1
|
Song Y, Chen X, Yang K, Dong Z, Cui C, Zhao K, Cheng H, Ji K, Lu M, Zhao S. Cardiac MRI-derived Myocardial Fibrosis and Ventricular Dyssynchrony Predict Response to Cardiac Resynchronization Therapy in Patients with Nonischemic Dilated Cardiomyopathy. Radiol Cardiothorac Imaging 2023; 5:e220127. [PMID: 37908550 PMCID: PMC10613947 DOI: 10.1148/ryct.220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/05/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
Purpose To determine the association of myocardial fibrosis and left ventricular (LV) dyssynchrony measured using cardiac MRI with late gadolinium enhancement (LGE) and feature tracking (FT), respectively, with response to cardiac resynchronization therapy (CRT) for nonischemic dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 98 patients (mean age, 59 years ± 10 [SD]; 54 men) who had nonischemic DCM, as assessed with LGE cardiac MRI before CRT. Cardiac MRI FT-derived dyssynchrony was defined as the SD of the time-to-peak strain (TTP-SD) of the LV segments in three directions (longitudinal, radial, and circumferential). CRT response was defined as a 15% increase in LV ejection fraction (LVEF) at echocardiography at 6-month follow-up, and then, long-term cardiovascular events were assessed. The likelihood ratio test was used to evaluate the incremental prognostic value of LGE and dyssynchrony parameters. Results Seventy-one (72%) patients showed a favorable LVEF response following CRT. LGE presence (odds ratio: 0.14 [95% CI: 0.04, 0.47], P = .002; and hazard ratio: 3.52 [95% CI: 1.37, 9.07], P = .01) and lower circumferential TTP-SD (odds ratio: 1.04 [95% CI: 1.02, 1.07], P = .002; and hazard ratio: 0.98 [95% CI: 0.96, 1.00], P = .03) were independently associated with LVEF nonresponse and long-term outcomes. Combined LGE and circumferential TTP-SD provided the highest discrimination for LVEF nonresponse (area under the receiver operating characteristic curve [AUC]: 0.89 [95% CI: 0.81, 0.94], sensitivity: 84.5% [95% CI: 74.0%, 92.0%], specificity: 85.2% [95% CI: 66.3%, 95.8%]) and long-term outcomes (AUC: 0.84 [95% CI: 0.75, 0.91], sensitivity: 76.9% [95% CI: 56.4%, 91.0%], specificity: 87.0% [95% CI: 76.7%, 93.9%]). Conclusion Myocardial fibrosis and lower circumferential dyssynchrony assessed with pretherapy cardiac MRI were independently associated with unfavorable LVEF response and long-term events following CRT in patients with nonischemic DCM and may provide incremental value in predicting prognosis.Keywords: MR Imaging, Cardiac, Outcomes Analysis Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Kai Yang
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Zhixiang Dong
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Chen Cui
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Kankan Zhao
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Huaibing Cheng
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Keshan Ji
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Minjie Lu
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Shihua Zhao
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| |
Collapse
|
2
|
Abstract
PURPOSE OF THE REVIEW Dyssynchrony occurs when portions of the cardiac chambers contract in an uncoordinated fashion. Ventricular dyssynchrony primarily impacts the left ventricle and may result in heart failure. This entity is recognized as a major contributor to the development and progression of heart failure. A hallmark of dyssynchronous heart failure (HFd) is left ventricular recovery after dyssynchrony is corrected. This review discusses the current understanding of pathophysiology of HFd and provides clinical examples and current techniques for treatment. RECENT FINDINGS Data show that HFd responds poorly to medical therapy. Cardiac resynchronization therapy (CRT) in the form of conventional biventricular pacing (BVP) is of proven benefit in HFd, but is limited by a significant non-responder rate. Recently, conduction system pacing (His bundle or left bundle branch area pacing) has also shown promise in correcting HFd. HFd should be recognized as a distinct etiology of heart failure; HFd responds best to CRT.
Collapse
Affiliation(s)
- Sean J Dikdan
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | | | - Behzad B Pavri
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Hu X, Qian Z, Zou F, Xue S, Zhang X, Wang Y, Hou X, Zhou W, Zou J. A Mild Dyssynchronous Contraction Pattern Detected by SPECT Myocardial Perfusion Imaging Predicts Super-Response to Cardiac Resynchronization Therapy. Front Cardiovasc Med 2022; 9:906467. [PMID: 35711371 PMCID: PMC9194389 DOI: 10.3389/fcvm.2022.906467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Using single photon emission computed tomography myocardial perfusion imaging (SPECT MPI) with phase analysis (PA), we aimed to identify the predictive value of a new contraction pattern in cardiac resynchronization therapy (CRT) response. Methods Left ventricular mechanical dyssynchrony (LVMD) was evaluated using SPECT MPI with PA in non-ischemic dilated cardiomyopathy (DCM) patients with left bundle branch block (LBBB) indicated for CRT. CRT super-response was defined as LV ejection fraction (EF) ≥50% or an absolute increase of LVEF >15%. The LV contraction was categorized as the mild dyssynchronous pattern when the phase standard deviation (PSD) ≤ 40.3° and phase histogram bandwidth (PBW) ≤ 111.9°, otherwise it was defined as severe dyssynchronous pattern which was further characterized as U-shaped, heterogeneous or homogenous pattern. Results The final cohort comprised 74 patients, including 32 (43.2%) in mild dyssynchronous group, 17 (23%) in U-shaped group, 19 (25.7%) in heterogeneous group, and 6 (8.1%) in homogenous group. The mild dyssynchronous group had lower PSD and PBW than U-shaped, heterogeneous, and homogenous groups (P < 0.0001). Compared to patients with the heterogeneous pattern, the odds ratios (ORs) with 95% confidence intervals (CIs) for CRT super-response were 10.182(2.43–42.663), 12.8(2.545–64.372), and 2.667(0.327–21.773) for patients with mild dyssynchronous, U-shaped, and homogenous pattern, respectively. After multivariable adjustment, mild dyssynchronous group remained associated with increased CRT super-response (adjusted OR 5.709, 95% CI 1.152–28.293). Kaplan-Meier curves showed that mild dyssynchronous group demonstrated a better long-term prognosis. Conclusions The mild dyssynchronous pattern in patients with DCM is associated with an increased CRT super-response and better long-term prognosis.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengwei Zou
- Montefiore Medical Center, Bronx, NY, United States
| | - Siyuan Xue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Zhou
- College of Computing, Michigan Technological University, Houghton, MI, United States
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jiangang Zou
| |
Collapse
|
4
|
Malik D, Mittal BR, Sood A, Sharma A, Parmar M, Kaur K, Bahl A. Evaluation of left ventricular mechanical dyssynchrony with phase analysis in end-stage renal disease patients with normal gated SPECT-MPI. World J Nucl Med 2019; 18:238-243. [PMID: 31516366 PMCID: PMC6714158 DOI: 10.4103/wjnm.wjnm_49_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Phase analysis using gated single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is a relatively new tool for the assessment of ventricular synchrony. Hypertension, diabetes, renal diseases, and dyslipidemia may affect the phase parameters though their impact is not well understood. The present study aimed to evaluate the incidence of the left ventricular mechanical dyssynchrony (LVMD) in end-stage renal disease (ESRD) patients with normal gated SPECT-MPI and QRS duration (<120 ms) on electrocardiogram. Data of 129 patients (86 males) referred for gated SPECT-MPI for their pretransplant evaluation with normal gated stress SPECT-MPI (SSS <3 and ejection fraction ≥50%) were included in the study analysis. Documented clinical history along with confounding factors such as hypertension, dyslipidemia, smoking, and alcoholism were evaluated. Left ventricle functional (end-diastolic, end-systolic, and LV myocardial volume) and phase parameters (phase standard deviation [PSD], phase bandwidth [PBW] and entropy) were calculated using the QPS-QGS program. LVMD was noted in 36 (28%) of ESRD patients with normal QRS duration and gated SPECT-MPI. The mean attenuated corrected LV myocardial volume, ejection fraction, mean PSD, and PBW values were 84.3 ± 38.1 ml, 65.3 ± 13.5%, 9.8° ± 3.9°, and 61.4° ± 24.7°, respectively. The LV myocardial volume shows statistically significant correlation with the phase parameters (r = 0.31-0.47; P < 0.001). LVMD is present in a significant number of ESRD patients, and its extent is more with increase in LV myocardial volume. It may have an additional role in risk-stratification for cardiovascular disease in ESRD patients.
