1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl) 2021; 134:2647-2655. [PMID: 34608069 PMCID: PMC8631411 DOI: 10.1097/cm9.0000000000001772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Cell death occurs in various tissues and organs in the body. It is a physiological or pathological process that has different effects. It is of great significance in maintaining the morphological function of cells and clearing abnormal cells. Pyroptosis, apoptosis, and necrosis are all modes of cell death that have been studied extensively by many experts and scholars, including studies on their effects on the liver, kidney, the heart, other organs, and even the whole body. The heart, as the most important organ of the body, should be a particular focus. This review summarizes the mechanisms underlying the various cell death modes and the relationship between the various mechanisms and heart diseases. The current research status for heart therapy is discussed from the perspective of pathogenesis.
Collapse
|
3
|
Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, Qiu Z. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep 2020; 22:948-956. [PMID: 32468049 PMCID: PMC7339405 DOI: 10.3892/mmr.2020.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease that can lead to heart expansion and severe heart failure, but the specific pathogenesis remains unclear. Sox5 is a member of the Sox family with a key role in cardiac function. However, the role of Sox5 in DCM remains unclear. In the present study, wild-type mice were intraperitoneally injected with doxorubicin (Dox) to induce DCM, and heart specimens from human patients with DCM were used to investigate the preliminary role of Sox5 in DCM. The present study demonstrated that, compared with control human hearts, the hearts of patients with DCM exhibited high expression levels of Sox5 and activation of the wnt/β-catenin pathway. This result was consistent with Dox-induced DCM in mice. Furthermore, in Dox-treated mice, apoptosis was activated during the development of DCM. Inflammation and collagen deposition also increased in DCM mice. The results of the present study indicate that Sox5 may be associated with the development of DCM. Sox5 may be a novel potential factor that regulates DCM.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
4
|
The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019; 8:cells8111383. [PMID: 31689891 PMCID: PMC6912541 DOI: 10.3390/cells8111383] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence (in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress and inflammation. These networks contribute to the promotion of age-associated cardiovascular diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these cardiovascular diseases as well as senescence and aging. In this review we focus on whether the (a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases. Pharmacological intervention is, therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.
Collapse
|
5
|
MicroRNA-21 abrogates palmitate-induced cardiomyocyte apoptosis through caspase-3/NF-κB signal pathways. Anatol J Cardiol 2019; 20:336-346. [PMID: 30504734 PMCID: PMC6287441 DOI: 10.14744/anatoljcardiol.2018.03604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: The aim of the study was to investigate the role of microRNA-21 (miR-21) in cardiomyocyte apoptosis and to determine a possible mechanism. Methods: H9c2 embryonic rat heart-derived cells were used in the study. Cell viability was determined using the 3-(4.5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and flow cytometry was used to evaluate cell apoptosis. Reverse transcription-polymerase chain reaction and western blot assays were used to detect mRNA and protein expression of the apoptosis-related proteins and miR-21. ELISA was used to detect reactive oxygen species (ROS). Results: Palmitate exposure greatly reduced miR-21 expression in cardiomyocytes. Apoptosis increased when miR-21 was inhibited with or without palmitate exposure. Consistently, reduced apoptosis was observed when miR-21 was overexpressed in cardiomyocytes. Caspase-3 activity was reduced after palmitate exposure. Bcl-2 protein expression was increased in H9c2 cells when transfected with the miR-21 mimic. MiR-21 overexpression alone did not induce ROS or DNA fragmentation; however, in conjunction with palmitate exposure, miR-21 mimic reduced ROS and DNA fragmentation. Moreover, palmitate administration overcame the antioxidant effect of 3 mM N-acetylcysteine to significantly inhibit apoptosis, DNA fragmentation, and caspase-3 activity. The exposure to palmitate greatly reduced p65 and p-p38 expression in the nucleus. A p38 inhibitor had no effect on the expression of Bcl-2 and cleaved caspase-3 in H9c2 cells alone; however, when combined with exposure to palmitate the p38 inhibitor induced Bcl-2 expression and inhibited caspase-3 activity. The p38 inhibitor by itself did not induce apoptosis, ROS production, or DNA fragmentation in H9c2 cells, but when palmitate was included with the p38 inhibitor, apoptosis, ROS production, and DNA fragmentation were reduced. Conclusion: miR-21 protects cardiomyocytes from apoptosis that is induced by palmitate through the caspase-3/NF-κB signal pathways.
