1
|
Ternacle J, Hecht S, Eltchaninoff H, Salaun E, Clavel MA, Côté N, Pibarot P. Durability of transcatheter aortic valve implantation. EUROINTERVENTION 2024; 20:e845-e864. [PMID: 39007831 PMCID: PMC11228542 DOI: 10.4244/eij-d-23-01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) is now utilised as a less invasive alternative to surgical aortic valve replacement (SAVR) across the whole spectrum of surgical risk. Long-term durability of the bioprosthetic valves has become a key goal of TAVI as this procedure is now considered for younger and lower-risk populations. The purpose of this article is to present a state-of-the-art overview on the definition, aetiology, risk factors, mechanisms, diagnosis, clinical impact, and management of bioprosthetic valve dysfunction (BVD) and failure (BVF) following TAVI with a comparative perspective versus SAVR. Structural valve deterioration (SVD) is the main factor limiting the durability of the bioprosthetic valves used for TAVI or SAVR, but non-structural BVD, such as prosthesis-patient mismatch and paravalvular regurgitation, as well as valve thrombosis or endocarditis may also lead to BVF. The incidence of BVF related to SVD or other causes is low (<5%) at midterm (5- to 8-year) follow-up and compares favourably with that of SAVR. The long-term follow-up data of randomised trials conducted with the first generations of transcatheter heart valves also suggest similar valve durability in TAVI versus SAVR at 10 years, but these trials suffer from major survivorship bias, and the long-term durability of TAVI will need to be confirmed by the analysis of the low-risk TAVI versus SAVR trials at 10 years.
Collapse
Affiliation(s)
- Julien Ternacle
- Unité Médico-Chirurgicale des Valvulopathies, Hôpital Haut-Leveque, CHU Bordeaux, Pessac, France
| | - Sébastien Hecht
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Hélène Eltchaninoff
- Department of Cardiology, University of Rouen Normandie, Inserm U1096, CHU Rouen, Rouen, France
| | - Erwan Salaun
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Marie-Annick Clavel
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Nancy Côté
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Philippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| |
Collapse
|
2
|
Kostyunin A, Glushkova T, Velikanova E, Mukhamadiyarov R, Bogdanov L, Akentyeva T, Ovcharenko E, Evtushenko A, Shishkova D, Markova Y, Kutikhin A. Embedding and Backscattered Scanning Electron Microscopy (EM-BSEM) Is Preferential over Immunophenotyping in Relation to Bioprosthetic Heart Valves. Int J Mol Sci 2023; 24:13602. [PMID: 37686408 PMCID: PMC10487790 DOI: 10.3390/ijms241713602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Hitherto, calcified aortic valves (AVs) and failing bioprosthetic heart valves (BHVs) have been investigated by similar approaches, mostly limited to various immunostaining techniques. Having employed multiple immunostaining combinations, we demonstrated that AVs retain a well-defined cellular hierarchy even at severe stenosis, whilst BHVs were notable for the stochastic degradation of the extracellular matrix (ECM) and aggressive infiltration by ECM-digesting macrophages. Leukocytes (CD45+) comprised ≤10% cells in the AVs but were the predominant cell lineage in BHVs (≥80% cells). Albeit cells with uncertain immunophenotype were rarely encountered in the AVs (≤5% cells), they were commonly found in BHVs (≥80% cells). Whilst cell conversions in the AVs were limited to the endothelial-to-mesenchymal transition (represented by CD31+α-SMA+ cells) and the formation of endothelial-like (CD31+CD68+) cells at the AV surface, BHVs harboured numerous macrophages with a transitional phenotype, mostly CD45+CD31+, CD45+α-SMA+, and CD68+α-SMA+. In contrast to immunostaining, which was unable to predict cell function in the BHVs, our whole-specimen, nondestructive electron microscopy approach (EM-BSEM) was able to distinguish between quiescent and matrix-degrading macrophages, foam cells, and multinucleated giant cells to conduct the ultrastructural analysis of organelles and the ECM, and to preserve tissue integrity. Hence, we suggest EM-BSEM as a technique of choice for studying the cellular landscape of BHVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.K.); (T.G.); (E.V.); (R.M.); (L.B.); (T.A.); (E.O.); (A.E.); (D.S.); (Y.M.)
