Damien Bergerot
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (D.B., M.L., A.F., J.-S.H.)
| | - Jean-Jacques Mercadier
- Signalisation and Cardiovascular Pathophysiology - Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France (J.-J.M.)
| | - Marc Sirol
- Hôpital Lariboisière (D.L., M.S.), Université de Paris, Cité' France
| | - Barnabas Gellen
- ELSAN, Polyclinique de Poitiers, Service de Cardiologie, France (B.G.)
| | - Marine Livrozet
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (D.B., M.L., A.F., J.-S.H.)
| | - Antoine Fayol
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (D.B., M.L., A.F., J.-S.H.)
| | - Estelle Robidel
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, France (D.-A.T.)
| | - Giovanna Marazzi
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - David Sassoon
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Mariana Valente
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France
| | - Jean-Sébastien Hulot
- Paris Cardiovascular Research Center, INSERM (N.M., M.B., C.J., F.D., O.C., C.D., E.R., G.M., D.S., M.V., J.-S.H.), Université de Paris, Cité' France.,CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (D.B., M.L., A.F., J.-S.H.)
| |
Collapse
|
7
|
Lenarczyk M, Alsheikh AJ, Cohen EP, Schaue D, Kronenberg A, Geurts A, Klawikowski S, Mattson D, Baker JE. T Cells Contribute to Pathological Responses in the Non-Targeted Rat Heart following Irradiation of the Kidneys. TOXICS 2022; 10:toxics10120797. [PMID: 36548630 PMCID: PMC9783591 DOI: 10.3390/toxics10120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/14/2023]
Abstract
Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ammar J. Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric P. Cohen
- Department of Medicine, Division of Nephrology, New York University, New York, NY 10016, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Kronenberg
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Slade Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Mattson
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | - John E. Baker
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.:+1-414-955-8706
| |
Collapse
|
8
|
Chen JJ, Lee TH, Kuo G, Huang YT, Chen PR, Chen SW, Yang HY, Hsu HH, Hsiao CC, Yang CH, Lee CC, Chen YC, Chang CH. Strategies for post-cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960581. [PMID: 36247436 PMCID: PMC9555275 DOI: 10.3389/fcvm.2022.960581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Objects Cardiac surgery is associated with acute kidney injury (AKI). However, the effects of various pharmacological and non-pharmacological strategies for AKI prevention have not been thoroughly investigated, and their effectiveness in preventing AKI-related adverse outcomes has not been systematically evaluated. Methods Studies from PubMed, Embase, and Medline and registered trials from published through December 2021 that evaluated strategies for preventing post-cardiac surgery AKI were identified. The effectiveness of these strategies was assessed through a network meta-analysis (NMA). The secondary outcomes were prevention of dialysis-requiring AKI, mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. The interventions were ranked using the P-score method. Confidence in the results of the NMA was assessed using the Confidence in NMA (CINeMA) framework. Results A total of 161 trials (involving 46,619 participants) and 53 strategies were identified. Eight pharmacological strategies {natriuretic peptides [odds ratio (OR): 0.30, 95% confidence interval (CI): 0.19-0.47], nitroprusside [OR: 0.29, 95% CI: 0.12-0.68], fenoldopam [OR: 0.36, 95% CI: 0.17-0.76], tolvaptan [OR: 0.35, 95% CI: 0.14-0.90], N-acetyl cysteine with carvedilol [OR: 0.37, 95% CI: 0.16-0.85], dexmedetomidine [OR: 0.49, 95% CI: 0.32-0.76;], levosimendan [OR: 0.56, 95% CI: 0.37-0.84], and erythropoietin [OR: 0.62, 95% CI: 0.41-0.94]} and one non-pharmacological intervention (remote ischemic preconditioning, OR: 0.76, 95% CI: 0.63-0.92) were associated with a lower incidence of post-cardiac surgery AKI with moderate to low confidence. Among these nine strategies, five (fenoldopam, erythropoietin, natriuretic peptides, levosimendan, and remote ischemic preconditioning) were associated with a shorter ICU LOS, and two (natriuretic peptides [OR: 0.30, 95% CI: 0.15-0.60] and levosimendan [OR: 0.68, 95% CI: 0.49-0.95]) were associated with a lower incidence of dialysis-requiring AKI. Natriuretic peptides were also associated with a lower risk of mortality (OR: 0.50, 95% CI: 0.29-0.86). The results of a sensitivity analysis support the robustness and effectiveness of natriuretic peptides and dexmedetomidine. Conclusion Nine potentially effective strategies were identified. Natriuretic peptide therapy was the most effective pharmacological strategy, and remote ischemic preconditioning was the only effective non-pharmacological strategy. Preventive strategies might also help prevent AKI-related adverse outcomes. Additional studies are required to explore the optimal dosages and protocols for potentially effective AKI prevention strategies.