1
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Abstract
Magnetic targeting (MT) has been an emerging technology which is used to improve the delivery and retention of transplanted therapeutic cells in target site over the past 20 years. Meanwhile, stem cells have also been a research hotspot in cell therapy in recent years. Several researchers have combined the MT technology with Stem cell therapy in order to improve the efficacy. However, Different types of Magnetic Nano particles (MNPs) have presented different effects, and how to choose a proper MNPs became a question. This article aims to introduce the preparation method and application field of different types of magnetic Nanoparticles, discuss the pros and cons of different types of MNPs in stem cell therapy and make a prospect of MT technology in Stem cell therapy.
Collapse
|
3
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
4
|
Zheng W, Wang J, Xie L, Xie H, Chen C, Zhang C, Lin D, Cai L. An injectable thermosensitive hydrogel for sustained release of apelin-13 to enhance flap survival in rat random skin flap. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:106. [PMID: 31502009 DOI: 10.1007/s10856-019-6306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
With the advantage of handy process, random pattern skin flaps are generally applied in limb reconstruction and wound repair. Apelin-13 is a discovered endogenous peptide, that has been shown to have potent multiple biological functions. Recently, thermosensitive gel-forming systems have gained increasing attention as wound dressings due to their advantages. In the present study, an apelin-13-loaded chitosan (CH)/β-sodium glycerophosphate (β-GP) hydrogel was developed for promoting random skin flap survival. Random skin flaps were created in 60 rats after which the animals were categorized to a control hydrogel group and an apelin-13 hydrogel group. The water content of the flap as well as the survival area were then measured 7 days post-surgery. Hematoxylin and eosin staining was used to evaluate the flap angiogenesis. Cell differentiation 34 (CD34) and vascular endothelial growth factor (VEGF) levels were detected by immunohistochemistry and Western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were assessed by enzyme linked immunosorbent assays (ELISAs). Oxidative stress was estimated via the activity of tissue malondialdehyde (MDA) and superoxide dismutase (SOD). Our results showed that CH/β-GP/apelin-13 hydrogel could not only reduce the tissue edema, but also improve the survival area of flap. CH/β-GP/apelin-13 hydrogel also upregulated levels of VEGF protein and increased mean vessel densities. Furthermore, CH/β-GP/apelin-13 hydrogel was shown to significantly inhibit the expression of TNF-α and IL-6, along with increasing the activity of SOD and suppressing the MDA content. Taken together, these results indicate that this CH/β-GP/apelin-13 hydrogel may be a potential therapeutic way for random pattern skin flap.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Huanguang Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Dingsheng Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
5
|
Nejadnik H, Tseng J, Daldrup-Link H. Magnetic resonance imaging of stem cell-macrophage interactions with ferumoxytol and ferumoxytol-derived nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1552. [PMID: 30734542 PMCID: PMC6579657 DOI: 10.1002/wnan.1552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
"Off the shelf" allogeneic stem cell transplants and stem cell nano-composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post-transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used "off label" as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol-enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol-labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol-labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase-3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune-modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Jessica Tseng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Heike Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| |
Collapse
|
6
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Giuliani A, Mencarelli M, Frati C, Savi M, Lagrasta C, Pompilio G, Rossini A, Quaini F. Phase-contrast microtomography: are the tracers necessary for stem cell tracking in infarcted hearts? Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Lemaster JE, Chen F, Kim T, Hariri A, Jokerst JV. Development of a Trimodal Contrast Agent for Acoustic and Magnetic Particle Imaging of Stem Cells. ACS APPLIED NANO MATERIALS 2018; 1:1321-1331. [PMID: 33860154 PMCID: PMC8046030 DOI: 10.1021/acsanm.8b00063] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stem cell therapy has the potential to improve tissue remodeling and repair. For cardiac stem cell therapy, methods to improve the injection and tracking of stem cells may help to increase patient outcomes. Here we describe a multimodal approach that combines ultrasound imaging, photoacoustic imaging, and magnetic particle imaging (MPI). Ultrasound imaging offers real-time guidance, photoacoustic imaging offers enhanced contrast, and MPI offers high-contrast, deep-tissue imaging. This work was facilitated by a poly(lactic-co-glycolic acid) (PLGA)-based iron oxide nanobubble labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) as a trimodal contrast agent. The PLGA coating facilitated the ultrasound signal, the DiR increased the photoacoustic signal, and the iron oxide facilitated the MPI signal. We confirmed that cell metabolism, proliferation, differentiation, and migration were not adversely affected by cell treatment with nanobubbles. The nanobubble-labeled cells were injected intramyocardially into live mice for real-time imaging. Ultrasound imaging showed a 3.8-fold increase in the imaging intensity of labeled cells postinjection compared to the baseline; photoacoustic imaging showed a 10.2-fold increase in the cardiac tissue signal postinjection. The MPI intensity of the nanobubble-treated human mesenchymal stem cells injected into the hearts of mice was approximately 20-fold greater than the negative control.
Collapse
Affiliation(s)
- Jeanne E. Lemaster
- Department of NanoEngineering, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fang Chen
- Department of NanoEngineering, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Taeho Kim
- Department of NanoEngineering, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ali Hariri
- Department of NanoEngineering, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology,University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Issue “noninvasive molecular imaging and theranostic probes”: New concepts in myocardial imaging. Methods 2017; 130:72-78. [DOI: 10.1016/j.ymeth.2017.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023] Open
|
10
|
Korpi RM, Alestalo K, Ruuska T, Lammentausta E, Borra R, Yannopoulos F, Lehtonen S, Korpi JT, Lappi-Blanco E, Anttila V, Lehenkari P, Juvonen T, Blanco Sequieros R. Two novel direct SPIO labels and in vivo MRI detection of labeled cells after acute myocardial infarct. Acta Radiol Open 2017; 6:2058460117718407. [PMID: 28811932 PMCID: PMC5544151 DOI: 10.1177/2058460117718407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/08/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide. Cellular decay due hypoxia requires rapid and validated methods for possible therapeutic cell transplantation. PURPOSE To develop direct and rapid superparamagnetic iron oxide (SPIO) cell label for a large-animal model and to assess in vivo cell targeting by magnetic resonance imaging (MRI) in an experimental AMI model. MATERIAL AND METHODS Bone marrow mononuclear cells (BMMNCs) were labeled with SPIO particles using two novel direct labeling methods (rotating incubation method and electroporation). Labeling, iron incorporation in cells and label distribution, cellular viability, and proliferation were validated in vitro. An AMI porcine model was used to evaluate the direct labeling method (rotating incubation method) by examining targeting of labeled BMMNCs using MRI and histology. RESULTS Labeling (1 h) did not alter either cellular differentiation potential or viability of cells in vitro. Cellular relaxation values at 9.4 T correlated with label concentration and MRI at 1.5 T showing 89 ± 4% signal reduction compared with non-labeled cells in vitro. In vivo, a high spatial correlation between MRI and histology was observed. The extent of macroscopic pathological myocardial changes (hemorrhage) correlated with altered function detected on MRI. CONCLUSION We demonstrated two novel direct SPIO labeling methods and demonstrated the feasibility of clinical MRI for monitoring targeting of the labeled cells in animal models of AMI.