| |
Collapse
|
3
|
Li RL, Sun M, Russ JB, Pousse PL, Kossar AP, Gibson I, Paschalides C, Herschman AR, Abyaneh MH, Ferrari G, Bacha E, Waisman H, Vedula V, Kysar JW, Kalfa D. In Vitro Proof of Concept of a First-Generation Growth-Accommodating Heart Valved Conduit for Pediatric Use. Macromol Biosci 2023; 23:e2300011. [PMID: 36905285 PMCID: PMC10363995 DOI: 10.1002/mabi.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
Currently available heart valve prostheses have no growth potential, requiring children with heart valve diseases to endure multiple valve replacement surgeries with compounding risks. This study demonstrates the in vitro proof of concept of a biostable polymeric trileaflet valved conduit designed for surgical implantation and subsequent expansion via transcatheter balloon dilation to accommodate the growth of pediatric patients and delay or avoid repeated open-heart surgeries. The valved conduit is formed via dip molding using a polydimethylsiloxane-based polyurethane, a biocompatible material shown here to be capable of permanent stretching under mechanical loading. The valve leaflets are designed with an increased coaptation area to preserve valve competence at expanded diameters. Four 22 mm diameter valved conduits are tested in vitro for hydrodynamics, balloon dilated to new permanent diameters of 23.26 ± 0.38 mm, and then tested again. Upon further dilation, two valved conduits sustain leaflet tears, while the two surviving devices reach final diameters of 24.38 ± 0.19 mm. After each successful dilation, the valved conduits show increased effective orifice areas and decreased transvalvular pressure differentials while maintaining low regurgitation. These results demonstrate concept feasibility and motivate further development of a polymeric balloon-expandable device to replace valves in children and avoid reoperations.
Collapse
Affiliation(s)
- Richard L Li
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 220 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Mingze Sun
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Jonathan B Russ
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, 610 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Pierre-Louis Pousse
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Alexander P Kossar
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Isabel Gibson
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Costas Paschalides
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 220 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Abigail R Herschman
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 220 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Maryam H Abyaneh
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Giovanni Ferrari
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Emile Bacha
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| | - Haim Waisman
- Department of Civil Engineering and Engineering Mechanics, Fu Foundation School of Engineering and Applied Science, Columbia University, 610 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 220 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 220 Mudd Building, 500 W. 120th Street, New York, NY, 10027, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, 3959 Broadway, 5th Floor, New York, NY, 10032, USA
| | - David Kalfa
- Department of Surgery, Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA
| |
Collapse
|
4
|
Crago M, Winlaw DS, Farajikhah S, Dehghani F, Naficy S. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med 2023; 8:e10501. [PMID: 37476058 PMCID: PMC10354783 DOI: 10.1002/btm2.10501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023] Open
Abstract
Congenital heart diseases (CHDs) frequently impact the right ventricular outflow tract, resulting in a significant incidence of pulmonary valve replacement in the pediatric population. While contemporary pediatric pulmonary valve replacements (PPVRs) allow satisfactory patient survival, their biocompatibility and durability remain suboptimal and repeat operations are commonplace, especially for very young patients. This places enormous physical, financial, and psychological burdens on patients and their parents, highlighting an urgent clinical need for better PPVRs. An important reason for the clinical failure of PPVRs is biofouling, which instigates various adverse biological responses such as thrombosis and infection, promoting research into various antifouling chemistries that may find utility in PPVR materials. Another significant contributor is the inevitability of somatic growth in pediatric patients, causing structural discrepancies between the patient and PPVR, stimulating the development of various growth-accommodating heart valve prototypes. This review offers an interdisciplinary perspective on these challenges by exploring clinical experiences, physiological understandings, and bioengineering technologies that may contribute to device development. It thus aims to provide an insight into the design requirements of next-generation PPVRs to advance clinical outcomes and promote patient quality of life.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - David S. Winlaw