Collapse
|
6
|
Inhibition of Apoptosis Signal-Regulating Kinase 1 Attenuates Myocyte Hypertrophy and Fibroblast Collagen Synthesis. Heart Lung Circ 2019; 28:495-504. [DOI: 10.1016/j.hlc.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022]
|
7
|
Jiang W, Chen Y, Li B, Gao S. DBA-induced caspase-3-dependent apoptosis occurs through mitochondrial translocation of cyt-c in the rat hippocampus. MOLECULAR BIOSYSTEMS 2018; 13:1863-1873. [PMID: 28731097 DOI: 10.1039/c7mb00246g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dibromoacetic acid (DBA), a by-product of disinfection, develops in drinking water during chlorination or ozonation processes. Water intake is the main source of DBA exposure in humans, which is potentially neurotoxic. The present study investigated the neurotoxic effects of DBA by assessing the behavioral and biochemical characteristics of Sprague Dawley rats intragastrically treated with DBA at concentrations of 20, 50 and 125 mg kg-1 body weight for 28 consecutive days. The results indicated that animal weight gain and food consumption were not significantly affected by DBA. However, shuttle box tests showed increases in mistake frequency and reaction latency between the control and high-dose group. We found significant changes in hippocampal neurons by histomorphological observation. Additionally, biochemical analysis indicated enhanced production of reactive oxygen species (ROS) resulting in disruption of cellular antioxidant defense systems including decreased mitochondrial superoxide dismutase (SOD) activity and release of cytochrome c (cyt-c) from mitochondria into the cytosol, which can induce neuronal apoptosis. Furthermore, the increase of cyt-c in the cytosol enhanced caspase-3 and caspase-9 activity, which was confirmed by poly ADP-ribose polymerase-1 (PARP-1) cleavage to its signature fragment of 85 kDa and decreased levels of protein kinase C-δ (PKC-δ) in the hippocampus. Meanwhile, DBA treatment caused differential modulation of apoptosis-associated proteins and mRNAs for phosphorylated apoptosis signal regulating kinase 1 (p-ASK-1), phosphorylated c-jun N-terminal kinase (p-JNK), cyt-c, Bax, Bcl-2, caspase-9 and cleaved caspase-3 accompanied by DNA damage. Taken together, these data indicate that DBA may induce neurotoxicity via caspase-3-dependent apoptosis involving mitochondrial translocation of cyt-c in the rat hippocampus.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China.