Collapse
Affiliation(s)
- Riikka M Korpi
- Department of Diagnostic Radiology, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Radiology, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Alestalo
- Department of Surgery and Clinical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Timo Ruuska
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Eveliina Lammentausta
- Department of Diagnostic Radiology, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ronald Borra
- Medical Imaging Center of Southwest Finland, Turku University Hospital, Turku, Findland
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Fredrik Yannopoulos
- Department of Surgery and Clinical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Siri Lehtonen
- MRC Oulu and Department of Obstetrics and Gynecology, Oulu University Hospital and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Jarkko T Korpi
- Department of Otorhinolaryngology, Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Vesa Anttila
- Department of Surgery and Clinical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri Lehenkari
- Department of Surgery and Clinical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Department of Surgery and Clinical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Cardiac Surgery, HUCH Heart and Lung Center, Helsinki, Finland
| | - Roberto Blanco Sequieros
- Department of Diagnostic Radiology, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
11
|
Lázár E, Bordi L, Benedek I, Chițu M, Suciu Z, Nyulas T, Hodas R, Benedek I, Benedek I. Computed Tomographic Assessment of Coronary Arteries in Patients Undergoing Stem Cell Therapy Following an Acute Myocardial Infarction. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Despite of numerous treatment strategies developed in the last years, ischemic heart disease remains the leading cause of death around the world. Acute myocardial infarction (MI) causes irreversible destruction to the myocardial tissue, which is replaced by fibroblast cells, leading to the formation of a dense, collagenous scar, a non-contractile tissue, and often to heart failure. Stem cell therapy seems to represent the next therapeutic method for the treatment of heart failure caused by myocardial infarction. Several international trials proved the beneficial outcome of the intracoronary infusion of bone marrow-derived stem cells, improving left ventricular systolic function and clinical symptomatology. Many noninvasive imaging procedures are available to evaluate the beneficial properties of stem cell therapy. Most studies have demonstrated the role of multislice computed tomography (MSCT) in evaluating left ventricular parameters such as end-diastolic and end-systolic volumes and ejection fraction, or to quantify myocardial scar tissue. In this review we will discuss the usefulness of MSCT for the assessment of coronary arteries, new tissue regeneration, and evaluation of tissue changes and their functional consequences in subjects undergoing stem cell treatment following MI.
Collapse
Affiliation(s)
- Erzsébet Lázár
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| | - Lehel Bordi
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - István Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| | - Monica Chițu
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Zsuzsanna Suciu
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Tiberiu Nyulas
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Roxana Hodas
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - Imre Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Center of Advanced Research in Multimodality Cardiac Imaging , Cardio Med Medical Center , Tîrgu Mureș , Romania
| | - István Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
- Clinic of Hematology and Bone Marrow Transplantation Unit , Tîrgu Mureș , Romania
| |
Collapse
|
12
|
Fisher SA, Doree C, Mathur A, Taggart DP, Martin‐Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2016; 12:CD007888. [PMID: 28012165 PMCID: PMC6463978 DOI: 10.1002/14651858.cd007888.pub3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND A promising approach to the treatment of chronic ischaemic heart disease and congestive heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials developed worldwide, which have generated conflicting results. OBJECTIVES The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem/progenitor cells as a treatment for chronic ischaemic heart disease and congestive heart failure. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, Embase, CINAHL, LILACS, and four ongoing trial databases for relevant trials up to 14 December 2015. SELECTION CRITERIA Eligible studies were randomised controlled trials comparing autologous adult stem/progenitor cells with no cells in people with chronic ischaemic heart disease and congestive heart failure. We included co-interventions, such as primary angioplasty, surgery, or administration of stem cell mobilising agents, when administered to treatment and control arms equally. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I2 statistic and explored substantial heterogeneity (I2 greater than 50%) through subgroup analyses. We assessed the quality of the evidence using the GRADE approach. We created a 'Summary of findings' table using GRADEprofiler (GRADEpro), excluding studies with a high or unclear risk of selection bias. We focused our summary of findings on long-term follow-up of mortality, morbidity outcomes, and left ventricular ejection fraction measured by magnetic resonance imaging. MAIN RESULTS We included 38 randomised controlled trials involving 1907 participants (1114 cell therapy, 793 controls) in this review update. Twenty-three trials were at high or unclear risk of selection bias. Other sources of potential bias included lack of blinding of participants (12 trials) and full or partial commercial sponsorship (13 trials).Cell therapy reduced the incidence of long-term mortality (≥ 12 months) (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.21 to 0.87; participants = 491; studies = 9; I2 = 0%; low-quality evidence). Periprocedural adverse events associated with the mapping or cell/placebo injection procedure were infrequent. Cell therapy was also associated with a long-term reduction in the incidence of non-fatal myocardial infarction (RR 0.38, 95% CI 0.15 to 0.97; participants = 345; studies = 5; I2 = 0%; low-quality evidence) and incidence of arrhythmias (RR 0.42, 95% CI 0.18 to 0.99; participants = 82; studies = 1; low-quality evidence). However, we found no evidence that cell therapy affects the risk of rehospitalisation for heart failure (RR 0.63, 95% CI 0.36 to 1.09; participants = 375; studies = 6; I2 = 0%; low-quality evidence) or composite incidence of mortality, non-fatal myocardial infarction, and/or rehospitalisation for heart failure (RR 0.64, 95% CI 0.38 to 1.08; participants = 141; studies = 3; I2 = 0%; low-quality evidence), or long-term left ventricular ejection fraction when measured by magnetic resonance imaging (mean difference -1.60, 95% CI -8.70 to 5.50; participants = 25; studies = 1; low-quality evidence). AUTHORS' CONCLUSIONS This systematic review and meta-analysis found low-quality evidence that treatment with bone marrow-derived stem/progenitor cells reduces mortality and improves left ventricular ejection fraction over short- and long-term follow-up and may reduce the incidence of non-fatal myocardial infarction and improve New York Heart Association (NYHA) Functional Classification in people with chronic ischaemic heart disease and congestive heart failure. These findings should be interpreted with caution, as event rates were generally low, leading to a lack of precision.
Collapse
Affiliation(s)
- Sheila A Fisher
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Anthony Mathur
- William Harvey Research InstituteDepartment of Clinical PharmacologyCharterhouse SquareLondonUKEC1M 6BQ
| | | | - Enca Martin‐Rendon
- Radcliffe Department of Medicine, University of OxfordSystematic Review InitiativeOxfordUK
| | | |
Collapse
|
13
|
Dynamic Tracking of Injected Mesenchymal Stem Cells after Myocardial Infarction in Rats: A Serial 7T MRI Study. Stem Cells Int 2016; 2016:4656539. [PMID: 27656215 PMCID: PMC5021478 DOI: 10.1155/2016/4656539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022] Open
Abstract
Purpose. To track the fate of micron-sized particles of iron oxide (MPIO) labeled mesenchymal stem cells (MSCs) in vivo in a rat myocardial infarction model using 7T magnetic resonance imaging (MRI) scanner. Materials and Methods. Male MSCs (2 × 106/50 μL) dual-labeled with MPIO and CM-DiI were injected into the infarct periphery 7 days after myocardial infarction (MI). The control group received cell-free media injection. The temporal stem cell location, signal intensity, and cardiac function were dynamically assessed using a 7T MRI at 24 h before transplantation (baseline), 3 days, 2 weeks, and 4 weeks after transplantation, respectively. Results. MR hypointensities caused by MPIOs were observed on T2⁎-weighted images at all time points after MSCs injection. Cine-MRI showed that MSCs moderated progressive left ventricular remodeling. Double staining for iron and CD68 revealed that most of the iron-positive cells were CD68-positive macrophages. Real-time PCR for rat SRY gene showed the number of survival MSCs considerably decreased after transplantation. MSC-treated hearts had significantly increased capillary density in peri-infarct region and lower cardiomyocytes apoptosis and fibrosis formation. Conclusions. Iron particles are not a reliable marker for in vivo tracking the long-term fate of MSCs engraftment. Despite of poor cell retention, MSCs moderate left ventricular remodeling after MI.