- Department of Cardiothoracic SurgeryHeart Institute, Cincinnati Children's HospitalCincinnatiOHUSA
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| |
Collapse
|
5
|
Jabagi H, Levine D, Gharibeh L, Camillo C, Castillero E, Ferrari G, Takayama H, Grau JB. Implications of Bicuspid Aortic Valve Disease and Aortic Stenosis/Insufficiency as Risk Factors for Thoracic Aortic Aneurysm. Rev Cardiovasc Med 2023; 24:178. [PMID: 39077527 PMCID: PMC11264121 DOI: 10.31083/j.rcm2406178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 07/31/2024] Open
Abstract
Bicuspid Aortic Valves (BAV) are associated with an increased incidence of thoracic aortic aneurysms (TAA). TAA are a common aortic pathology characterized by enlargement of the aortic root and/or ascending aorta, and may become life threatening when left untreated. Typically occurring as the sole pathology in a patient, TAA are largely asymptomatic. However, in some instances, they are accompanied by aortic valve (AV) diseases: either congenital BAV or acquired in the form of Aortic Insufficiency (AI) or aortic stenosis (AS). When TAA are associated with aortic valve disease, determining an accurate and predictable prognosis becomes especially challenging. Patients with AV disease and concomitant TAA lack a widely accepted diagnostic approach, one that integrates our knowledge on aortic valve pathophysiology and encompasses multi-modality imaging approaches. This review summarizes the most recent scientific knowledge regarding the association between AV diseases (BAV, AI, AS) and ascending aortopathies (dilatation, aneurysm, and dissection). We aimed to pinpoint the gaps in monitoring practices and prediction of disease progression in TAA patients with concomitant AV disease. We propose that a morphological and functional analysis of the AV with multi-modality imaging should be included in aortic surveillance programs. This strategy would allow for improved risk stratification of these patients, and possibly new AV phenotypic-specific guidelines with more vigilant surveillance and earlier prophylactic surgery to improve patient outcomes.
Collapse
Affiliation(s)
- Habib Jabagi
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Department of Cardiovascular Surgery, Mt. Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Dov Levine
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Lara Gharibeh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Chiara Camillo
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | | | - Giovanni Ferrari
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Hiroo Takayama
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Juan B. Grau
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
6
|
Xue Y, Kossar AP, Abramov A, Frasca A, Sun M, Zyablitskaya M, Paik D, Kalfa D, Della Barbera M, Thiene G, Kozaki S, Kawashima T, Gorman JH, Gorman RC, Gillespie MJ, Carreon CK, Sanders SP, Levy RJ, Ferrari G. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes. Cardiovasc Res 2023; 119:302-315. [PMID: 35020813 PMCID: PMC10022861 DOI: 10.1093/cvr/cvac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Bioprosthetic heart valves (BHVs), made from glutaraldehyde-fixed heterograft materials, are subject to more rapid structural valve degeneration (SVD) in paediatric and young adult patients. Differences in blood biochemistries and propensity for disease accelerate SVD in these patients, which results in multiple re-operations with compounding risks. The goal of this study is to investigate the mechanisms of BHV biomaterial degeneration and present models for studying SVD in young patients and juvenile animal models. METHODS AND RESULTS We studied SVD in clinical BHV explants from paediatric and young adult patients, juvenile sheep implantation model, rat subcutaneous implants, and an ex vivo serum incubation model. BHV biomaterials were analysed for calcification, collagen microstructure (alignment and crimp), and crosslinking density. Serum markers of calcification and tissue crosslinking were compared between young and adult subjects. We demonstrated that immature subjects were more susceptible to calcification, microstructural changes, and advanced glycation end products formation. In vivo and ex vivo studies comparing immature and mature subjects mirrored SVD in clinical observations. The interaction between host serum and BHV biomaterials leads to significant structural and biochemical changes which impact their functions. CONCLUSIONS There is an increased risk for accelerated SVD in younger subjects, both experimental animals and patients. Increased calcification, altered collagen microstructure with loss of alignment and increased crimp periods, and increased crosslinking are three main characteristics in BHV explants from young subjects leading to SVD. Together, our studies establish a basis for assessing the increased susceptibility of BHV biomaterials to accelerated SVD in young patients.