Collapse
Affiliation(s)
| | | | - Ashwani Sood
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Ashish Sharma
- Department of Renal Surgery, PGIMER, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | | | - Ajay Bahl
- Department of Cardiology, PGIMER, Chandigarh, India
| |
Collapse
|
5
|
Sassone B, Nucifora G, Mele D, Valzania C, Bisignani G, Boriani G. Role of cardiovascular imaging in cardiac resynchronization therapy: a literature review. J Cardiovasc Med (Hagerstown) 2018; 19:211-222. [PMID: 29470248 DOI: 10.2459/jcm.0000000000000635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
: Cardiac resynchronization therapy (CRT) is an established treatment in patients with symptomatic drug-refractory heart failure and broad QRS complex on the surface ECG. Despite the presence of either mechanical dyssynchrony or viable myocardium at the site where delivering left ventricular pacing being necessary conditions for a successful CRT, their direct assessment by techniques of cardiovascular imaging, though feasible, is not recommended in clinical practice by the current guidelines. Indeed, even though there is growing body of data providing evidence of the additional value of an image-based approach as compared with routine approach in improving response to CRT, these results should be confirmed in prospective and large multicentre trials before their impact on CRT guidelines is considered.
Collapse
Affiliation(s)
- Biagio Sassone
- Department of Cardiology, SS.ma Annunziata Hospital.,Department of Cardiology, Delta Hospital, Azienda Unità Sanitaria Locale Ferrara, Ferrara, Italy
| | - Gaetano Nucifora
- Cardiology Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Flinders University, Adelaide, Australia
| | - Donato Mele
- Noninvasive Cardiology Unit, University Hospital of Ferrara, Ferrara
| | - Cinzia Valzania
- Institute of Cardiology, University of Bologna, Policlinico S. Orsola-Malpighi, Bologna
| | | | - Giuseppe Boriani
- Cardiology Division, Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico of Modena, Modena, Italy
| | | |
Collapse
|
6
|
Marty B, Gilles R, Toussaint M, Béhin A, Stojkovic T, Eymard B, Carlier PG, Wahbi K. Comprehensive evaluation of structural and functional myocardial impairments in Becker muscular dystrophy using quantitative cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2018; 20:906-915. [DOI: 10.1093/ehjci/jey209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Abstract
Aims
Becker muscular dystrophy (BMD) is a genetic neuromuscular disease characterized by an alteration of the dystrophin protein. Myocardial involvement is frequent, eventually progressing to a dilated cardiomyopathy, and represents the most common cause of death for this pathology. We performed a comprehensive evaluation of myocardial functional and structural alterations encountered in a large cohort of BMD patients using quantitative cardiac magnetic resonance (CMR) imaging.
Methods and results
Eighty-eight BMD patients and 26 age-matched volunteers underwent standard cine and tag imaging to assess myocardial function and dyssynchrony, while native T1, T2, and extracellular volume fraction (ECV) were measured for tissue characterization. The left ventricular ejection fraction (LV-EF) was significantly reduced in 26% of the BMD patients. Patients exhibited higher dyssynchrony index than controls (6.94 ± 3.17 vs. 5.09 ± 1.25, P = 0.005). Diastolic dyssynchrony also exists in patients where systolic function was normal. BMD subjects, compared with controls, had significantly higher native T1, T2, and ECV (1183 ± 60 ms vs. 1164 ± 22 ms, 47.5 ± 4.5 ms vs. 45.6 ± 3.4 ms, 0.282 ± 0.050 vs. 0.231 ± 0.027, respectively, P < 0.05). Native T1, T2, and ECV correlated with LV-EF (R = −0.79, −0.70, and −0.71, respectively, P < 0.001) and N-terminal-pro brain natriuretic peptide (R = 0.51, 0.58, and 0.44, respectively, P < 0.001).
Conclusion
Quantitative CMR represents a powerful tool to evaluate structural and functional impairments in the myocardium of BMD subjects. Native T1, T2, and ECV provided quantitative biomarkers related to inflammation and fibrosis, and could stratify disease severity.
Collapse
Affiliation(s)
- Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Raymond Gilles
- Cardiology Department, CHWAPI, Site Union, 51 rue des Sports, 7500 Tournai, Belgium
| | - Marcel Toussaint
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Anthony Béhin
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Tanya Stojkovic
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Bruno Eymard
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| | - Karim Wahbi
- Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institute of Myology, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard Vincent Auriol, Paris, France
| |
Collapse
|
7
|
Gage RM, Khan AH, Syed IS, Bajpai A, Burns KV, Curtin AE, Blanchard AL, Gillberg JM, Ghosh S, Bank AJ. Twelve-Lead ECG Optimization of Cardiac Resynchronization Therapy in Patients With and Without Delayed Enhancement on Cardiac Magnetic Resonance Imaging. J Am Heart Assoc 2018; 7:e009559. [PMID: 30571590 PMCID: PMC6405539 DOI: 10.1161/jaha.118.009559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Delayed enhancement (DE) on magnetic resonance imaging is associated with ventricular arrhythmias, adverse events, and worse left ventricular mechanics. We investigated the impact of DE on cardiac resynchronization therapy (CRT) outcomes and the effect of CRT optimization. Methods and Results We studied 130 patients with ejection fraction (EF) ≤40% and QRS ≥120 ms, contrast cardiac magnetic resonance imaging, and both pre‐ and 1‐year post‐CRT echocardiograms. Sixty‐three (48%) patients did not have routine optimization of CRT. The remaining patients were optimized for wavefront fusion by 12‐lead ECG. The primary end point in this study was change in EF following CRT. To investigate the association between electrical dyssynchrony and EF outcomes, the standard deviation of activation times from body‐surface mapping was calculated during native conduction and selected device settings in 52 of the optimized patients. Patients had no DE (n=45), midwall septal stripe (n=30), or scar (n=55). Patients without DE had better ∆EF (13±10 versus 4±10 units; P<0.01). Optimized patients had greater ∆EF in midwall stripe (2±9 versus 12±12 units; P=0.01) and scar (0±7 versus 5±10; P=0.04) groups, but not in the no‐DE group. Patients without DE had greater native standard deviation of activation times (P=0.03) and greater ∆standard deviation of activation times with standard programming (P=0.01). Device optimization reduced standard deviation of activation times only in patients with DE (P<0.01). Conclusions DE on magnetic resonance imaging is associated with worse EF outcomes following CRT. Device optimization is associated with improved EF and reduced electrical dyssynchrony in patients with DE.