Collapse
|
14
|
Chung WJ, Cho A, Byun K, Moon J, Ge X, Seo HS, Moon E, Dash R, Yang PC. Apelin-13 infusion salvages the peri-infarct region to preserve cardiac function after severe myocardial injury. Int J Cardiol 2016; 222:361-367. [PMID: 27500765 DOI: 10.1016/j.ijcard.2016.07.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Apelin-13 (A13) regulates cardiac homeostasis. However, the effects and mechanism of A13 infusion after an acute myocardial injury (AMI) have not been elucidated. This study assesses the restorative effects and mechanism of A13 on the peri-infarct region in murine AMI model. METHODS 51 FVB/N mice (12weeks, 30g) underwent AMI. A week following injury, continuous micro-pump infusion of A13 (0.5μg/g/day) and saline was initiated for 4-week duration. Dual contrast MRI was conducted on weeks 1, 2, 3, and 5, consisting of delayed-enhanced and manganese-enhanced MRI. Four mice in each group were followed for an extended period of 4weeks without further infusion and underwent MRI scans on weeks 7 and 9. RESULTS A13 infusion demonstrated preserved LVEF compared to saline from weeks 1 to 4 (21.9±3.2% to 23.1±1.7%* vs. 23.5±1.7% to 16.9±2.8%, *p=0.02), which persisted up to 9weeks post-MI (+1.4%* vs. -9.4%, *p=0.03). Mechanistically, dual contrast MRI demonstrated significant decrease in the peri-infarct and scar % volume in A13 group from weeks 1 to 4 (15.1 to 7.4% and 34.3 to 25.1%, p=0.02, respectively). This was corroborated by significant increase in 5-ethynyl-2'-deoxyuridine (EdU(+)) cells by A13 vs. saline groups in the peri-infarct region (16.5±3.1% vs. 8.1±1.6%; p=0.04), suggesting active cell mitosis. Finally, significantly enhanced mobilization of CD34(+) cells in the peripheral blood and up-regulation of APJ, fibrotic, and apoptotic genes in the peri-infarct region were found. CONCLUSIONS A13 preserves cardiac performance by salvaging the peri-infarct region and may contribute to permanent restoration of the severely injured myocardium.
Collapse
Affiliation(s)
- Wook-Jin Chung
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA; Department of Cardiovascular Medicine, Gachon University, Incheon, Republic of Korea; Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea
| | - Ahryon Cho
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kyunghee Byun
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University, Incheon, Republic of Korea; Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jeongsik Moon
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Republic of Korea; Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Xiaohu Ge
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Hye-Sun Seo
- Division of Cardiology, Soon Chun Hyang University College of Medicine, Bucheon, Republic of Korea
| | - Ejung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Rajesh Dash
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Phillip C Yang
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Cai M, Shen R, Song L, Lu M, Wang J, Zhao S, Tang Y, Meng X, Li Z, He ZX. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects. Sci Rep 2016; 6:28250. [PMID: 27321050 PMCID: PMC4913323 DOI: 10.1038/srep28250] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022] Open
Abstract
Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography (PET-CT) and magnetic resonance imaging (MRI) were performed. To study the changes of glucose transporters and glucose metabolism-related enzymes and the signal transduction pathway, RT-PCR, Western-blot, and immunohistochemistry were carried out. Myocardium metabolic evaluation by PET-CT showed that mean signal intensity (MSI) increased in these segments at week 4 compared with that at week 1 after BM-MSCs transplantation. Moreover, MRI demonstrated significant function enhancement in BM-MSCs group. The gene expressions of glucose transporters (GLUT1, GLUT4), glucose metabolism-related enzymes phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and 70-kDa ribosomal protein S6 kinase (p70s6k) in BM-MSCs injected areas were up-regulated at week 4 after BM-MSCs transplantation and this was confirmed by Western-blot and immunohistochemistry. In conclusions, BM-MSCs transplantation could improve cardiac function in swine MI model by activation of mTOR signal transduction pathway.
Collapse
Affiliation(s)
- Min Cai
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China.,Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Shen
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Song
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Minjie Lu
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguang Wang
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Shihua Zhao
- Department of Nuclear Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yue Tang
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Xianmin Meng
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| | - Zongjin Li
- Department of Pathophysiology, Nankai University School of Medicine, Tianjin, China
| | - Zuo-Xiang He
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center of Cardiovascular Disease, Peking Union Medical College &Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells Int 2015; 2016:1384658. [PMID: 26839552 PMCID: PMC4709699 DOI: 10.1155/2016/1384658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Stem cell therapy has attracted increasing attention as a promising treatment strategy for cardiac repair in ischemic heart disease. Nanoparticles (NPs), with their superior physical and chemical properties, have been widely utilized to assist stem cell therapy. With the help of NPs, stem cells can be genetically engineered for enhanced paracrine profile. To further understand the fate and behaviors of stem cells in ischemic myocardium, imaging NPs can label stem cells and be tracked in vivo under multiple modalities. Besides that, NPs can also be used to enhance stem cell retention in myocardium. These facts have raised efforts on the development of more intelligent and multifunctional NPs for cellular application. Herein, an overview of the applications of NPs-assisted stem cell therapy is given. Key issues and future prospects are also critically addressed.
Collapse
|
17
|
Chan AT, Karakas MF, Vakrou S, Afzal J, Rittenbach A, Lin X, Wahl RL, Pomper MG, Steenbergen CJ, Tsui BMW, Elisseeff JH, Abraham MR. Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. Biomaterials 2015; 73:1-11. [PMID: 26378976 DOI: 10.1016/j.biomaterials.2015.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. OBJECTIVE We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. METHODS The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of (18)FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. RESULTS HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. CONCLUSION HA:Ser hydrogels serve as 'synthetic stem cell niches' that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.
Collapse
Affiliation(s)
- Angel T Chan
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mehmet F Karakas
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Styliani Vakrou
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Junaid Afzal
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Rittenbach
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoping Lin
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Wahl
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Benjamin M W Tsui
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - M Roselle Abraham
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Nam SY, Chung E, Suggs LJ, Emelianov SY. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng Part C Methods 2015; 21:557-66. [PMID: 25384558 DOI: 10.1089/ten.tec.2014.0306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Current biomedical imaging tools have limitations in accurate assessment of the severity of open and deep burn wounds involving excess bleeding and severe tissue damage. Furthermore, sophisticated imaging techniques are needed for advanced therapeutic approaches such as noninvasive monitoring of stem cells seeded and applied in a biomedical 3D scaffold to enhance wound repair. This work introduces a novel application of combined ultrasound (US) and photoacoustic (PA) imaging to assess both burn injury and skin tissue regeneration. Tissue structural damage and bleeding throughout the epidermis and dermis till the subcutaneous skin layer were imaged noninvasively by US/PA imaging. Gold nanoparticle-labeled adipose-derived stem cells (ASCs) within a PEGylated fibrin 3D gel were implanted in a rat model of cutaneous burn injury. ASCs were successfully tracked till 2 weeks and were distinguished from host tissue components (e.g., epidermis, fat, and blood vessels) through spectroscopic PA imaging. The structure and function of blood vessels (vessel density and perfusion) in the wound bed undergoing skin tissue regeneration were monitored both qualitatively and semi-quantitatively by the developed imaging approach. Imaging-based analysis demonstrated ASC localization in the top layer of skin and a higher density of regenerating blood vessels in the treated groups. This was corroborated with histological analysis showing localization of fluorescently labeled ASCs and smooth muscle alpha actin-positive blood vessels. Overall, the US/PA imaging-based strategy coupled with gold nanoparticles has a great potential for stem cell therapies and tissue engineering due to its noninvasiveness, safety, selectivity, and ability to provide long-term monitoring.
Collapse
Affiliation(s)
- Seung Yun Nam
- 1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Eunna Chung
- 2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J Suggs
- 2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y Emelianov
- 1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas.,2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
19
|
Moudgil R, Dick AJ. Regenerative Cell Imaging in Cardiac Repair. Can J Cardiol 2014; 30:1323-34. [DOI: 10.1016/j.cjca.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023] Open
|
20
|
Mesenchymal stem cells from fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats. PLoS One 2014; 9:e100982. [PMID: 24971627 PMCID: PMC4074116 DOI: 10.1371/journal.pone.0100982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells invitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded exvivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial invivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting.