Collapse
Affiliation(s)
- Yingfei Xue
- Department of Surgery, Columbia University, New York, NY, USA
| | | | - Alexey Abramov
- Department of Surgery, Columbia University, New York, NY, USA
| | - Antonio Frasca
- Department of Surgery, Columbia University, New York, NY, USA
| | - Mingze Sun
- Department of Surgery, Columbia University, New York, NY, USA
| | | | - David Paik
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, Department of Surgery, New-York Presbyterian—Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, NY, USA
| | - Mila Della Barbera
- Department of Cardiac, Thoracic, Vascular Science and Public Health, University of Padua, Medical School, Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Science and Public Health, University of Padua, Medical School, Padua, Italy
| | - Satoshi Kozaki
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takayuki Kawashima
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Gillespie
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chrystalle Katte Carreon
- The Cardiac Registry, Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- The Cardiac Registry, Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- The Cardiac Registry, Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen P Sanders
- The Cardiac Registry, Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- The Cardiac Registry, Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- The Cardiac Registry, Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Robert J Levy
- The Pediatric Heart Valve Center & Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Singh SK, Kachel M, Castillero E, Xue Y, Kalfa D, Ferrari G, George I. Polymeric prosthetic heart valves: A review of current technologies and future directions. Front Cardiovasc Med 2023; 10:1137827. [PMID: 36970335 PMCID: PMC10034107 DOI: 10.3389/fcvm.2023.1137827] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Valvular heart disease is an important source of cardiovascular morbidity and mortality. Current prosthetic valve replacement options, such as bioprosthetic and mechanical heart valves are limited by structural valve degeneration requiring reoperation or the need for lifelong anticoagulation. Several new polymer technologies have been developed in recent years in the hope of creating an ideal polymeric heart valve substitute that overcomes these limitations. These compounds and valve devices are in various stages of research and development and have unique strengths and limitations inherent to their properties. This review summarizes the current literature available for the latest polymer heart valve technologies and compares important characteristics necessary for a successful valve replacement therapy, including hydrodynamic performance, thrombogenicity, hemocompatibility, long-term durability, calcification, and transcatheter application. The latter portion of this review summarizes the currently available clinical outcomes data regarding polymeric heart valves and discusses future directions of research.
Collapse
Affiliation(s)
- Sameer K. Singh
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Mateusz Kachel
- Cardiovascular Research Foundation, New York, NY, United States
- American Heart of Poland, Center for Cardiovascular Research and Development, Katowice, Poland
| | - Estibaliz Castillero
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Yingfei Xue
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - David Kalfa
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Giovanni Ferrari
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Isaac George
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital, College of Physicians and Surgeons of Columbia University, New York, NY, United States
- *Correspondence: Isaac George,
| |
Collapse
|
8
|
Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification. Proc Natl Acad Sci U S A 2023; 120:e2219054120. [PMID: 36574676 PMCID: PMC9910464 DOI: 10.1073/pnas.2219054120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bioprosthetic heart valves (BHV), made from glutaraldehyde-fixed xenografts, are widely used for surgical and transcatheter valve interventions but suffer from limited durability due to structural valve degeneration (SVD). We focused on metabolic syndrome (MetS), a risk factor for SVD and a highly prevalent phenotype in patients affected by valvular heart disease with a well-recognized cluster of comorbidities. Multicenter patient data (N = 251) revealed that patients with MetS were at significantly higher risk of accelerated SVD and required BHV replacement sooner. Using a next-generation proteomics approach, we identified significantly differential proteomes from leaflets of explanted BHV from MetS and non-MetS patients (N = 24). Given the significance of protein infiltration in MetS-induced SVD, we then demonstrated the protective effects of polyoxazoline modification of BHV leaflets to mitigate MetS-induced BHV biomaterial degeneration (calcification, tissue cross-linking, and microstructural changes) in an ex vivo serum model and an in vivo with MetS rat subcutaneous implants.