Collapse
Affiliation(s)
- Ryan M Gage
- 1 United Heart & Vascular Clinic St. Paul MN
| | | | | | | | | | - Antonia E Curtin
- 2 Department of Biomedical Engineering University of Minnesota Minneapolis MN
| | | | | | | | - Alan J Bank
- 1 United Heart & Vascular Clinic St. Paul MN.,2 Department of Biomedical Engineering University of Minnesota Minneapolis MN
| |
Collapse
|
8
|
Tao N, Qiu Y, Tang H, Qian Z, Wu H, Zhu R, Wang Y, Hou X, Zhou W, Zou J. Assessment of left ventricular contraction patterns using gated SPECT MPI to predict cardiac resynchronization therapy response. J Nucl Cardiol 2018; 25:2029-2038. [PMID: 28608184 DOI: 10.1007/s12350-017-0949-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/24/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND The U-shaped left ventricular (LV) contraction pattern, identified by MRI or echocardiography, is associated with improved CRT response. Gated SPECT MPI can measure both myocardial viability and mechanical dyssynchrony in a single scan. The aim of this study is to examine the relationship of the LV contraction pattern and the response of CRT in patients with left bundle branch block (LBBB). METHODS Fifty-eight patients who met CRT guidelines and who had pre-CRT MPI were enrolled. Myocardial segments with tracer uptake < 50% of maximum were considered as scar. The LV contraction pattern was considered as U-shaped or non-U-shaped (U-shaped has a block line in the direction of contraction propagation). CRT response was defined as an increase in left ventricular ejection fraction ≥ 5% after 6-month follow-up. RESULTS Twenty-eight patients (48%) had a U-shaped contraction pattern and thirty patients (52%) had a non-U-shaped contraction pattern. The U-shaped group showed a significantly higher response rate than the non-U-shaped group (90% vs. 57%; P = 0.005). By univariate and multivariate logistic regression analysis, the U-shaped pattern was an independent predictor of CRT response. CONCLUSION Non-invasive gated SPECT MPI can characterize LV mechanical contraction patterns. A U-shaped contraction pattern identified is associated with improved CRT response. This may prove useful for improved patient selection for CRT.
Collapse
Affiliation(s)
- Ningchao Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Yuanhao Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Haipeng Tang
- School of Computing, University of Southern Mississippi, Long Beach, MS, 39560, USA
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Hongping Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Rui Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Weihua Zhou
- School of Computing, University of Southern Mississippi, Long Beach, MS, 39560, USA.
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Naya M, Manabe O, Koyanagawa K, Tamaki N. The role of nuclear medicine in assessments of cardiac dyssynchrony. J Nucl Cardiol 2018; 25:1980-1987. [PMID: 28956317 DOI: 10.1007/s12350-017-1072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022]
Abstract
Radionuclide imaging has an advantage for quantitative analyses of the tracer concentration and its temporal changes. Myocardial perfusion and function have been adapted for synchrony analyses. Extracted parameters have been demonstrated to measure ventricular synchrony and even to predict CRT outcomes. ERNA has the advantages of higher temporal resolution, greater reproducibility, and the volumetric analysis of both ventricles that can be applied for analyses of intraventricular synchrony and interventricular synchrony. Several software packages such as Quantitative Gated SPECT, the Emory Cardiac Toolbox, cardioREPO, and Heart Function View are available to assess the LV dyssynchrony parameters from GSPECT. A count-based method is applied to extract the amplitude and phase from each of the reconstructed GSPECT short-axis datasets throughout the cardiac cycle and then subjected to a Fourier analysis, the results of which are displayed on a polar map and histogram. Some of the parameters such as the bandwidth (expressed as the 95% width of the phase histogram) and the standard deviation of the phase are obtained by the phase histogram to assess the intraventricular synchrony. This review paper focuses on the application of the LV dyssynchrony parameters estimated by cardiac SPECT in patients with a heart disease.
Collapse
Affiliation(s)
- Masanao Naya
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazuhiro Koyanagawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, Kwong RY, McCann GP, Berry C, Nagel E. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J Cardiovasc Magn Reson 2018; 20:67. [PMID: 30231886 PMCID: PMC6147157 DOI: 10.1186/s12968-018-0484-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality globally. Changing natural history of the disease due to improved care of acute conditions and ageing population necessitates new strategies to tackle conditions which have more chronic and indolent course. These include an increased deployment of safe screening methods, life-long surveillance, and monitoring of both disease activity and tailored-treatment, by way of increasingly personalized medical care. Cardiovascular magnetic resonance (CMR) is a non-invasive, ionising radiation-free method, which can support a significant number of clinically relevant measurements and offers new opportunities to advance the state of art of diagnosis, prognosis and treatment. The objective of the SCMR Clinical Trial Taskforce was to summarizes the evidence to emphasize where currently CMR-guided clinical care can indeed translate into meaningful use and efficient deployment of resources results in meaningful and efficient use. The objective of the present initiative was to provide an appraisal of evidence on analytical validation, including the accuracy and precision, and clinical qualification of parameters in disease context, clarifying the strengths and weaknesses of the state of art, as well as the gaps in the current evidence This paper is complementary to the existing position papers on standardized acquisition and post-processing ensuring robustness and transferability for widespread use. Themed imaging-endpoint guidance on trial design to support drug-discovery or change in clinical practice (part II), will be presented in a follow-up paper in due course. As CMR continues to undergo rapid development, regular updates of the present recommendations are foreseen.
Collapse
Affiliation(s)
- Valentina O Puntmann
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany
- Department of Cardiology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Silvia Valbuena
- Department of Cardiology, University Hospital La Paz, Madrid, Germany
| | - Rocio Hinojar
- Department of Cardiology, University Hospital Ramón y Cajal, Madrid, Spain
| | - Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of London, Barts and the London NIHR Biomedical Research Centre at Barts, London, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Christopher M Kramer
- Department of Medicine (Cardiology) and Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Womens' Hospital, Boston, Massachusetts, USA
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- the NIHR Leicester Cardiovascular Biomedical Centre, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | - Eike Nagel
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
11
|
Panayiotou M, Housden RJ, Ishak A, Brost A, Rinaldi CA, Sieniewicz B, Behar JM, Kurzendorfer T, Rhode KS. LV function validation of computer-assisted interventional system for cardiac resyncronisation therapy. Int J Comput Assist Radiol Surg 2018; 13:777-786. [PMID: 29603064 PMCID: PMC5974009 DOI: 10.1007/s11548-018-1748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Cardiac resynchronisation therapy (CRT) is an established treatment for symptomatic patients with heart failure, a prolonged QRS duration, and impaired left ventricular (LV) function; however, non-response rates remain high. Recently proposed computer-assisted interventional platforms for CRT provide new routes to improving outcomes. Interventional systems must process information in an accurate, fast and highly automated way that is easy for the interventional cardiologists to use. In this paper, an interventional CRT platform is validated against two offline diagnostic tools to demonstrate that accurate information processing is possible in the time critical interventional setting. METHODS The study consisted of 3 healthy volunteers and 16 patients with heart failure and conventional criteria for CRT. Data analysis included the calculation of end-diastolic volume, end-systolic volume, stroke volume and ejection fraction; computation of global volume over the cardiac cycle as well as time to maximal contraction expressed as a percentage of the total cardiac cycle. RESULTS The results showed excellent correlation ([Formula: see text] values of [Formula: see text] and Pearson correlation coefficient of [Formula: see text]) with comparable offline diagnostic tools. CONCLUSION Results confirm that our interventional system has good accuracy in everyday clinical practice and can be of clinical utility in identification of CRT responders and LV function assessment.
Collapse
Affiliation(s)
- Maria Panayiotou
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - R James Housden
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Athanasius Ishak
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - Christopher A Rinaldi
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Benjamin Sieniewicz
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Behar
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | | | - Kawal S Rhode
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
12
|
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: A review of current approaches. J Magn Reson Imaging 2017; 46:1263-1280. [PMID: 28471530 DOI: 10.1002/jmri.25718] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 11/07/2022] Open
Abstract
Contraction of the heart is central to its purpose of pumping blood around the body. While simple global function measures (such as the ejection fraction) are most commonly used in the clinical assessment of cardiac function, MRI also provides a range of approaches for quantitatively characterizing regional cardiac function, including the local deformation (or strain) within the heart wall. While they have been around for some years, these methods are still undergoing further technical development, and they have had relatively little clinical evaluation. However, they can provide potentially useful new ways to assess cardiac function, which may be able to contribute to better classification and treatment of heart disease. This article provides some basic background on the physical and physiological factors that determine the motion of the heart, in health and disease and then reviews some of the ways that MRI methods are being developed to image and quantify strain within the myocardium. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1263-1280.