Collapse
|
21
|
Katsikis A, Koutelou M. Cardiac Stem Cell Imaging by SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2014:CD007888. [PMID: 24777540 DOI: 10.1002/14651858.cd007888.pub2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND A promising approach to the treatment of chronic ischaemic heart disease (IHD) and heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials (RCTs) developed worldwide which have generated conflicting results. OBJECTIVES The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem cells (BMSC) as a treatment for chronic ischaemic heart disease (IHD) and heart failure. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2013, Issue 3), MEDLINE (from 1950), EMBASE (from 1974), CINAHL (from 1982) and the Transfusion Evidence Library (from 1980), together with ongoing trial databases, for relevant trials up to 31st March 2013. SELECTION CRITERIA Eligible studies included RCTs comparing autologous adult stem/progenitor cells with no autologous stem/progenitor cells in participants with chronic IHD and heart failure. Co-interventions such as primary angioplasty, surgery or administration of stem cell mobilising agents, were included where administered to treatment and control arms equally. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality and extracted data. We undertook a quantitative evaluation of data using fixed-effect meta-analyses. We evaluated heterogeneity using the I² statistic; we explored considerable heterogeneity (I² > 75%) using a random-effects model and subgroup analyses. MAIN RESULTS We include 23 RCTs involving 1255 participants in this review. Risk of bias was generally low, with the majority of studies reporting appropriate methods of randomisation and blinding, Autologous bone marrow stem cell treatment reduced the incidence of mortality (risk ratio (RR) 0.28, 95% confidence interval (CI) 0.14 to 0.53, P = 0.0001, 8 studies, 494 participants, low quality evidence) and rehospitalisation due to heart failure (RR 0.26, 95% CI 0.07 to 0.94, P = 0.04, 2 studies, 198 participants, low quality evidence) in the long term (≥12 months). The treatment had no clear effect on mortality (RR 0.68, 95% CI 0.32 to 1.41, P = 0.30, 21 studies, 1138 participants, low quality evidence) or rehospitalisation due to heart failure (RR 0.36, 95% CI 0.12 to 1.06, P = 0.06, 4 studies, 236 participants, low quality evidence) in the short term (< 12 months), which is compatible with benefit, no difference or harm. The treatment was also associated with a reduction in left ventricular end systolic volume (LVESV) (mean difference (MD) -14.64 ml, 95% CI -20.88 ml to -8.39 ml, P < 0.00001, 3 studies, 153 participants, moderate quality evidence) and stroke volume index (MD 6.52, 95% CI 1.51 to 11.54, P = 0.01, 2 studies, 62 participants, moderate quality evidence), and an improvement in left ventricular ejection fraction (LVEF) (MD 2.62%, 95% CI 0.50% to 4.73%, P = 0.02, 6 studies, 254 participants, moderate quality evidence), all at long-term follow-up. Overall, we observed a reduction in functional class (New York Heart Association (NYHA) class) in favour of BMSC treatment during short-term follow-up (MD -0.63, 95% CI -1.08 to -0.19, P = 0.005, 11 studies, 486 participants, moderate quality evidence) and long-term follow-up (MD -0.91, 95% CI -1.38 to -0.44, P = 0.0002, 4 studies, 196 participants, moderate quality evidence), as well as a difference in Canadian Cardiovascular Society score in favour of BMSC (MD -0.81, 95% CI -1.55 to -0.07, P = 0.03, 8 studies, 379 participants, moderate quality evidence). Of 19 trials in which adverse events were reported, adverse events relating to the BMSC treatment or procedure occurred in only four individuals. No long-term adverse events were reported. Subgroup analyses conducted for outcomes such as LVEF and NYHA class revealed that (i) route of administration, (ii) baseline LVEF, (iii) cell type, and (iv) clinical condition are important factors that may influence treatment effect. AUTHORS' CONCLUSIONS This systematic review and meta-analysis found moderate quality evidence that BMSC treatment improves LVEF. Unlike in trials where BMSC were administered following acute myocardial infarction (AMI), we found some evidence for a potential beneficial clinical effect in terms of mortality and performance status in the long term (after at least one year) in people who suffer from chronic IHD and heart failure, although the quality of evidence was low.
Collapse
Affiliation(s)
- Sheila A Fisher
- Systematic Review Initiative, NHS Blood and Transplant, Level 2, John Radcliffe Hospital, Headington, Oxford, Oxon, UK, OX3 9BQ
| | | | | | | | | | | |
Collapse
|
23
|
Castanares MA, Mukherjee A, Chowdhury WH, Liu M, Chen Y, Mease RC, Wang Y, Rodriguez R, Lupold SE, Pomper MG. Evaluation of prostate-specific membrane antigen as an imaging reporter. J Nucl Med 2014; 55:805-11. [PMID: 24700883 DOI: 10.2967/jnumed.113.134031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Genetic reporters provide a noninvasive method to monitor and evaluate a population of cells. The ideal properties of a gene reporter-probe system include biocompatibility, lack of immunogenicity, low background expression or signal, and high sensitivity of detection. The prostate-specific membrane antigen (PSMA) is an attractive candidate for a genetic reporter as it is a human transmembrane protein with a selective expression pattern, and there are several PSMA imaging agents available for clinical and preclinical applications. We evaluated the use of PSMA as a genetic imaging reporter by comparison to 2 clinically established reporters, the mutant herpes simplex virus type I thymidine kinase and the human sodium-iodide symporter. METHODS Adenoviruses expressing each reporter were constructed and validated in vitro for expression and function. To compare PSMA with existing imaging reporters, a bilateral Matrigel suspension model was established with nude mice bearing cells equally infected with each reporter or control adenovirus. Dynamic PET was performed, and time-activity curves were generated for each reporter-probe pair. RESULTS A comparison of peak target-to-background ratios revealed that PSMA offered the highest ratio relative to the control Matrigel suspension as well as muscle. Further, as proof of concept, PSMA was applied as an imaging reporter to monitor adenoviral liver transduction with both nuclear and optical imaging probes. CONCLUSION These preliminary studies support further development of PSMA as a noninvasive genetic reporter.
Collapse
Affiliation(s)
- Mark A Castanares
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Gupta DK, Skali H, Rivero J, Campbell P, Griffin L, Smith C, Foster C, Claggett B, Glynn RJ, Couper G, Givertz MM, Mehra MR, Di Carli M, Solomon SD, Pfeffer MA. Assessment of myocardial viability and left ventricular function in patients supported by a left ventricular assist device. J Heart Lung Transplant 2014; 33:372-81. [PMID: 24582837 DOI: 10.1016/j.healun.2014.01.866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronically supported left ventricular assist device (LVAD) patients may be candidates for novel therapies aimed at promoting reverse remodeling and myocardial recovery. However, the effect of hemodynamic unloading with a LVAD on myocardial viability and LV function in chronically supported LVAD patients has not been fully characterized. We aimed to develop a non-invasive imaging protocol to serially quantify native cardiac structure, function, and myocardial viability while at reduced LVAD support. METHODS Clinically stable (n = 18) ambulatory patients (83% men, median age, 61 years) supported by a HeartMate II (Thoratec, Pleasanton, CA) LVAD (median durations of heart failure 4.6 years and LVAD support 7 months) were evaluated by echocardiography and technetium-99m ((99m)Tc)-sestamibi single photon emission computed tomography (SPECT) imaging at baseline and after an interval of 2 to 3 months. Echocardiographic measures of LV size and function, including speckle tracking-derived circumferential strain, were compared between ambulatory and reduced LVAD support at baseline and between baseline and follow-up at reduced LVAD support. The extent of myocardial viability by SPECT was compared between baseline and follow-up at reduced LVAD support. RESULTS With reduction in LVAD speeds (6,600 rpm; interquartile range: 6,200, 7,400 rpm), LV size increased, LV systolic function remained stable, and filling pressures nominally worsened. After a median 2.1 months, cardiac structure, function, and the extent of viable myocardium, globally and regionally, was unchanged on repeat imaging while at reduced LVAD speed. CONCLUSIONS In clinically stable chronically supported LVAD patients, intrinsic cardiac structure, function, and myocardial viability did not significantly change over the pre-specified time frame. Echocardiographic circumferential strain and (99m)Tc-sestamibi SPECT myocardial viability imaging may provide useful non-invasive end points for the assessment of cardiac structure and function, particularly for phase II studies of novel therapies aimed at promoting reverse remodeling and myocardial recovery in LVAD patients.