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rung Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- Department of Nephrology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Shin TH, Kim SG, Ji M, Kwon DH, Hwang JS, George NP, Ergando DS, Park CB, Paik MJ, Lee G. Diesel-derived PM 2.5 induces impairment of cardiac movement followed by mitochondria dysfunction in cardiomyocytes. Front Endocrinol (Lausanne) 2022; 13:999475. [PMID: 36246901 PMCID: PMC9554599 DOI: 10.3389/fendo.2022.999475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Particulate matter (PM) in polluted air can be exposed to the human body through inhalation, ingestion, and skin contact, accumulating in various organs throughout the body. Organ accumulation of PM is a growing health concern, particularly in the cardiovascular system. PM emissions are formed in the air by solid particles, liquid droplets, and fuel - particularly diesel - combustion. PM2.5 (size < 2.5 μm particle) is a major risk factor for approximately 200,000 premature deaths annually caused by air pollution. This study assessed the deleterious effects of diesel-derived PM2.5 exposure in HL-1 mouse cardiomyocyte cell lines. The PM2.5-induced biological changes, including ultrastructure, intracellular reactive oxygen species (ROS) generation, viability, and intracellular ATP levels, were analyzed. Moreover, we analyzed changes in transcriptomics using RNA sequencing and metabolomics using gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in PM2.5-treated HL-1 cells. Ultrastructural analysis using transmission electron microscopy revealed disruption of mitochondrial cristae structures in a PM2.5 dose-dependent manner. The elevation of ROS levels and reduction in cell viability and ATP levels were similarly observed in a PM2.5 dose-dependently. In addition, 6,005 genes were differentially expressed (fold change cut-off ± 4) from a total of 45,777 identified genes, and 20 amino acids (AAs) were differentially expressed (fold change cut-off ± 1.2) from a total of 28 identified AAs profiles. Using bioinformatic analysis with ingenuity pathway analysis (IPA) software, we found that the changes in the transcriptome and metabolome are highly related to changes in biological functions, including homeostasis of Ca2+, depolarization of mitochondria, the function of mitochondria, synthesis of ATP, and cardiomyopathy. Moreover, an integrated single omics network was constructed by combining the transcriptome and the metabolome. In silico prediction analysis with IPA predicted that upregulation of mitochondria depolarization, ROS generation, cardiomyopathy, suppression of Ca2+ homeostasis, mitochondrial function, and ATP synthesis occurred in PM2.5-treated HL-1 cells. In particular, the cardiac movement of HL-1 was significantly reduced after PM2.5 treatment. In conclusion, our results assessed the harmful effects of PM2.5 on mitochondrial function and analyzed the biological changes related to cardiac movement, which is potentially associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Do Hyeon Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Dube Solomon Ergando
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- *Correspondence: Man Jeong Paik, ; Gwang Lee,
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- *Correspondence: Man Jeong Paik, ; Gwang Lee,
| |
Collapse
|
10
|
Rukavina Mikusic NL, Kouyoumdzian NM, Puyó AM, Fernández BE, Choi MR. Role of natriuretic peptides in the cardiovascular-adipose communication: a tale of two organs. Pflugers Arch 2021; 474:5-19. [PMID: 34173888 DOI: 10.1007/s00424-021-02596-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in the energy metabolism of several substrates in humans and animals, thus interrelating the heart, as an endocrine organ, with various insulin-sensitive tissues and organs such as adipose tissue, muscle skeletal, and liver. Adipose tissue dysfunction is associated with altered regulation of the natriuretic peptide system, also indicated as a natriuretic disability. Evidence points to a contribution of this natriuretic disability to the development of obesity, type 2 diabetes mellitus, and cardiometabolic complications; although the causal relationship is not fully understood at present. However, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on the current literature on the metabolic functions of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Natriuretic peptide system alterations could be proposed as one of the linking mechanisms between adipose tissue dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Puyó
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
11
|
Choi MR, Fernández BE. Protective Renal Effects of Atrial Natriuretic Peptide: Where Are We Now? Front Physiol 2021; 12:680213. [PMID: 34135773 PMCID: PMC8202499 DOI: 10.3389/fphys.2021.680213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide belongs to the family of natriuretic peptides, a system with natriuretic, diuretic, and vasodilator effects that opposes to renin-angiotensin system. In addition to its classic actions, atrial natriuretic peptide exerts a nephroprotective effect given its antioxidant and anti-inflammatory properties, turning it as a beneficial agent against acute and chronic kidney diseases. This minireview describes the most relevant aspects of atrial natriuretic peptide in the kidney, including its renal synthesis, physiological actions through specific receptors, the importance of its metabolism, and its potential use in different pathological scenarios.
Collapse
Affiliation(s)
- Marcelo Roberto Choi
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:antiox10020246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
|