Collapse
Affiliation(s)
- Teodora Chitiboi
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| | - Leon Axel
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| |
Collapse
|
13
|
Panayiotou M, Mountney P, Brost A, Toth D, Jackson T, Behar JM, Rinaldi CA, Housden RJ, Rhode KS. Dynamic mapping of ventricular function from cardiovascular magnetic resonance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4137-4140. [PMID: 28269193 DOI: 10.1109/embc.2016.7591637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is associated with substantial mortality and morbidity and remains the most common diagnosis in older patients. Based on experimental electrophysiologic studies, cardiac resynchronization therapy (CRT) for heart failure results in a maximum resynchronization effect when applied to the most delayed left ventricular (LV) site. Current clinical practice is to identify the optimal site using separate visualisation of scar and activation information. These must be mentally mapped into 3D, which is challenging and time-consuming for the electrophysiologist. The aim of this work is to improve patient planning for CRT by mapping propagation of mechanical activation from cardiac magnetic resonance (CMR) onto a three-dimensional plus time (3D+t) model map to assist the cardiologist in determining the optimal LV pacing site. Automatic motion analysis of the 16-segment patient-specific LV anatomical model, automatically segmented from cine MR data, was done and regional volume change curves as a function of the cardiac cycle along with intraventricular dyssynchrony indices were extracted. The regional volume information computed was then mapped onto all phases of the 3D+t CMR data, which provides a 3D+t mechanical activation map over the whole cardiac cycle. This workflow was tested on 7 patients and 3 healthy volunteers. This mapping of the regional change of volume across the LV during ventricular pacing could facilitate the selection of the optimum pacing segment at the planning stage of the procedure, and consequently decrease the number of inadequate responders to CRT.
Collapse
|
14
|
Germano G, Van Kriekinge SD. Measuring mechanical cardiac dyssynchrony in the 3-D era. J Nucl Cardiol 2017; 24:158-161. [PMID: 26719153 DOI: 10.1007/s12350-015-0379-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Guido Germano
- Cedars-Sinai Medical Center, 8700 Beverly Blvd A047 N, Los Angeles, CA, USA.
- UCLA, David Geffen School of Medicine, Los Angeles, CA, USA.
| | | |
Collapse
|
15
|
Comparison between a count-based and geometrical approach for the assessment of left ventricular dyssynchrony using myocardial perfusion scintigraphy. Nucl Med Commun 2016; 37:1125-35. [PMID: 27383191 DOI: 10.1097/mnm.0000000000000574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE There are two distinct approaches for the assessment of left ventricular (LV) dyssynchrony by myocardial perfusion scintigraphy (MPS). The aim of this study was to compare the performance of the count-based and geometrical approach in clinical data using gated single photon emission computed tomography MPS. MATERIAL AND METHODS Group 1 consisted of 113 patients (49 men, 64 women) with normal perfusion [summed rest score (SRS)≤3], normal LV ejection fraction (≥55%), and normal QRS duration (QRSd<120 ms). Group 2 consisted of 89 heart failure patients (79 men, 10 women) with no restriction for SRS, LV ejection fraction ≤35%, and QRSd ≥120 ms. All MPS parameters were obtained from the software Corridor4DM. Dyssynchrony parameters used were time to peak contraction, SD, and bandwidth (BW). RESULTS SD and BW were estimated higher (difference group 1: SD 3.0±2.3 and BW 11.3±9.3, P-values <0.001; difference group 2: SD 2.4±4.3 and BW 1.3±17.0, P-value <0.001 and 0.479 respectively) using the count-based approach in comparison with the geometrical method. A significant and good correlation was found between these two methods (R=0.763, 0.902, 0.896 for time to peak contraction, SD, and BW respectively, P-values ≤0.001). SD and BW in both approaches were equally good parameters for differentiating heart failure patients (area under the curve: 0.995-0.998), although using different cut-off values. CONCLUSION The count-based approach generally provides a wider phase distribution and subsequently greater SD and BW estimates compared with the geometrical algorithm. These differences result in clinically relevant deviations in normal and cut-off values that have to be recognized when evaluating patients.
Collapse
|
16
|
Saporito S, van Assen HC, Houthuizen P, Aben JPMM, Strik M, van Middendorp LB, Prinzen FW, Mischi M. Assessment of left ventricular mechanical dyssynchrony in left bundle branch block canine model: Comparison between cine and tagged MRI. J Magn Reson Imaging 2016; 44:956-63. [PMID: 26973138 DOI: 10.1002/jmri.25225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/23/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To compare cine and tagged magnetic resonance imaging (MRI) for left ventricular dyssynchrony assessment in left bundle branch block (LBBB), using the time-to-peak contraction timing, and a novel approach based on cross-correlation. MATERIALS AND METHODS We evaluated a canine model dataset (n = 10) before (pre-LBBB) and after induction of isolated LBBB (post-LBBB). Multislice short-axis tagged and cine MRI images were acquired using a 1.5 T scanner. We computed contraction time maps by cross-correlation, based on the timing of radial wall motion and of circumferential strain. Finally, we estimated dyssynchrony as the standard deviation of the contraction time over the different regions of the myocardium. RESULTS Induction of LBBB resulted in a significant increase in dyssynchrony (cine: 13.0 ± 3.9 msec for pre-LBBB, and 26.4 ± 5.0 msec for post-LBBB, P = 0.005; tagged: 17.1 ± 5.0 msec at for pre-LBBB, and 27.9 ± 9.8 msec for post-LBBB, P = 0.007). Dyssynchrony assessed by cine and tagged MRI were in agreement (r = 0.73, P = 0.0003); differences were in the order of time difference between successive frames of 20 msec (bias: -2.9 msec; limit of agreement: 10.1 msec). Contraction time maps were derived; agreement was found in the contraction patterns derived from cine and tagged MRI (mean difference in contraction time per segment: 3.6 ± 13.7 msec). CONCLUSION This study shows that the proposed method is able to quantify dyssynchrony after induced LBBB in an animal model. Cine-assessed dyssynchrony agreed with tagged-derived dyssynchrony, in terms of magnitude and spatial direction. J. MAGN. RESON. IMAGING 2016;44:956-963.
Collapse
Affiliation(s)
- Salvatore Saporito
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Hans C van Assen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Patrick Houthuizen
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | | | - Marc Strik
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Lars B van Middendorp
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Frits W Prinzen
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
17
|
Rosa I, Marini C, Stella S, Ancona F, Spartera M, Margonato A, Agricola E. Mechanical dyssynchrony and deformation imaging in patients with functional mitral regurgitation. World J Cardiol 2016; 8:146-162. [PMID: 26981211 PMCID: PMC4766266 DOI: 10.4330/wjc.v8.i2.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/06/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic functional mitral regurgitation (FMR) is a frequent finding of ischemic heart disease and dilated cardiomyopathy (DCM), associated with unfavourable prognosis. Several pathophysiologic mechanisms are involved in FMR, such as annular dilatation and dysfunction, left ventricle (LV) remodeling, dysfunction and dyssynchrony, papillary muscles displacement and dyssynchrony. The best therapeutic choice for FMR is still debated. When optimal medical treatment has already been set, a further option for cardiac resynchronization therapy (CRT) and/or surgical correction should be considered. CRT is able to contrast most of the pathophysiologic determinants of FMR by minimizing LV dyssynchrony through different mechanisms: Increasing closing forces, reducing tethering forces, reshaping annular geometry and function, correcting diastolic MR. Deformation imaging in terms of two-dimensional speckle tracking has been validated for LV dyssynchrony assessment. Radial speckle tracking and three-dimensional strain analysis appear to be the best methods to quantify intraventricular delay and to predict CRT-responders. Speckle-tracking echocardiography in patients with mitral valve regurgitation has been usually proposed for the assessment of LV and left atrial function. However it has also revealed a fundamental role of intraventricular dyssynchrony in determining FMR especially in DCM, rather than in ischemic cardiomyopathy in which MR severity seems to be more related to mitral valve deformation indexes. Furthermore speckle tracking allows the assessment of papillary muscle dyssynchrony. Therefore this technique can help to identify optimal candidates to CRT that will probably demonstrate a reduction in FMR degree and thus will experience a better outcome.