Collapse
Affiliation(s)
- Deepak K Gupta
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hicham Skali
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jose Rivero
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patricia Campbell
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Leslie Griffin
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colleen Smith
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Courtney Foster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts
| | - Brian Claggett
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert J Glynn
- Department of Biostatistics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory Couper
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael M Givertz
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mandeep R Mehra
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcelo Di Carli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts
| | - Scott D Solomon
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc A Pfeffer
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Abstract
Advances in noninvasive imaging technologies that allow for in vivo dynamic monitoring of cells and cellular function in living research subjects have revealed new insights into cell biology in the context of intact organs and their native environment. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Stem cells present unique challenges for imaging since after transplantation, they proliferate dramatically and differentiate. Therefore, the imaging modality used needs to have a large dynamic range, and the genetic regulatory elements used need to be stably expressed during differentiation. Multiple imaging technologies using different modalities are available, and each varies in sensitivity, ease of data acquisition, signal to noise ratios (SNR), substrate availability, and other parameters that affect utility for monitoring cell fates and function. For a given application, there may be several different approaches that can be used. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging (FLI), and all have been used to monitor bone marrow and stem cells after transplantation into mice. Photoacoustic imaging that utilizes the sound created by the thermal expansion of absorbed light to generate an image best represents hybrid technologies. Each modality requires that the cells of interest be marked with a genetic reporter that acts as a label making them uniquely visible using that technology. For each modality, there are several labels to choose from. Multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed protocols for gene delivery into hematopoietic cells for the purposes of applying these specific labels to cell trafficking. The goal of this chapter is to provide adequate background information to allow the design and implementation of an experimental system for in vivo imaging in mice.
Collapse
|
27
|
Intracoronary Infusion of Autologous CD133(+) Cells in Myocardial Infarction and Tracing by Tc99m MIBI Scintigraphy of the Heart Areas Involved in Cell Homing. Stem Cells Int 2013; 2013:582527. [PMID: 23983717 PMCID: PMC3745950 DOI: 10.1155/2013/582527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/25/2022] Open
Abstract
CD133 mesenchymal cells were enriched using magnetic microbead anti-CD133 antibody from bone marrow mononuclear cells (BMMNCs). Flow cytometry and immunocytochemistry analysis using specific antibodies revealed that these cells were essentially 89 ± 4% CD133+ and 8 ± 5% CD34+. CD133+/CD34+ BMMNCs secrete important bioactive proteins such as cardiotrophin-1, angiogenic and neurogenic factors, morphogenetic proteins, and proinflammatory and remodeling factors in vitro. Single intracoronary infusions of autologous CD133+/CD34+ BMMNCs are effective and reduce infarct size in patients as analyzed by Tc99m MIBI myocardial scintigraphy. The majority of patients were treated via left coronary artery. Nine months after cell therapy, 5 out of 8 patients showed a net positive response to therapy in different regions of the heart. Uptake of Tc99 isotope and revitalization of the heart area in inferoseptal region are more pronounced (P = 0.016) as compared to apex and anterosptal regions after intracoronary injection of the stem cells. The cells chosen here have the properties essential for their potential use in cell therapy and their homing can be followed without major difficulty by the scintigraphy. The cell therapy proposed here is safe and should be practiced, as we found, in conjunction with scintigraphic observation of areas of heart which respond optimally to the infusion of autologous CD133+/CD34+ BMMNCs.
Collapse
|
28
|
Yu Q, Fan W, Cao F. Mechanistic molecular imaging of cardiac cell therapy for ischemic heart disease. Am J Physiol Heart Circ Physiol 2013; 305:H947-59. [PMID: 23893164 DOI: 10.1152/ajpheart.00092.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-based myocardial regeneration has emerged as a promising therapeutic option for ischemic heart disease, though not yet at the level of routine clinical utility. Despite the encouraging results from initial preclinical studies that have demonstrated improved function and reduced infarct size of the ischemic myocardium following several candidate cell transplantation, the beneficial effects and molecular mechanisms of cardiac cell therapy are still unclear in clinical applications to date, and much remains to be optimized. To improve engraftment, accurate methods are required for tracking cell fate and quantifying functional outcome. In the present review, we summarized the current status and challenges of cardiac cell therapy for ischemic heart disease and discussed the strengths and limitations of currently available in vivo imaging techniques with special focus on the newly developed multimodality approaches for assessing the efficacy of engrafted donor cells. We also addressed the hurdles these imaging modalities are facing, including issues regarding immunogenicity and tumorigenicity of transplanted stem cells, and provided some the future perspectives on stem cell imaging.
Collapse
Affiliation(s)
- Qiujun Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|
29
|
Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 2013; 20:443-64. [PMID: 23572315 DOI: 10.1007/s12350-013-9707-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The field of cardio-oncology is challenged to address an ever greater spectrum of cardiotoxicity associated with combination chemotherapy, greater dose intensity, extremes of age, and enhanced patient survival which exposes more protracted risk of developing congestive heart failure (CHF). Recent reports of chemotherapy-induced hypertension as a common adverse effect of angiogenesis inhibitors and immunosuppressants clarify the need for routine blood pressure (BP) monitoring and guideline-based management of hypertension as an integral strategy to preserve LV function. Serial monitoring of radionuclide left ventricular ejection fraction (LVEF) in adults and echocardiography in children continues to provide outcome based, cost-effective prevention of CHF in high risk patients receiving chemotherapy. To optimize treatment and monitoring strategies to eliminate late-onset LV dysfunction and CHF, traditional and novel candidate methods for assessment of chemotherapy-induced LV dysfunction are reviewed. These include serial assessment of LV volume indices by gated SPECT ERNA and gated SPECT MPI, 3D echocardiography and contrast 2D echocardiography; longitudinal strain imaging, diastolic functional parameters, (123)I-MIBG, (111)In-Antimyosin antibody imaging, and (99m)Tc-Annexin V apoptosis imaging, biomarkers including troponins and BNP; genetic markers, and both functional and tissue characterization techniques with T1 weighted and T2 weighted images with cardiac magnetic resonance imaging (CMR). In our quest to optimize strategies for long-term cancer survival and prevention of CHF for patients receiving chemotherapy, rigorous modality and guideline-specific clinical outcome trials are required. A new multi-modality monitoring approach is proposed, which integrates evidence-based strengths of CMR, echocardiography, ERNA, biomarkers, and BP management for surveillance and validation of cardiotoxicity and prevention of clinical heart failure in patients receiving a broad spectrum of cancer therapies.
Collapse
|
30
|
Yang JJ, Liu ZQ, Zhang JM, Wang HB, Hu SY, Liu JF, Wang CY, Chen YD. Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessels 2013; 28:385-96. [PMID: 22940832 DOI: 10.1007/s00380-012-0275-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 07/20/2012] [Indexed: 01/09/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) has shown promise in the emerging field of regenerative medicine. Many studies have highlighted the importance of coadministering a "scaffold" for increasing intramyocardial retention of stem cells. In this work, an optimized method was developed for efficient transduction of ADSCs with a lentiviral vector carrying a triple-fusion reporter gene that consists of firefly luciferase, monomeric red fluorescence protein, and truncated thymidine kinase (fluc-mrfp-ttk). The transduced ADSCs were assessed on biological performance and transplanted into infarcted heart with fibrin scaffolds. In vivo cell retention was tracked by bioluminescence imaging (BLI) and micro positron emission tomography/computed tomography (PET/CT) imaging. Histological assessment was performed for regeneration potentials. The results showed that lentiviral transduction did not influence cell functions. In vitro imaging analysis showed a robust linear correlation between cell numbers and BLI signals (R (2) = 0.99) as well as between cell numbers and radiotracer uptakes (R (2) = 0.98). Transduced ADSCs were visualized in the heart under both BLI and PET/CT imaging, contributing to cardiomyocyte regeneration and angiogenesis in the implanted areas. Compared with BLI monitoring, PET/CT data provided precise localization for cell retention. Thus, a combination of imaging modalities can assist in reliable and efficient monitoring of transplanted cells, holding great potential for the transplantation of injectable scaffolds encapsulating stem cells in treating heart disease.