| | | | | | | |
Collapse
|
8
|
Cooper SL, Sandhu H, Hussain A, Mee C, Maddock H. Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity. Toxicology 2018; 394:72-83. [DOI: 10.1016/j.tox.2017.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
|
9
|
Liu T, Zhou HJ, Min W. ASK family in cardiovascular biology and medicine. Adv Biol Regul 2017; 66:54-62. [PMID: 29107568 PMCID: PMC5705453 DOI: 10.1016/j.jbior.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease is a major cause of death worldwide. Mitogen-activated protein kinase (MAPK) signal cascades signaling pathways play crucial roles in cardiovascular pathophysiology. Apoptosis signal-regulating kinase (ASK) family members ASK1, ASK2 and ASK3 are the key molecules in MAPK signal cascades and are activated by various stresses. ASK1 is the most extensively studied MAPKKK and is involved in regulation of the cellular functions such as cell survival, proliferation, inflammation and apoptosis. The current review focuses on the relationship between ASK1 and cardiovascular disease, while exploring the novel therapeutic strategies for cardiovascular disease involved in the ASK1 signal pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Abstract
Cardiac stress can induce morphological, structural and functional changes of the heart, referred to as cardiac remodeling. Myocardial infarction or sustained overload as a result of pathological causes such as hypertension or valve insufficiency may result in progressive remodeling and finally lead to heart failure (HF). Whereas pathological and physiological (exercise, pregnancy) overload both stimulate cardiomyocyte growth (hypertrophy), only pathological remodeling is characterized by increased deposition of extracellular matrix proteins, termed fibrosis, and loss of cardiomyocytes by necrosis, apoptosis and/or phagocytosis. HF is strongly associated with age, and cardiomyocyte loss and fibrosis are typical signs of the aging heart. Fibrosis results in stiffening of the heart, conductivity problems and reduced oxygen diffusion, and is associated with diminished ventricular function and arrhythmias. As a consequence, the workload of cardiomyocytes in the fibrotic heart is further augmented, whereas the physiological environment is becoming less favorable. This causes additional cardiomyocyte death and replacement of lost cardiomyocytes by fibrotic material, generating a vicious cycle of further decline of cardiac function. Breaking this fibrosis-cell death axis could halt further pathological and age-related cardiac regression and potentially reverse remodeling. In this review, we will describe the interaction between cardiac fibrosis, cardiomyocyte hypertrophy and cell death, and discuss potential strategies for tackling progressive cardiac remodeling and HF.
Collapse
Affiliation(s)
- A Piek
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - R A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - H H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
12
|
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2015; 4:169-183. [PMID: 27340611 DOI: 10.1517/21678707.2016.1124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. AREAS COVERED Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. EXPERT OPINION Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri
| | | | - Stacey B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri
| | - Timothy L Domeier
- Department of Medical Physiology and Pharmacology, School of Medicine, University of Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri; Department of Neurology, School of Medicine, University of Missouri
| |
Collapse
|
13
|
Nishida K, Yamaguchi O, Otsu K. Degradation systems in heart failure. J Mol Cell Cardiol 2015; 84:212-22. [PMID: 25981331 DOI: 10.1016/j.yjmcc.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Abstract
Heart failure is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or the ejection of blood, and is a leading cause of morbidity and mortality in industrialized countries. The mechanisms underlying the development of heart failure are multiple, complex and not well understood. Cardiac mass and its homeostasis are maintained by the balance between protein synthesis and degradation, and an imbalance is likely to result in cellular dysfunction and disease. The protein degradation systems are the principle mechanisms for maintaining cellular homeostasis via protein quality control. Three major protein degradation systems have been identified, namely the calpain system, autophagy, and the ubiquitin proteasome system. Proinflammatory mediators involve the development and progression of heart failure. DNA and RNA degradation systems play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and posttranscriptional regulation, respectively. This review discusses some recent advances in understanding the role of these degradation systems in heart failure.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK.