Collapse
|
18
|
Abstract
Phase analysis of gated myocardial perfusion single-photon emission computed tomography is a widely available and reproducible measure of left ventricular (LV) dyssynchrony, which also provides comprehensive assessment of LV function, global and regional scar burden, and patterns of LV mechanical activation. Preliminary studies indicate potential use in predicting cardiac resynchronization therapy response and elucidation of mechanisms. Because advances in technology may expand capabilities for precise LV lead placement in the future, identification of specific patterns of dyssynchrony may have a critical role in guiding cardiac resynchronization therapy.
Collapse
|
19
|
Sohal M, Duckett SG, Zhuang X, Shi W, Ginks M, Shetty A, Sammut E, Kozerke S, Niederer S, Smith N, Ourselin S, Rinaldi CA, Rueckert D, Carr-White G, Razavi R. A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy. J Cardiovasc Magn Reson 2014; 16:58. [PMID: 25084814 PMCID: PMC4422256 DOI: 10.1186/s12968-014-0058-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many patients with electrical dyssynchrony who undergo cardiac resynchronization therapy (CRT) do not obtain substantial benefit. Assessing mechanical dyssynchrony may improve patient selection. Results from studies using echocardiographic imaging to measure dyssynchrony have ultimately proved disappointing. We sought to evaluate cardiac motion in patients with heart failure and electrical dyssynchrony using cardiovascular magnetic resonance (CMR). We developed a framework for comparing measures of myocardial mechanics and evaluated how well they predicted response to CRT. METHODS CMR was performed at 1.5 Tesla prior to CRT. Steady-state free precession (SSFP) cine images and complementary modulation of magnetization (CSPAMM) tagged cine images were acquired. Images were processed using a novel framework to extract regional ventricular volume-change, thickening and deformation fields (strain). A systolic dyssynchrony index (SDI) for all parameters within a 16-segment model of the ventricle was computed with high SDI denoting more dyssynchrony. Once identified, the optimal measure was applied to a second patient population to determine its utility as a predictor of CRT response compared to current accepted predictors (QRS duration, LBBB morphology and scar burden). RESULTS Forty-four patients were recruited in the first phase (91% male, 63.3 ± 14.1 years; 80% NYHA class III) with mean QRSd 154 ± 24 ms. Twenty-one out of 44 (48%) patients showed reverse remodelling (RR) with a decrease in end systolic volume (ESV) ≥ 15% at 6 months. Volume-change SDI was the strongest predictor of RR (PR 5.67; 95% CI 1.95-16.5; P = 0.003). SDI derived from myocardial strain was least predictive. Volume-change SDI was applied as a predictor of RR to a second population of 50 patients (70% male, mean age 68.6 ± 12.2 years, 76% NYHA class III) with mean QRSd 146 ± 21 ms. When compared to QRSd, LBBB morphology and scar burden, volume-change SDI was the only statistically significant predictor of RR in this group. CONCLUSION A systolic dyssynchrony index derived from volume-change is a highly reproducible measurement that can be derived from routinely acquired SSFP cine images and predicts RR following CRT whilst an SDI of regional strain does not.
Collapse
Affiliation(s)
- Manav Sohal
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
- The Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- Division of Imaging Sciences, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Simon G Duckett
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Xiahai Zhuang
- Centre for Medical Image Computing, University College London, London, UK.
| | - Wenzhe Shi
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.
| | - Matthew Ginks
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Anoop Shetty
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
- The Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Eva Sammut
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Sebastian Kozerke
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Nic Smith
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| | - Sebastien Ourselin
- Centre for Medical Image Computing, University College London, London, UK.
| | - Christopher Aldo Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
- The Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.
| | - Gerald Carr-White
- The Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, UK.
| |
Collapse
|
20
|
Goenka AH, Wang H, Flamm SD. Cardiac magnetic resonance imaging for the investigation of cardiovascular disorders. Part 2: emerging applications. Tex Heart Inst J 2014; 41:135-43. [PMID: 24808772 PMCID: PMC4004500 DOI: 10.14503/thij-14-4172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiac magnetic resonance imaging has emerged as a robust noninvasive technique for the investigation of cardiovascular disorders. The coming-of-age of cardiac magnetic resonance-and especially its widening span of applications-has generated both excitement and uncertainty in regard to its potential clinical use and its role vis-à-vis conventional imaging techniques. The purpose of this evidence-based review is to discuss some of these issues by highlighting the current (Part 1, previously published) and emerging (Part 2) applications of cardiac magnetic resonance. Familiarity with the versatile uses of cardiac magnetic resonance will facilitate its wider clinical acceptance for improving the management of patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Ajit H Goenka
- Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic; and Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic (Drs. Flamm and Goenka), Cleveland, Ohio 44195; and Philips Healthcare (Dr. Wang), Highland Heights, Ohio 44143
| | - Hui Wang
- Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic; and Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic (Drs. Flamm and Goenka), Cleveland, Ohio 44195; and Philips Healthcare (Dr. Wang), Highland Heights, Ohio 44143
| | - Scott D Flamm
- Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic; and Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic (Drs. Flamm and Goenka), Cleveland, Ohio 44195; and Philips Healthcare (Dr. Wang), Highland Heights, Ohio 44143
| |
Collapse
|
21
|
Petretta M, Petretta A, Pellegrino T, Nappi C, Cantoni V, Cuocolo A. Role of nuclear cardiology for guiding device therapy in patients with heart failure. World J Meta-Anal 2014; 2:1-16. [DOI: 10.13105/wjma.v2.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/20/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Heart failure is a dynamic condition with high morbidity and mortality and its prognosis should be reassessed frequently, particularly in patients for whom critical treatment decisions may depend on the results of prognostication. In patients with heart failure, nuclear cardiology techniques are useful to establish the etiology and the severity of the disease, while fewer studies have explored the potential capability of nuclear cardiology to guide cardiac resynchronization therapy (CRT) and to select patients for implantable cardioverter defibrillators (ICD). Left ventricular synchrony may be assessed by radionuclide angiography or gated single-photon emission computed tomography myocardial perfusion scintigraphy. These modalities have shown promise as predictors of CRT outcome using phase analysis. Combined assessment of myocardial viability and left ventricular dyssynchrony is feasible using positron emission tomography and could improve conventional response prediction criteria for CRT. Preliminary data also exists on integrated positron emission tomography/computed tomography approach for assessing myocardial viability, identifying the location of biventricular pacemaker leads, and obtaining left ventricular functional data, including contractile phase analysis. Finally, cardiac imaging with autonomic radiotracers may be useful in predicting CRT response and for identifying patients at risk for sudden cardiac death, therefore potentially offering a way to select patients for both CRT and ICD therapy. Prospective trials where imaging is combined with image-test driven therapy are needed to better define the role of nuclear cardiology for guiding device therapy in patients with heart failure.
Collapse
|
22
|
Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN RADIOLOGY 2014; 2014:365404. [PMID: 24967294 PMCID: PMC4045555 DOI: 10.1155/2014/365404] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
Dilated cardiomyopathy (DCM) represents the final common morphofunctional pathway of various pathological conditions in which a combination of myocyte injury and necrosis associated with tissue fibrosis results in impaired mechanical function. Recognition of the underlying aetiology of disease and accurate disease monitoring may be crucial to individually optimize therapeutic strategies and stratify patient's prognosis. In this regard, CMR has emerged as a new reference gold standard providing important information for differential diagnosis and new insight about individual risk stratification. The present review article will focus on the role of CMR in the evaluation of present condition, analysing respective strengths and limitations in the light of current literature and technological developments.