Collapse
Affiliation(s)
- Jun-jie Yang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Emmert MY, Weber B, Wolint P, Frauenfelder T, Zeisberger SM, Behr L, Sammut S, Scherman J, Brokopp CE, Schwartländer R, Vogel V, Vogt P, Grünenfelder J, Alkadhi H, Falk V, Boss A, Hoerstrup SP. Intramyocardial transplantation and tracking of human mesenchymal stem cells in a novel intra-uterine pre-immune fetal sheep myocardial infarction model: a proof of concept study. PLoS One 2013; 8:e57759. [PMID: 23533575 PMCID: PMC3606388 DOI: 10.1371/journal.pone.0057759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/24/2013] [Indexed: 01/03/2023] Open
Abstract
Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetal-sheep. Thirteen fetal-sheep (gestation age: 70–75 days) were included. Ten animals either received an intra-uterine induction of MI only (n = 4) or MI+intra-myocardial injection (IMI;n = 6) using micron-sized, iron-oxide (MPIO) labeled human mesenchymal stem cells either derived from the adipose-tissue (ATMSCs;n = 3) or the bone-marrow (BMMSCs;n = 3). Three animals received an intra-peritoneal injection (IPI;n = 3; ATMSCs;n = 2/BMMSCs;n = 1). All procedures were performed successfully and follow-up was 7–9 days. To assess human cell-fate, multimodal cell-tracking was performed via MRI and/or Micro-CT, Flow-Cytometry, PCR and immunohistochemistry. After IMI, MRI displayed an estimated amount of 1×105–5×105 human cells within ventricular-wall corresponding to the injection-sites which was further confirmed on Micro-CT. PCR and IHC verified intra-myocardial presence via detection of human-specific β-2-microglobulin, MHC-1, ALU-Sequence and anti-FITC targeting the fluorochrome-labeled part of the MPIOs. The cells appeared viable, integrated and were found in clusters or in the interstitial-spaces. Flow-Cytometry confirmed intra-myocardial presence, and showed further distribution within the spleen, lungs, kidneys and brain. Following IPI, MRI indicated the cells within the intra-peritoneal-cavity involving the liver and kidneys. Flow-Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy.
Collapse
Affiliation(s)
- Maximilian Y. Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Benedikt Weber
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Petra Wolint
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Luc Behr
- IMM RECHERCHE, Institute Mutualiste Montsouris, Paris, France
| | | | - Jacques Scherman
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Chad E. Brokopp
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Ruth Schwartländer
- Department of Health Science and Technology, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Science and Technology, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Peter Vogt
- Department of Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Jürg Grünenfelder
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Emmert MY, Wolint P, Winklhofer S, Stolzmann P, Cesarovic N, Fleischmann T, Nguyen TDL, Frauenfelder T, Böni R, Scherman J, Bettex D, Grünenfelder J, Schwartlander R, Vogel V, Gyöngyösi M, Alkadhi H, Falk V, Hoerstrup SP. Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 2013; 34:2428-41. [PMID: 23332174 DOI: 10.1016/j.biomaterials.2012.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/18/2012] [Indexed: 12/29/2022]
Abstract
Stem cells have been repeatedly suggested for cardiac regeneration after myocardial infarction (MI). However, the low retention rate of single cell suspensions limits the efficacy of current therapy concepts so far. Taking advantage of three dimensional (3D) cellular self-assembly prior to transplantation may be beneficial to overcome these limitations. In this pilot study we investigate the principal feasibility of intramyocardial delivery of in-vitro generated stem cell-based 3D microtissues (3D-MTs) in a porcine model. 3D-MTs were generated from iron-oxide (MPIO) labeled human adipose-tissue derived mesenchymal stem cells (ATMSCs) using a modified hanging-drop method. Nine pigs (33 ± 2 kg) comprising seven healthy ones and two with chronic MI in the left ventricle (LV) anterior wall were included. The pigs underwent intramyocardial transplantation of 16 × 10(3) 3D-MTs (1250 cells/MT; accounting for 2 × 10(7) single ATMSCs) into the anterior wall of the healthy pigs (n = 7)/the MI border zone of the infarcted (n = 2) of the LV using a 3D NOGA electromechanical mapping guided, transcatheter based approach. Clinical follow-up (FU) was performed for up to five weeks and in-vivo cell-tracking was performed using serial magnet resonance imaging (MRI). Thereafter, the hearts were harvested and assessed by PCR and immunohistochemistry. Intramyocardial transplantation of human ATMSC based 3D-MTs was successful in eight animals (88.8%) while one pig (without MI) died during the electromechanical mapping due to sudden cardiac-arrest. During FU, no arrhythmogenic, embolic or neurological events occurred in the treated pigs. Serial MRI confirmed the intramyocardial presence of the 3D-MTs by detection of the intracellular iron-oxide MPIOs during FU. Intramyocardial retention of 3D-MTs was confirmed by PCR analysis and was further verified on histology and immunohistochemical analysis. The 3D-MTs appeared to be viable, integrated and showed an intact micro architecture. We demonstrate the principal feasibility and safety of intramyocardial transplantation of in-vitro generated stem cell-based 3D-MTs. Multimodal cell-tracking strategies comprising advanced imaging and in-vitro tools allow for in-vivo monitoring and post-mortem analysis of transplanted 3D-MTs. The concept of 3D cellular self-assembly represents a promising application format as a next generation technology for cell-based myocardial regeneration.
Collapse
Affiliation(s)
- Maximilian Y Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Slochteren FJ, Teske AJ, van der Spoel TIG, Koudstaal S, Doevendans PA, Sluijter JPG, Cramer MJM, Chamuleau SAJ. Advanced measurement techniques of regional myocardial function to assess the effects of cardiac regenerative therapy in different models of ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2012; 13:808-18. [DOI: 10.1093/ehjci/jes119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Wu C, Ma G, Li J, Zheng K, Dang Y, Shi X, Sun Y, Li F, Zhu Z. In vivo cell tracking via ¹⁸F-fluorodeoxyglucose labeling: a review of the preclinical and clinical applications in cell-based diagnosis and therapy. Clin Imaging 2012. [PMID: 23206605 DOI: 10.1016/j.clinimag.2012.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rising interest in using functional cells for diagnosis and treatment has created an urgent need for in vivo cell-tracking techniques. Certain advanced techniques, such as those involving reporter genes or nanoparticles, are still awaiting confirmation of their safety and feasibility in human patients. Tracking cells by labeling them with (18)F-fluorodeoxyglucose, a tracer clinically used in positron emission tomography (PET), may be one way to rapidly translate some of these principles from bench to bedside. The preliminary results are exciting, although further development, optimization, and validation are required. Here, several applications of the technique are surveyed: finding inflammatory foci, targeting cancer immunotherapies, tracking transplanted islet cells, and monitoring cardiac stem cells. Advantages, limitations, and prospects of the technique are discussed. These early experiences only highlight the existing need to improve cell-labeling techniques using PET tracers. This method may finally lead to the development of effective and convenient methods for clinical cell-tracking techniques involving PET/computed tomography.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nam SY, Ricles LM, Suggs LJ, Emelianov SY. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One 2012; 7:e37267. [PMID: 22615959 PMCID: PMC3353925 DOI: 10.1371/journal.pone.0037267] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/18/2012] [Indexed: 11/25/2022] Open
Abstract
Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro experiments were performed to demonstrate the efficacy of ultrasound-guided photoacoustic (US/PA) imaging to monitor mesenchymal stem cells (MSCs) labeled with gold nanotracers (Au NTs). The Au NT labeled MSCs, injected intramuscularly in the lower limb of the Lewis rat, were detected and spatially resolved. Furthermore, our quantitative in vitro cell studies indicate that US/PA imaging is capable of high detection sensitivity (1×10⁴ cells/mL) of the Au NT labeled MSCs. Finally, Au NT labeled MSCs captured in the PEGylated fibrin gel system were imaged in vivo, as well as in vitro, over a one week time period, suggesting that longitudinal cell tracking using US/PA imaging is possible. Overall, Au NT labeling of MSCs and US/PA imaging can be an alternative approach in stem cell imaging capable of noninvasive, sensitive, quantitative, longitudinal assessment of stem cell behaviors with high spatial and temporal resolutions at sufficient depths.