| |
Collapse
|
14
|
Wan C, Chen Y, Yin P, Han D, Xu X, He S, Liu M, Hou X, Liu F, Xu J. Transport stress induces apoptosis in rat myocardial tissue via activation of the mitogen-activated protein kinase signaling pathways. Heart Vessels 2014; 31:212-21. [PMID: 25448624 DOI: 10.1007/s00380-014-0607-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/21/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed to elucidate the mechanism of myocardial damage induced by simulated transport stress. Sprague-Dawley rats were subjected to 35 °C and 60 rpm (0.1×g rcf) on a constant temperature shaker. The blood samples were prepared for detection of epinephrine (E), norepinephrine (NE), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and serum cardiac troponin T (cTNT); myocardium samples were prepared for morphological examination and signaling protein quantitative. The result showed that plasma norepinephrine (NE) and epinephrine (E) concentrations increased in all stressed groups (P < 0.01). Levels of serum cardiac troponin T (cTNT) were elevated in both the S2d (P < 0.05) and S3d groups (P < 0.01). The concentration of plasma BNP was increased significantly in S3d group (P < 0.05); the difference in ANP was not remarkable. Morphological observation demonstrated obvious microstructure and ultrastructure damage after simulated transport stress. There was also a significant increase in the number of TUNEL-positive cardiomyocytes in stressed hearts. Western blot analysis found that the mitogen-activated protein kinase (MAPK) pathways were activated by strengthening phosphorylation of ASK-1, JNK, P38 and ERK in rat myocardial tissue after simulated transport stress (P < 0.05, P < 0.01). In addition, the ratio of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins was increased in stressed rats (P < 0.01), and the amount of cleaved-caspase3 increased in all stressed rats (P < 0.01). The expression of cleaved-caspase9 protein was also elevated in S2d and S3d groups (P < 0.01). Consequently simulated transport stress induced obvious myocardial damage, which may be attributed to the activation of caspase 9-mediated mitochondrial apoptotic pathway and MAPK pathways.
Collapse
Affiliation(s)
- Changrong Wan
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Yuping Chen
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Peng Yin
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Dandan Han
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xiaolong Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Shasha He
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Mingjiang Liu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), No. 7 Beinong Road, Beijing, 102206, People's Republic of China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), No. 7 Beinong Road, Beijing, 102206, People's Republic of China.
| | - Jianqin Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Role of endoplasmic reticulum stress in atherosclerosis and diabetic macrovascular complications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:610140. [PMID: 25061609 PMCID: PMC4100367 DOI: 10.1155/2014/610140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
Abstract
Age-related changes in endoplasmic reticulum (ER) are associated with stress of this cell organelle. Unfolded protein response (UPR) is a normal physiological reaction of a cell in order to prevent accumulation of unfolded and misfolded proteins in the ER and improve the normal ER function. However, in pathologic conditions such as atherosclerosis, obesity, and diabetes, ER function becomes impaired, leading to the development of ER stress. In chronic ER stress, defective posttranslational protein folding results in deposits of aberrantly folded proteins in the ER and the induction of cell apoptosis mediated by UPR sensors C/EBPα-homologous protein (CHOP) and inositol requiring protein-1 (IRE1). Since ER stress and ER-induced cell death play a nonredundant role in the pathogenesis of atherosclerosis and diabetic macrovascular complications, pharmaceutical targeting of ER stress components and pathways may be beneficial in the treatment and prevention of cardiovascular pathology.
Collapse
Affiliation(s)
| | - Igor A. Sobenin
- Institute for Atherosclerosis, Skolkovo Innovation Center, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian Cardiology Research and Production Complex, Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis, Skolkovo Innovation Center, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri V. Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Medicine and St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
16
|
Galvao TF, Khairallah RJ, Dabkowski ER, Brown BH, Hecker PA, O'Connell KA, O'Shea KM, Sabbah HN, Rastogi S, Daneault C, Des Rosiers C, Stanley WC. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Am J Physiol Heart Circ Physiol 2012; 304:H12-21. [PMID: 23103493 DOI: 10.1152/ajpheart.00657.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction in heart failure includes greater susceptibility to mitochondrial permeability transition (MPT), which may worsen cardiac function and decrease survival. Treatment with a mixture of the n3 polyunsaturated fatty acids (n3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is beneficial in heart failure patients and increases resistance to MPT in animal models. We assessed whether DHA and EPA have similar effects when given individually, and whether they prolong survival in heart failure. Male δ-sarcoglycan null cardiomyopathic hamsters were untreated or given either DHA, EPA, or a 1:1 mixture of DHA + EPA at 2.1% of energy intake. Treatment did not prolong survival: mean survival was 298 ± 15 days in untreated hamsters and 335 ± 17, 328 ± 14, and 311 ± 15 days with DHA, EPA, and DHA + EPA, respectively (n = 27-32/group). A subgroup of cardiomyopathic hamsters treated for 26 wk had impaired left ventricular function and increased cardiomyocyte apoptosis compared with normal hamsters, which was unaffected by n3 PUFA treatment. Evaluation of oxidative phosphorylation in isolated subsarcolemmal and interfibrillar mitochondria with substrates for complex I or II showed no effect of n3 PUFA treatment. On the other hand, interfibrillar mitochondria from cardiomyopathic hamsters were significantly more sensitive to Ca(2+)-induced MPT, which was completely normalized by treatment with DHA and partially corrected by EPA. In conclusion, treatment with DHA or EPA normalizes Ca(2+)-induced MPT in cardiomyopathic hamsters but does not prolong survival or improve cardiac function. This suggest that greater susceptibility to MPT is not a contributor to cardiac pathology and poor survival in heart failure.