Collapse
|
9
|
Zakharchenko A, Rock CA, Thomas TE, Keeney S, Hall EJ, Takano H, Krieger AM, Ferrari G, Levy RJ. Inhibition of advanced glycation end product formation and serum protein infiltration in bioprosthetic heart valve leaflets: Investigations of anti-glycation agents and anticalcification interactions with ethanol pretreatment. Biomaterials 2022; 289:121782. [PMID: 36099713 PMCID: PMC10015409 DOI: 10.1016/j.biomaterials.2022.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.
Collapse
Affiliation(s)
- Andrey Zakharchenko
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher A Rock
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tina E Thomas
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Samuel Keeney
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily J Hall
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Abba M Krieger
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Robert J Levy
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Yu J, Qiao E, Wang W. Mechanical or biologic prostheses for mitral valve replacement: A systematic review and meta-analysis. Clin Cardiol 2022; 45:701-716. [PMID: 35665516 PMCID: PMC9286334 DOI: 10.1002/clc.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Either a mechanical or bioprosthetic valve is used in patients undergoing mitral valve replacement (MVR). However, the optimal mitral prosthesis remains controversial. The aim of this meta‐analysis was thus to compare outcomes between mechanical mitral valve replacement (MVRm) and bioprosthetic mitral valve replacement (MVRb) for MVR patients. We searched Embase, PubMed, Web of Science, and Cochrane Library databases from January 1, 2000 to October 31, 2021 for studies that directly compared surgical outcomes of MVRm and MVRb. A total of 22 studies with 35 903 patients were included in the meta‐analysis (n = 23 868 MVRm and n = 12 035 MVRb). The MVRm group displayed lower long‐term all causes mortality (HR, 0.84; 95% confidence interval [CI]: 0.77−0.91; p < .0001; I² = 51%), and fewer mitral reoperation (hazard ratio [HR]: 0.34; 95% CI: 0.23−0.50; p < .00001; I² = 74%) than MVRb group. However, the MVRm group was associated with a greater risk of major bleeding events (HR: 1.21; 95% CI: 1.14−1.29; p < .00001; I² = 0%), stroke and systemic embolism (HR: 1.20; 95% CI: 1.10−1.32; p < .0001; I² = 0%) in matched or adjusted data. No significant difference was observed between MVRm and MVRb on operative mortality in matched/adjusted group (risk ratios: 0.83; 95% CI: 0.66−1.05; p = .12; I² = 0%). The results were consistent with patients aged under 70 years old. Patients who received a MVRm is associated with 16% lower risk of long‐term mortality and 66% lower risk of mitral reoperation, but 20% greater risk of stroke or systemic embolism, 21% greater risk of major bleeding compared with MVRb in matched/adjusted studies group, which were consistent to patients younger than the age of 70 years who underwent MVR.