Collapse
Affiliation(s)
- Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena, 324 00161 Rome, Italy
| |
Collapse
|
23
|
Boogers MM, Chen J, Bax JJ. Role of nuclear imaging in cardiac resynchronization therapy. Expert Rev Cardiovasc Ther 2014; 7:65-72. [DOI: 10.1586/14779072.7.1.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Swoboda PP, Plein S. Established and emerging cardiovascular magnetic resonance techniques for prognostication and guiding therapy in heart failure. Expert Rev Cardiovasc Ther 2013; 12:45-55. [DOI: 10.1586/14779072.2014.870035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
El Ghannudi S, Germain P, Jeung MY, Breton E, Croisille P, Durand E, Roy C, Gangi A. Quantification of left ventricular dyssynchrony in patients with systolic dysfunction: A comparison of circumferential strain MR-tagging metrics. J Magn Reson Imaging 2013; 40:1238-46. [DOI: 10.1002/jmri.24447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/10/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Soraya El Ghannudi
- Department of Radiology; University Hospital; Strasbourg France
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Philippe Germain
- Department of Radiology; University Hospital; Strasbourg France
- Department of Cardiology; University Hospital; Strasbourg France
| | - Mi-Young Jeung
- Department of Radiology; University Hospital; Strasbourg France
| | - Elodie Breton
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| | - Pierre Croisille
- Department of Radiology; University Jean Monnet Saint-Etienne; CREATIS, UMR CNRS 5220-INSERM U1044 Lyon France
| | - Emmanuel Durand
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Catherine Roy
- Department of Radiology; University Hospital; Strasbourg France
| | - Afshin Gangi
- Department of Radiology; University Hospital; Strasbourg France
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| |
Collapse
|
26
|
|
27
|
Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 2013; 15:95. [PMID: 24134158 PMCID: PMC4016574 DOI: 10.1186/1532-429x-15-95] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/20/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography. METHODS We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain). RESULTS Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly <25%) in those with mean delays of >200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p < 0.001). CONCLUSIONS FT-CMR delivered measurements of radial dyssynchrony from CMR cine acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.
Collapse
Affiliation(s)
- Toshinari Onishi
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | | | - Daniel R Ludwig
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Tetsuari Onishi
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Josef J Marek
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - João L Cavalcante
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - Erik B Schelbert
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - David Schwartzman
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| | - John Gorcsan
- The University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Yonezawa M, Nagao M, Abe K, Matsuo Y, Baba S, Kamitani T, Isoda T, Maruoka Y, Jinnouchi M, Yamasaki Y, Abe K, Higo T, Yoshiura T, Honda H. Relationship between impaired cardiac sympathetic activity and spatial dyssynchrony in patients with non-ischemic heart failure: assessment by MIBG scintigraphy and tagged MRI. J Nucl Cardiol 2013; 20:600-8. [PMID: 23653269 DOI: 10.1007/s12350-013-9715-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Impairment of cardiac sympathetic activity has various detrimental effects on cardiac function. The purpose was to investigate the relationship between left ventricular (LV) dyssynchrony and cardiac sympathetic activity in non-ischemic heart failure (HF). METHODS Twenty-seven patients with non-ischemic HF were enrolled. Cardiac sympathetic activity was assessed by heart-to-mediastinum ratio (H/M ratio) on (123)I-Metaiodobenzylguanidine scintigraphy. LV dyssynchrony was assessed by cross-correlation analysis of time curves of myocardial circumferential strains delivered from cine-tagging MR images. Temporal dyssynchrony was defined as contraction delay between septal and lateral segments >110 milliseconds. Spatial dyssynchrony was defined as the negative value of the maximum correlation for the two strain time curves. RESULTS H/M ratio was significantly lower for patients with spatial dyssynchrony compared to patients without (1.8 ± 0.3 vs 2.1 ± 0.3, P < .05). There was no difference between patients with and without temporal dyssynchrony (2.0 ± 0.2 vs 2.0 ± 0.3). The incidence of spatial dyssynchrony was significantly higher in patients with H/M ratio <2.0 than those whose ratios were ≥2.0 (75% vs 20%, P = .001). There was no difference in the incidence of temporal dyssynchrony between the two groups (17% vs 20%). CONCLUSION Impairment of cardiac sympathetic activity was found to be associated with spatial dyssynchrony in patients with non-ischemic HF.
Collapse
Affiliation(s)
- Masato Yonezawa
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Andersson LG, Wu KC, Wieslander B, Loring Z, Frank TF, Maynard C, Gerstenblith G, Tomaselli GF, Weiss RG, Wagner GS, Ugander M, Strauss DG. Left ventricular mechanical dyssynchrony by cardiac magnetic resonance is greater in patients with strict vs nonstrict electrocardiogram criteria for left bundle-branch block. Am Heart J 2013; 165:956-63. [PMID: 23708167 DOI: 10.1016/j.ahj.2013.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/22/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Left bundle-branch block (LBBB) is a marker of increased delay between septal and left ventricular (LV) lateral wall electrical activation and is a predictor of which patients will benefit from cardiac resynchronization therapy. Recent analysis has suggested that one-third of patients meeting the conventional electrocardiogram criteria for LBBB are misdiagnosed, and new strict LBBB criteria have been proposed. We tested the hypothesis that patients with strict LBBB have greater LV mechanical dyssynchrony than do patients meeting the nonstrict LBBB criteria, whereas there is no difference between patients with nonstrict LBBB and LV conduction delay with a QRS duration of 110 to 119 ms. METHODS Sixty-four patients referred for primary prevention implantable cardioverter-defibrillators underwent 12-lead electrocardiogram and cardiac magnetic resonance myocardial tagging. The patients were classified as strict LBBB, nonstrict LBBB, or non-LBBB (nonspecific LV conduction delay with a QRS duration of 110-119 ms). The time delay between septal and lateral LV wall peak circumferential strain (septal-to-lateral wall delay) was measured by cardiac magnetic resonance. RESULTS Patients with strict LBBB (n = 31) had a greater septal-to-lateral wall delay compared with patients with nonstrict LBBB (n = 19) (210 ± 137 ms vs 122 ± 102 ms, P = .045). There was no significant difference between nonstrict LBBB and non-LBBB (n = 14) septal-to-lateral wall delay (122 ± 102 ms vs 100 ± 86 ms, P = .51). CONCLUSIONS Strict LBBB criteria identify patients with greater mechanical dyssynchrony compared with patients only meeting the nonstrict LBBB criteria, whereas there was no significant difference between patients with nonstrict LBBB and non-LBBB. The greater observed LV dyssynchrony may explain why patients with strict LBBB have a better response to cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Linus G Andersson
- Department of Clinical Physiology, Cardiac MR Group, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Noninvasive Assessment of Myocardial Dyssynchrony Prior to Cardiac Resynchronization Therapy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-013-9192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Alikhani Z, Li J, Merchan JA, Nijhof N, Mendel J, Orlov MV. Coronary sinus anatomy by computerized tomography, overlaid on live fluoroscopy can be successfully used to guide left ventricular lead implantation: a feasibility study. J Interv Card Electrophysiol 2012. [PMID: 23196855 DOI: 10.1007/s10840-012-9736-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aims to optimize coronary sinus (CS) computerized tomography (CT) imaging and evaluate its utility for preprocedural planning and intraoperative guidance by overlay of 3D reconstructed CS images on live fluoroscopy. BACKGROUND Optimal CS lead placement for cardiac resynchronization therapy (CRT) remains challenging. Preprocedural knowledge of CS anatomy can significantly affect procedural outcome. Optimal CS imaging protocols by CT have not been well defined. METHODS Seventeen consecutive CRT recipients underwent contrast-enhanced functional cardiac CT on a 64-slice scanner. The CS target branch closest to the most dyssynchronous LV segment was identified. 3D volume rendered CS images were superimposed onto live fluoroscopy via EP Navigator (Philips Healthcare, Best, The Netherlands) to guide CS cannulation and lead placement. The imaging protocol was optimized. RESULTS CT images were successfully reconstructed and overlaid on live fluoroscopy in 16/17 patients. The overlay facilitated CS cannulation and lead placement into a predefined target branch. Excellent correlation between CT and angiographic CS anatomy was noted. By using the overlaid 3D CS as a road map, average total fluoroscopy time (14.56 ± 4.22 min) was significantly shorter when compared to historical controls. Total radiation exposure was significantly higher in the CT-guided group. Images obtained using double bolus injection and gated acquisition at 40 % of the cardiac cycle contained the most anatomical detail of the CS. CONCLUSION Overlay of 3D CS anatomy defined by preprocedural cardiac CT is feasible. It allows planning of CRT implantation and live guidance of CS lead placement into a predefined target branch. Limiting the CT imaging to 40 % of the cardiac cycle phase provides optimal CS images and reduces radiation exposure. This approach may result in shorter procedural time and more optimal CS lead positioning. However, the concept remains to be confirmed by future studies.