Collapse
Affiliation(s)
- Seung Yun Nam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Laura M. Ricles
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Laura J. Suggs
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
36
|
Schuleri KH, Centola M, Choi SH, Evers KS, Dawoud F, George RT, Lima JAC, Lardo AC. CT for evaluation of myocardial cell therapy in heart failure: a comparison with CMR imaging. JACC Cardiovasc Imaging 2012; 4:1284-93. [PMID: 22172785 DOI: 10.1016/j.jcmg.2011.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this study was to use multidetector computed tomography (MDCT) to assess therapeutic effects of myocardial regenerative cell therapies. BACKGROUND Cell transplantation is being widely investigated as a potential therapy in heart failure. Noninvasive imaging techniques are frequently used to investigate therapeutic effects of cell therapies in the preclinical and clinical settings. Previous studies have shown that cardiac MDCT can accurately quantify myocardial scar tissue and determine left ventricular (LV) volumes and ejection fraction (LVEF). METHODS Twenty-two minipigs were randomized to intramyocardial injection of phosphate-buffered saline (placebo, n = 9) or 200 million mesenchymal stem cells (MSC, n = 13) 12 weeks after myocardial infarction (MI). Cardiac magnetic resonance and MDCT acquisitions were performed before randomization (12 weeks after MI induction) and at the study endpoint 24 weeks after MI induction. None of the animals received medication to control the intrinsic heart rate during first-pass acquisitions for assessment of LV volumes and LVEF. Delayed-enhancement MDCT imaging was performed 10 min after contrast delivery. Two blinded observers analyzed MDCT acquisitions. RESULTS MDCT demonstrated that MSC therapy resulted in a reduction of infarct size from 14.3 ± 1.2% to 10.3 ± 1.5% of LV mass (p = 0.005), whereas infarct size increased in nontreated animals (from 13.8 ± 1.3% to 16.5 ± 1.5%; p = 0.02) (placebo vs. MSC; p = 0.003). Both observers had excellent agreement for infarct size (r = 0.96; p < 0.001). LVEF increased from 32.6 ± 2.2% to 36.9 ± 2.7% in MSC-treated animals (p = 0.03) and decreased in placebo animals (from 33.3 ± 1.4% to 29.1 ± 1.5%; p = 0.01; at week 24: placebo vs. MSC; p = 0.02). Infarct size, end-diastolic LV volume, and LVEF assessed by MDCT compared favorably with those assessed by cardiac magnetic resonance acquisitions (r = 0.70, r = 0.82, and r = 0.902, respectively; p < 0.001). CONCLUSIONS This study demonstrated that cardiac MDCT can be used to evaluate infarct size, LV volumes, and LVEF after intramyocardial-delivered MSC therapy. These findings support the use of cardiac MDCT in preclinical and clinical studies for novel myocardial therapies.
Collapse
Affiliation(s)
- Karl H Schuleri
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Non-invasive bioluminescence imaging of myoblast-mediated hypoxia-inducible factor-1 alpha gene transfer. Mol Imaging Biol 2012; 13:1124-32. [PMID: 21267661 DOI: 10.1007/s11307-011-0471-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE We tested a novel imaging strategy, in which both the survival of transplanted myoblasts and their therapeutic transgene expression, a recombinant hypoxia-inducible factor-1α (HIF-1α-VP2), can be monitored using firefly luciferase (fluc) and Renilla luciferase (hrl) bioluminescence reporter genes, respectively. PROCEDURES The plasmid pUbi-hrl-pUbi-HIF-1α-VP2, which expresses both hrl and HIF-1α-VP2 using two ubiquitin promoters, was characterized in vitro. C2c12 myoblasts stably expressing fluc and transiently transfected with pUbi-hrl-pUbi-HIF-1α-VP2 were injected into the mouse hindlimb. Both hrl and fluc expression were monitored using bioluminescence imaging (BLI). RESULTS Strong correlations existed between the expression of hRL and each of HIF-1α-VP2, VEGF, and PlGF (r(2) > 0.83, r(2) > 0.82, and r(2) > 0.97, respectively). In vivo, both transplanted cells and HIF-1α-VP2 transgene expression were successfully imaged using BLI. CONCLUSIONS An objective evaluation of myoblast-mediated gene transfer in living mice can be performed by monitoring both the survival and the transgene expression of transplanted myoblasts using the techniques developed herein.
Collapse
|
38
|
Sabondjian E, Mitchell AJ, Wisenberg G, White J, Blackwood KJ, Sykes J, Deans L, Stodilka RZ, Prato FS. Hybrid SPECT/cardiac-gated first-pass perfusion CT: locating transplanted cells relative to infarcted myocardial targets. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:76-84. [DOI: 10.1002/cmmi.469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Kimberley J. Blackwood
- Lawson Health Research Institute, Imaging Program; Rm E5-109, St Joseph's Hospital, 268 Grosvenor St; London; ON; Canada; N6A 4V2
| | - Jane Sykes
- Lawson Health Research Institute, Imaging Program; Rm E5-109, St Joseph's Hospital, 268 Grosvenor St; London; ON; Canada; N6A 4V2
| | - Lela Deans
- Lawson Health Research Institute, Imaging Program; Rm E5-109, St Joseph's Hospital, 268 Grosvenor St; London; ON; Canada; N6A 4V2
| | | | | |
Collapse
|
39
|
Mäki MT, Koskenvuo JW, Ukkonen H, Saraste A, Tuunanen H, Pietilä M, Nesterov SV, Aalto V, Airaksinen KEJ, Pärkkä JP, Lautamäki R, Kervinen K, Miettinen JA, Mäkikallio TH, Niemelä M, Säily M, Koistinen P, Savolainen ER, Ylitalo K, Huikuri HV, Knuuti J. Cardiac Function, Perfusion, Metabolism, and Innervation following Autologous Stem Cell Therapy for Acute ST-Elevation Myocardial Infarction. A FINCELL-INSIGHT Sub-Study with PET and MRI. Front Physiol 2012; 3:6. [PMID: 22363288 PMCID: PMC3277266 DOI: 10.3389/fphys.2012.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/10/2012] [Indexed: 01/04/2023] Open
Abstract
Purpose: Beneficial mechanisms of bone marrow cell (BMC) therapy for acute ST-segment elevation myocardial infarct (STEMI) are largely unknown in humans. Therefore, we evaluated the feasibility of serial positron emission tomography (PET) and MRI studies to provide insight into the effects of BMCs on the healing process of ischemic myocardial damage. Methods: Nineteen patients with successful primary reteplase thrombolysis (mean 2.4 h after symptoms) for STEMI were randomized for BMC therapy (2.9 × 106 CD34+ cells) or placebo after bone marrow aspiration in a double-blind, multi-center study. Three days post-MI, coronary angioplasty, and paclitaxel eluting stent implantation preceded either BMC or placebo therapy. Cardiac PET and MRI studies were performed 7–12 days after therapies and repeated after 6 months, and images were analyzed at a central core laboratory. Results: In BMC-treated patients, there was a decrease in [11C]-HED defect size (−4.9 ± 4.0 vs. −1.6 ± 2.2%, p = 0.08) and an increase in [18F]-FDG uptake in the infarct area at risk (0.06 ± 0.09 vs. −0.05 ± 0.16, p = 0.07) compared to controls, as well as less left ventricular dilatation (−4.4 ± 13.3 vs. 8.0 ± 16.7 mL/m2, p = 0.12) at 6 months follow-up. However, BMC treatment was inferior to placebo in terms of changes in rest perfusion in the area at risk (−0.09 ± 0.17 vs. 0.10 ± 0.17, p = 0.03) and infarct size (0.4 ± 4.2 vs. −5.1 ± 5.9 g, p = 0.047), and no effect was observed on ejection fraction (p = 0.37). Conclusion: After the acute phase of STEMI, BMC therapy showed only minor trends of long-term benefit in patients with rapid successful thrombolysis. There was a trend of more decrease in innervation defect size and enhanced glucose metabolism in the infarct-related myocardium and also a trend of less ventricular dilatation in the BMC-treated group compared to placebo. However, no consistently better outcome was observed in the BMC-treated group compared to placebo.