Collapse
Affiliation(s)
- Jun Yu
- Department of Structural Heart Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - En Qiao
- Department of Structural Heart Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Structural Heart Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Wen S, Zhou Y, Yim WY, Wang S, Xu L, Shi J, Qiao W, Dong N. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front Pharmacol 2022; 13:909801. [PMID: 35721165 PMCID: PMC9204043 DOI: 10.3389/fphar.2022.909801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Valve replacement is the main therapy for valvular heart disease, in which a diseased valve is replaced by mechanical heart valve (MHV) or bioprosthetic heart valve (BHV). Since the 2000s, BHV surpassed MHV as the leading option of prosthetic valve substitute because of its excellent hemocompatible and hemodynamic properties. However, BHV is apt to structural valve degeneration (SVD), resulting in limited durability. Calcification is the most frequent presentation and the core pathophysiological process of SVD. Understanding the basic mechanisms of BHV calcification is an essential prerequisite to address the limited-durability issues. In this narrative review, we provide a comprehensive summary about the mechanisms of BHV calcification on 1) composition and site of calcifications; 2) material-associated mechanisms; 3) host-associated mechanisms, including immune response and foreign body reaction, oxidative stress, metabolic disorder, and thrombosis. Strategies that target these mechanisms may be explored for novel drug therapy to prevent or delay BHV calcification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihua Qiao
- *Correspondence: Weihua Qiao, ; Nianguo Dong,
| | | |
Collapse
|
12
|
Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin. Anal Bioanal Chem 2022; 414:4861-4875. [PMID: 35538229 DOI: 10.1007/s00216-022-04108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/09/2023]
Abstract
Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC-MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.
Collapse
|
13
|
Poly-2-methyl-2-oxazoline–modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A 2022; 119:2120694119. [PMID: 35131859 PMCID: PMC8833185 DOI: 10.1073/pnas.2120694119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)–modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.
Collapse
|
14
|
Ogami T, Kurlansky P. Commentary: Choice of Prosthesis in the Hemodialysis Patient: Everything Old is New Again. Semin Thorac Cardiovasc Surg 2021; 34:1193-1194. [PMID: 34592467 DOI: 10.1053/j.semtcvs.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Ogami
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Paul Kurlansky
- Division of Cardiac Surgery and Center for Innovation and Outcomes Research, Columbia University, New York, New York.
| |
Collapse
|
15
|
Manduteanu I, Simionescu D, Simionescu A, Simionescu M. Aortic valve disease in diabetes: Molecular mechanisms and novel therapies. J Cell Mol Med 2021; 25:9483-9495. [PMID: 34561944 PMCID: PMC8505854 DOI: 10.1111/jcmm.16937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non‐diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic‐hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes‐induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.
Collapse
Affiliation(s)
- Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Dan Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Agneta Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
16
|
Rock CA, Keeney S, Zakharchenko A, Takano H, Spiegel DA, Krieger AM, Ferrari G, Levy RJ. Model studies of advanced glycation end product modification of heterograft biomaterials: The effects of in vitro glucose, glyoxal, and serum albumin on collagen structure and mechanical properties. Acta Biomater 2021; 123:275-285. [PMID: 33444798 DOI: 10.1016/j.actbio.2020.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.
Collapse
Affiliation(s)
- Christopher A Rock
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Samuel Keeney
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Andrey Zakharchenko
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Hajime Takano
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Abba M Krieger
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, United States
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States.
| |
Collapse
|
17
|
Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration. J Am Heart Assoc 2021; 10:e018921. [PMID: 33494616 PMCID: PMC7955440 DOI: 10.1161/jaha.120.018921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioprosthetic heart valves (BHVs) largely circumvent the need for long‐term anticoagulation compared with mechanical valves but are increasingly susceptible to deterioration and reduced durability with reoperation rates of ≈10% and 30% at 10 and 15 years, respectively. Structural valve degeneration is a common, unpreventable, and untreatable consequence of BHV implantation and is frequently characterized by leaflet calcification. However, 25% of BHV reoperations attributed to structural valve degeneration occur with minimal leaflet mineralization. This review discusses the noncalcific mechanisms of BHV structural valve degeneration, highlighting the putative roles and pathophysiological relationships between protein infiltration, glycation, oxidative and mechanical stress, and inflammation and the structural consequences for surgical and transcatheter BHVs.
Collapse
Affiliation(s)
- Matteo Marro
- Department of Surgery Columbia University New York NY.,Division of Cardiac Surgery, Department of Surgical Sciences Città della Salute e della Scienza di Torino/University of Turin Italy
| | | | - Yingfei Xue
- Department of Surgery Columbia University New York NY
| | | | - Robert J Levy
- Department of Pediatrics The Children's Hospital of Philadelphia PA
| | | |
Collapse
|