Collapse
Affiliation(s)
- Zoubin Alikhani
- St. Elizabeth's Medical Center of Boston, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Petryka J, Miśko J, Przybylski A, Śpiewak M, Małek ŁA, Werys K, Mazurkiewicz Ł, Gepner K, Croisille P, Demkow M, Rużyłło W. Magnetic resonance imaging assessment of intraventricular dyssynchrony and delayed enhancement as predictors of response to cardiac resynchronization therapy in patients with heart failure of ischaemic and non-ischaemic etiologies. Eur J Radiol 2012; 81:2639-47. [DOI: 10.1016/j.ejrad.2011.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/03/2011] [Accepted: 10/08/2011] [Indexed: 11/16/2022]
|
33
|
La risonanza magnetica cardiovascolare nella valutazione dello scompenso cardiaco: dalla morfologia alla caratterizzazione tissutale. J Cardiovasc Echogr 2012. [DOI: 10.1016/j.jcecho.2012.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Cheung A, Zhou Y, Faber TL, Garcia EV, Zhu L, Chen J. The performance of phase analysis of gated SPECT myocardial perfusion imaging in the presence of perfusion defects: a simulation study. J Nucl Cardiol 2012; 19:500-6. [PMID: 22203443 PMCID: PMC3731539 DOI: 10.1007/s12350-011-9494-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/29/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Phase analysis has been developed and validated to measure left-ventricular dyssynchrony from gated SPECT myocardial perfusion imaging. The purpose of this study is to evaluate its performance in regions with perfusion defects. METHODS A special version of the eXtended CArdiac Torso digital phantom was developed to track B-spline points in each temporal frame. A region of 35 B-spline points in the inferior wall with normal and abnormal perfusion uptakes were simulated. Phase shifts were simulated in the same region, representing dyssynchronous contraction. Gated SPECT data were analyzed using a modified phase analysis algorithm, which tracked the same 35 B-spline points to calculate their phases. RESULTS Phases and phase shifts measured in the B-spline points with perfusion uptake in the range of 50%-10% did not significantly differ from those measured in the same B-spline points with normal perfusion uptake. CONCLUSION Phase analysis can accurately measure phases in regions with abnormal perfusion uptake as low as 10% of the perfusion uptake in the normal regions, which corresponded to a regional signal-to-noise ratio (SNR) of 12.0 or greater. In 42 consecutive patients with myocardial infarction >20% of the left ventricle, only two patients had a SNR within the perfusion defects below that threshold.
Collapse
Affiliation(s)
- Alice Cheung
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Nuclear and Radiological Engineering and Medical Physics Program, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yanli Zhou
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tracy L. Faber
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ernest V. Garcia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lei Zhu
- Nuclear and Radiological Engineering and Medical Physics Program, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Ji Chen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
35
|
Pourmorteza A, Schuleri KH, Herzka DA, Lardo AC, McVeigh ER. A new method for cardiac computed tomography regional function assessment: stretch quantifier for endocardial engraved zones (SQUEEZ). Circ Cardiovasc Imaging 2012; 5:243-50. [PMID: 22342945 DOI: 10.1161/circimaging.111.970061] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Quantitative assessment of regional myocardial function has important diagnostic implications in cardiac disease. Recent advances in CT imaging technology have allowed fine anatomic structures, such as endocardial trabeculae, to be resolved and potentially used as fiducial markers for tracking local wall deformations. We developed a method to detect and track such features on the endocardium to extract a metric that reflects local myocardial contraction. METHODS AND RESULTS First-pass CT images and contrast-enhanced cardiovascular magnetic resonance images were acquired in 8 infarcted and 3 healthy pigs. We tracked the left ventricle wall motion by segmenting the blood from myocardium and calculating trajectories of the endocardial features seen on the blood cast. The relative motions of these surface features were used to represent the local contraction of the endocardial surface with a metric we call stretch quantifier of endocardial engraved zones (SQUEEZ). The average SQUEEZ value and the rate of change in SQUEEZ were calculated for both infarcted and healthy myocardial regions. SQUEEZ showed a significant difference between infarct and remote regions (P<0.0001). No significant difference was observed between normal myocardium (noninfarcted hearts) and remote regions (P=0.8). CONCLUSIONS We present a new quantitative method for measuring regional cardiac function from high-resolution volumetric CT images, which can be acquired during angiography and myocardial perfusion scans. Quantified measures of regional cardiac mechanics in normal and abnormally contracting regions in infarcted hearts were shown to correspond well with noninfarcted and infarcted regions as detected by delayed enhancement cardiovascular magnetic resonance images.
Collapse
Affiliation(s)
- Amir Pourmorteza
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
36
|
Abd-Elmoniem KZ, Tomas MS, Sasano T, Soleimanifard S, Vonken EJP, Youssef A, Agarwal H, Dimaano VL, Calkins H, Stuber M, Prince JL, Abraham TP, Abraham MR. Assessment of distribution and evolution of mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:1. [PMID: 22226320 PMCID: PMC3268109 DOI: 10.1186/1532-429x-14-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Collapse
Affiliation(s)
- Khaled Z Abd-Elmoniem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Miguel Santaularia Tomas
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Division of Cardiology, Hospital Español de Mexico, Distrito Federal, Mexico
| | - Tetsuo Sasano
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Sahar Soleimanifard
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Evert-Jan P Vonken
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Amr Youssef
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Harsh Agarwal
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Veronica L Dimaano
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Hugh Calkins
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Stuber
- Department of Radiology, Division of Magnetic Resonance Research, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Theodore P Abraham
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - M Roselle Abraham
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Petrovic M, Petrovic MT, Milasinovic G, Vujisic-Tesic B, Trifunovic D, Nedeljkovic I, Calovic Z, Ivanovic B, Tesic M, Boricic M, Petrovic O, Petrovic IM, Banovic M, Draganic G, Ostojic M. Prediction of a Good Response to Cardiac Resynchronization Therapy in Patients with Severe Dilated Cardyomyopathy: Could Conventional Echocardiography Be the Answer after All? Echocardiography 2011; 29:267-75. [DOI: 10.1111/j.1540-8175.2011.01576.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments. Heart Fail Rev 2011; 16:235-50. [PMID: 21104122 PMCID: PMC3074077 DOI: 10.1007/s10741-010-9200-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed.
Collapse
|
39
|
Blendea D, Singh JP. Lead positioning strategies to enhance response to cardiac resynchronization therapy. Heart Fail Rev 2011; 16:291-303. [PMID: 21184174 DOI: 10.1007/s10741-010-9212-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Left ventricular lead position is one of the main determinants of CRT response. There are several approaches in LV lead positioning that include favoring an optimal anatomical position or targeting either the segment with maximal mechanical dyssynchrony or a region with maximal electrical delay. The conventional LV lead implantation faces several technical difficulties that may prevent the obtaining of a stable position and good performance of the LV lead without phrenic nerve stimulation. In addition, implant of the LV pacing lead in areas with myocardial scar may result in less than optimal cardiac resynchronization. Several strategies have been proposed to overcome all these obstacles including multimodality cardiac imaging to help in preprocedural or intraprocedural identification of the latest activated areas of the LV and the potential anatomical constraints. In selected patients, the surgical implant may be a solution to overcome these constraints. In the future, LV endocardial or epicardial multisite pacing may deliver an enhanced response to CRT.