Collapse
Affiliation(s)
- Maija T Mäki
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Park BN, Shim W, Lee G, Bang OY, An YS, Yoon JK, Ahn YH. Early distribution of intravenously injected mesenchymal stem cells in rats with acute brain trauma evaluated by 99mTc-HMPAO labeling. Nucl Med Biol 2011; 38:1175-82. [DOI: 10.1016/j.nucmedbio.2011.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/17/2011] [Indexed: 02/01/2023]
|
41
|
Buja LM, Vela D. Current status of the role of stem cells in myocardial biology and repair. Cardiovasc Pathol 2011; 20:297-301. [DOI: 10.1016/j.carpath.2010.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 01/10/2023] Open
|
42
|
Ranjbarvaziri S, Kiani S, Akhlaghi A, Vosough A, Baharvand H, Aghdami N. Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials 2011; 32:5195-205. [DOI: 10.1016/j.biomaterials.2011.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/05/2011] [Indexed: 11/27/2022]
|
43
|
Karamitsos TD, Dall'Armellina E, Choudhury RP, Neubauer S. Ischemic heart disease: comprehensive evaluation by cardiovascular magnetic resonance. Am Heart J 2011; 162:16-30. [PMID: 21742086 DOI: 10.1016/j.ahj.2011.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Considerable technical advances over the past decade have increased the clinical application of cardiovascular magnetic resonance (CMR) imaging. A comprehensive CMR examination can accurately measure left and right ventricular size and function, identify the presence and extent of reversible versus irreversible myocardial injury, and detect inducible ischemia. Streamlined protocols allow such a CMR examination to be a time-efficient diagnostic tool in patients with coronary artery disease. Moreover, edema imaging with T2-weighted CMR allows the detection of acute coronary syndromes. In this review, we present the relevant CMR methods and discuss practical uses of CMR in acute and chronic ischemic heart disease.
Collapse
|
44
|
Timing of bone marrow cell therapy is more important than repeated injections after myocardial infarction. Cardiovasc Pathol 2011; 20:204-12. [DOI: 10.1016/j.carpath.2010.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 06/01/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023] Open
|
45
|
Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction. Basic Res Cardiol 2011; 106:1379-86. [PMID: 21706191 PMCID: PMC3228962 DOI: 10.1007/s00395-011-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/13/2011] [Accepted: 06/13/2011] [Indexed: 11/29/2022]
Abstract
Therapeutic cell retention and engraftment are critical for myocardial regeneration. Underlying mechanisms, including the role of tissue perfusion, are not well understood. In Wistar Kyoto rats, syngeneic cardiosphere-derived cells (CDCs) were injected intramyocardially, after experimental myocardial infarction. CDCs were labeled with [18F]-FDG (n = 7), for quantification of 1-h retention, or with sodium-iodide-symporter gene (NIS; n = 8), for detection of 24-h engraftment by reporter imaging. Perfusion was imaged simultaneously. Infarct size was 37 ± 9 and 38 ± 9% of LV in FDG and NIS groups. Cell signal was located in the infarct border zone in all animals. No significant relationship was observed between infarct size and 1-h CDC retention (r = −0.65; P = 0.11). However, infarct size correlated significantly with 24-h engraftment (r = 0.75; P = 0.03). Residual perfusion at the injection site was not related to cell retention/engraftment. Larger infarcts are associated with improved CDC engraftment. This observation encourages further investigation of microenvironmental conditions after ischemic damage and their role in therapeutic cell survival.
Collapse
|
46
|
Welling MM, Duijvestein M, Signore A, van der Weerd L. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol 2011; 226:1444-52. [PMID: 21413018 DOI: 10.1002/jcp.22539] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on stem cell are rapidly developing since these cells have great therapeutic potential for numerous diseases and has generated much promise as well as confusion due to contradictory results. Major questions in this research field have been raised as to how and in which numbers stem cells home to target tissues after administration, whether the cells engraft and differentiate, and what their long-term fate is. To answer these questions, reliable in vivo tracking techniques are essential. In vivo molecular imaging techniques using magnetic resonance imaging, bioluminescence, and scintigraphy have been applied for this purpose in experimental studies. The aim of this review is to discuss various radiolabeling techniques for early stem cell tracking, the need for validation of viability and performance of the cells after labeling, and the routes of administration in experimental animal models. In addition, we evaluate current problems and directions related to stem cell tracking using radiolabels, including a possible role for their clinical implementation.
Collapse
Affiliation(s)
- Mick M Welling
- Department of Radiology, Molecular Imaging Laboratories Leiden, Section Nuclear Medicine, Leiden University Medical Center, Leiden, Netherlands.
| | | | | | | |
Collapse
|
47
|
Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011; 63:221-41. [PMID: 21277921 DOI: 10.1016/j.addr.2011.01.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/26/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating 'living' tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human body, are described in detail and discussed in the light of current trends toward designing biologically inspired microenviroments for in situ tissue engineering purposes.
Collapse
|
48
|
Comparison of in leakage from labeled endocardial and epicardial cells: impact on modeling viability of cells to be transplanted into myocardium. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:472375. [PMID: 21603238 PMCID: PMC3094859 DOI: 10.1155/2011/472375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 11/18/2010] [Accepted: 02/09/2011] [Indexed: 02/02/2023]
Abstract
Introduction. Previously we proposed a cellular imaging technique to determine the surviving fraction of transplanted cells in vivo. Epicardial kinetics using Indium-111 determined the Debris Impulse Response Function (DIRF) and leakage coefficient parameters. Convolution-based modeling which corrected for these signal contributions indicated that 111In activity was quantitative of cell viability with half-lives within 20 hrs to 37 days. We determine if the 37-day upper limit remains valid for endocardial injections by comparing previous epicardial cell leakage parameter estimates to those for endocardial cells. Methods. Normal canine myocardium was injected (111In-tropolone) epicardially (9 injections) or endocardially (10 injections). Continuous whole body and SPECT scans for 5 hours were acquired with three weekly follow-up imaging sessions up to 20–26 days. Time-activity curves evaluated each injection type. Results. The epicardial and endocardial kinetics were not significantly different (Epi: 1286 ± 253; Endo: 1567 ± 470 hours P = .62).
Conclusion. The original epicardial estimate of leakage kinetics has been validated for use in endocardial injections.
Collapse
|
49
|
Tachibana Y, Enmi JI, Mahara A, Iida H, Yamaoka T. Design and characterization of a polymeric MRI contrast agent based on PVA for in vivo living-cell tracking. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 5:309-17. [PMID: 21190268 DOI: 10.1002/cmmi.389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel water-soluble MRI contrast agent for in vivo living cell tracking was developed. Unlike the conventional in vivo cell tracking system based on superparamagnetic iron oxide beads, the newly developed contrast agent is eliminated from the body when the contrast agent exits the cells upon cell death, which makes living cell tracking possible. The contrast agent is composed of gadolinium chelates (Gd-DOTA) and a water-soluble carrier, poly(vinyl alcohol) (PVA), which is known to interact with cells and tissues very weakly. Since the Gd-PVA was not taken up by cells spontaneously, the electroporation method was used for cell labeling. The delivered Gd-PVA was localized only in the cytosolic compartment of growing cells with low cytotoxicity and did not leak out of the living cells for long periods of time. This stability may be due to the weak cell-membrane affinity of Gd-PVA, and did not affect cell proliferation at all. After cell labeling, signal enhancement of cells was observed in vitro and in vivo. These results indicate that Gd-PVA can visualize only the living cells in vivo for a long period of time, even in areas deep within large animal bodies.
Collapse
Affiliation(s)
- Yoichi Tachibana
- Department of Biomedical Engineering,Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | | | | | | | | |
Collapse
|
50
|
Powerski M, Henrich D, Sander A, Teiler A, Marzi I. In vitro manipulation of endothelial progenitor cell adhesion to vascular endothelium and extracellular matrix by the phorbol ester PMA. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2011; 39:214-22. [PMID: 21314293 DOI: 10.3109/10731199.2011.555838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Injection of endothelial progenitor cells (EPCs) into arteries for cell therapy is a promising field in regenerative medicine. However, adhesion of EPCs during capillary passage is restricted, and non-adhering cells are lost into circulation. Here we demonstrate that it is possible to achieve a three- to sevenfold higher rate of EPC adhesion to endothelium and extracellular matrix molecules after short-term activation with phorbol myristate acetate (PMA). In addition, differentiation and toxicity analyses of PMA activated EPCs showed no impact on cell differentiation and negligible impact on cell survival.
Collapse
Affiliation(s)
- Maciej Powerski
- Department of Trauma Surgery, Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|