Collapse
Affiliation(s)
- Dan Blendea
- Cardiac Arrhythmia Service, Massachusetts General Hospital Heart Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
40
|
AlJaroudi W, Chen J, Jaber WA, Lloyd SG, Cerqueira MD, Marwick T. Nonechocardiographic imaging in evaluation for cardiac resynchronization therapy. Circ Cardiovasc Imaging 2011; 4:334-43. [PMID: 21586744 DOI: 10.1161/circimaging.111.963504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wael AlJaroudi
- Department of Cardiovascular Medicine, Section of Imaging, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 2011; 18:685-94. [PMID: 21567281 PMCID: PMC3285448 DOI: 10.1007/s12350-011-9392-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is an evolving technique for measuring LV mechanical dyssynchrony. Since its inception in 2005, it has undergone considerable technical development and clinical evaluation. This article reviews the background, the technical and clinical characteristics, and evolving clinical applications of phase analysis of gated SPECT MPI in patients requiring cardiac resynchronization therapy or implantable cardioverter defibrillator therapy and in assessing LV diastolic dyssynchrony.
Collapse
Affiliation(s)
- Ji Chen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
43
|
Baseline asynchrony, assessed circumferentially using temporal uniformity of strain, besides coincidence between site of latest mechanical activation and presumed left ventricular lead position, predicts favourable prognosis after resynchronization therapy. Int J Cardiovasc Imaging 2011; 28:1011-21. [DOI: 10.1007/s10554-011-9908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
44
|
BIFFI MAURO, BERTINI MATTEO, ZIACCHI MATTEO, GARDINI BEATRICE, MAZZOTTI ANDREA, MASSARO GIULIA, DIEMBERGER IGOR, MARTIGNANI CRISTIAN, VALZANIA CINZIA, BORIANI GIUSEPPE. Management of Phrenic Stimulation in CRT Patients over the Long Term: Still an Unmet Need ? PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2011; 34:1201-8. [DOI: 10.1111/j.1540-8159.2011.03147.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Muzzarelli S, Ordovas K, Higgins CB. Cardiovascular MRI for the assessment of heart failure: focus on clinical management and prognosis. J Magn Reson Imaging 2011; 33:275-86. [PMID: 21274968 DOI: 10.1002/jmri.22433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular MR (CMR) has an emerging role in the noninvasive diagnostic assessment of heart failure (HF). Different imaging sequences allow for a detailed assessment of cardiac morphology, function, myocardial perfusion, tissue characterization, and blood flow measurement. This article reviews the key applications of CMR in HF, with special focus on how CMR may influence the diagnostic and therapeutic approach of HF patients.
Collapse
Affiliation(s)
- Stefano Muzzarelli
- Department of Radiology, University of California, San Francisco, California 94143-0628, USA.
| | | | | |
Collapse
|
46
|
Kautzner J, Peichl P, Sedláček K. Imaging to improve the results of cardiac resynchronization therapy. Interv Cardiol 2011. [DOI: 10.2217/ica.11.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Hor KN, Wansapura JP, Al-Khalidi HR, Gottliebson WM, Taylor MD, Czosek RJ, Nagueh SF, Akula N, Chung ES, Benson WD, Mazur W. Presence of mechanical dyssynchrony in Duchenne muscular dystrophy. J Cardiovasc Magn Reson 2011; 13:12. [PMID: 21288342 PMCID: PMC3041675 DOI: 10.1186/1532-429x-13-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac dysfunction in boys with Duchenne muscular dystrophy (DMD) is a leading cause of death. Cardiac resynchronization therapy (CRT) has been shown to dramatically decrease mortality in eligible adult population with congestive heart failure. We hypothesized that mechanical dyssynchrony is present in DMD patients and that cardiovascular magnetic resonance (CMR) may predict CRT efficacy. METHODS DMD patients (n = 236) were stratified into 4 groups based on age, diagnosis of DMD, left ventricular (LV) ejection fraction (EF), and presence of myocardial fibrosis defined as positive late gadolinum enhancement (LGE) compared to normal controls (n = 77). Dyssynchrony indices were calculated based on timing of CMR derived circumferential strain (ecc). The calculated indices included cross-correlation delay (XCD), uniformity of strain (US), regional vector of variance (RVV), time to maximum strain (TTMS) and standard deviation (SD) of TTMS. Abnormal XCD value was defined as > normal + 2SD. US, RVV, TTMS and SD were calculated for patients with abnormal XCD. RESULTS There was overall low prevalence of circumferential dyssynchrony in the entire DMD population; it increased to 17.1% for patients with abnormal EF and to 31.2% in the most advanced stage (abnormal EF with fibrosis). All but one DMD patient with mechanical dyssynchrony exhibited normal QRS duration suggesting absence of electrical dyssynchrony. The calculated US and RVV values (0.91 ± 0.09, 1.34 ± 0.48) indicate disperse rather than clustered dyssynchrony. CONCLUSION Mechanical dyssynchrony is frequent in boys with end stage DMD-associated cardiac dysfunction. It is associated with normal QRS complex as well as extensive lateral fibrosis. Based on these findings, it is unlikely that this patient population will benefit from CRT.
Collapse
Affiliation(s)
- Kan N Hor
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Janaka P Wansapura
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - William M Gottliebson
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael D Taylor
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard J Czosek
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Nandakishore Akula
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Eugene S Chung
- The Heart and Vascular Center, The Christ Hospital, Cincinnati, Ohio, USA
| | - Woodrow D Benson
- The Heart Institute and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wojciech Mazur
- The Heart and Vascular Center, The Christ Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Current and future role of cardiovascular magnetic resonance in cardiac resynchronization therapy. Heart Fail Rev 2011; 16:251-62. [DOI: 10.1007/s10741-010-9213-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Leyva F. Cardiac resynchronization therapy guided by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010; 12:64. [PMID: 21062491 PMCID: PMC2994940 DOI: 10.1186/1532-429x-12-64] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/09/2010] [Indexed: 12/12/2022] Open
Abstract
Cardiac resynchronization therapy (CRT) is an established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (> 120 ms) complex. As with any other treatment, the response to CRT is variable. The degree of pre-implant mechanical dyssynchrony, scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. In addition to its recognized role in the assessment of LV structure and function as well as myocardial scar, cardiovascular magnetic resonance (CMR) can be used to quantify global and regional LV dyssynchrony. This review focuses on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and LV lead deployment.
Collapse
Affiliation(s)
- Francisco Leyva
- Centre for Cardiovascular Sciences, Queen Elizabeth Hospital, University of Birmingham, UK.
| |
Collapse
|
50
|
Kramer U, Hennemuth A, Fenchel M. [Myocardial MR tagging: analysis of regional and global myocardial function]. Radiologe 2010; 50:532-40. [PMID: 20393692 DOI: 10.1007/s00117-010-1989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myocardial MR tagging is a powerful method which allows for assessment of myocardial function and may become an important tool for clinical evaluation of cardiac dysfunction, particularly in ischemic heart disease. In addition to visual assessment it allows direct quantification of myocardial deformation and strain to measure contractility. The use of myocardial tagging has provided new insights into the (patho)physiology of regional wall motion, and several parameters have been described as being useful to identify an ischemic response of the myocardium. One challenge encountered with tagging at 1.5 T is the fading of tags at end-diastole, greatly limiting the evaluation of myocardial function during diastole. Due to longer T(1) relaxation times of the myocardium, tagging at 3 T has shown to have a higher CNR(Tag) and better tag persistence when compared to current clinical gradient-echo tagging protocols at 1.5 T. As a consequence, tagging at higher field strengths may be well suited for the characterization of the diastolic portion of the cardiac cycle in future applications.
Collapse
Affiliation(s)
- U Kramer
- Abt. für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen.
| | | | | |
Collapse
|