Collapse
Affiliation(s)
- Tatiana F Galvao
- Division of Cardiology, Department of Medicine, University of Maryland, 20 Penn St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Toldo S, Breckenridge DG, Mezzaroma E, Van Tassell BW, Shryock J, Kannan H, Phan D, Budas G, Farkas D, Lesnefsky E, Voelkel N, Abbate A. Inhibition of apoptosis signal-regulating kinase 1 reduces myocardial ischemia-reperfusion injury in the mouse. J Am Heart Assoc 2012; 1:e002360. [PMID: 23316291 PMCID: PMC3541620 DOI: 10.1161/jaha.112.002360] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/06/2012] [Indexed: 01/08/2023]
Abstract
Background Despite the clear advantages of reperfusion in acute myocardial infarction, part of the myocardium is injured during reperfusion by reactive oxygen species. Reactive oxygen species activate apoptosis signal–regulating kinase-1, a key mediator in cell death. We hypothesized that inhibition of apoptosis signal–regulating kinase-1 at the time of reperfusion would protect the heart from ischemia–reperfusion injury. Methods and Results Male CD1 mice underwent transient coronary artery ligation (30 minutes) followed by reperfusion or underwent sham surgery (n=10 to 12 per group). A selective small-molecule inhibitor of apoptosis signal–regulating kinase-1 (GS-459679) was given immediately after reperfusion (10 or 30 mg/kg IP). Infarct size was measured early (at 24 hours, in a subgroup of mice) by triphenyl tetrazolium chloride staining and late (at 7 days) by Masson's trichrome staining for fibrosis. Apoptosis was assessed by measurement of caspase-3 activity and by determination of DNA fragmentation in cardiomyocytes bordering the infarct. Transthoracic echocardiography was performed before surgery and then at 24 hours and 7 days later. Treatment with GS-459679 at reperfusion led to a significant dose-related reduction in infarct size (31% for 10 mg/kg [P<0.001 versus vehicle] and 60% for 30 mg/kg [P<0.001 versus vehicle]), inhibition of apoptotic cell death, and preservation of left ventricular dimension and systolic function at both 24 hours and 7 days. Conclusions Inhibition of apoptosis signal–regulating kinase-1 at the time of reperfusion limits infarct size and preserves left ventricular function in a model of acute myocardial infarction in the mouse.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamaguchi O, Taneike M, Otsu K. Cooperation between proteolytic systems in cardiomyocyte recycling. Cardiovasc Res 2012; 96:46-52. [DOI: 10.1093/cvr/cvs236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Liu M, Zhang P, Chen M, Zhang W, Yu L, Yang XC, Fan Q. Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats. AGE (DORDRECHT, NETHERLANDS) 2012; 34:621-32. [PMID: 21655933 PMCID: PMC3337931 DOI: 10.1007/s11357-011-9259-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/26/2011] [Indexed: 05/06/2023]
Abstract
Previous studies indicated aging results in the significant cardiac function decreasing and myocardial apoptosis increasing in normal humans or rats. Additionally, animal experiments demonstrated aging increased myocardial ischemia / reperfusion (MI/R)-induced apoptosis. However, whether more myocardial apoptosis happen in the old acute myocardial infarction (AMI) patients is unclear. Reperfusion injury-induced apoptosis is an important cause of heart failure. This study determined the effect of aging upon myocardial apoptosis and cardiac function in patients suffering AMI. All enrolled AMI patients received percutaneous coronary intervention therapy. Volunteers and AMI patients were assigned to four groups: adult (age <65, n = 24) volunteers, elderly (age ≥65, n = 21) volunteers, adult (age <65, n = 29) AMI patients, and elderly (age ≥65, n = 36) AMI patients. Blood samples were obtained from all study participants. Plasma apoptotic markers (soluble form of Fas, tumor necrosis factor alpha, and interleukin 6) levels were determined. Cardiac function was evaluated with echocardiogram and Killip class. Due to lack of a direct apoptotic assay method in live human subjects, an additional animal experiment was performed. Both young (2 months) and old (24 months) rats were subjected to 30-min myocardial ischemia and 3 (for TUNEL/caspase activity apoptotic assay) or 24-h (for cardiac function determination) reperfusion. Compared to adult patients, the elderly patients manifested decreased cardiac function and increased plasma apoptotic marker levels significantly. The animal experiment results (cardiac function and plasma apoptotic markers assays) were consistent with the human result data. Animal TUNEL staining and caspase activity measurement revealed a higher myocardial apoptotic ratio in the older rat group. Aging exacerbated MI/R injury in humans and rats. Differential myocardial apoptosis may play a vital role in mediating the observed effects.
Collapse
Affiliation(s)
- Miaobing Liu
- Department of Gerontology, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| | - Ping Zhang
- Department of Gerontology, Beijing Jishuitan Hospital, 31 Xinjiekoudong Road, Beijing, 100035 China
| | - Mulei Chen
- Heart Center, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| | - Wuning Zhang
- Heart Center, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| | - Liping Yu
- Heart Center, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| | - Xin-Chun Yang
- Heart Center, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| | - Qian Fan
- Heart Center, Beijing Chaoyang Hospital—Affiliate of Capital Medical University, 8 Gongtinan Road, Beijing, 100020 China
| |
Collapse
|
20
|
Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in δ-Sarcoglycan-deficient hamsters. Mol Ther 2012; 20:727-35. [PMID: 22314291 DOI: 10.1038/mt.2012.5] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Muscular dystrophies (MDs) are caused by genetic mutations in over 30 different genes, many of which encode for proteins essential for the integrity of muscle cell structure and membrane. Their deficiencies cause the muscle vulnerable to mechanical and biochemical damages, leading to membrane leakage, dystrophic pathology, and eventual loss of muscle cells. Recent studies report that MG53, a muscle-specific TRIM-family protein, plays an essential role in sarcolemmal membrane repair. Here, we show that systemic delivery and muscle-specific overexpression of human MG53 gene by recombinant adeno-associated virus (AAV) vectors enhanced membrane repair, ameliorated pathology, and improved muscle and heart functions in δ-sarcoglycan (δ-SG)-deficient TO-2 hamsters, an animal model of MD and congestive heart failure. In addition, MG53 overexpression increased dysferlin level and facilitated its trafficking to muscle membrane through participation of caveolin-3. MG53 also protected muscle cells by activating cell survival kinases, such as Akt, extracellular signal-regulated kinases (ERK1/2), and glycogen synthase kinase-3β (GSK-3β) and inhibiting proapoptotic protein Bax. Our results suggest that enhancing the muscle membrane repair machinery could be a novel therapeutic approach for MD and cardiomyopathy, as demonstrated here in the limb girdle MD (LGMD) 2F model.
Collapse
|
21
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
22
|
Volynets GP, Chekanov MO, Synyugin AR, Golub AG, Kukharenko OP, Bdzhola VG, Yarmoluk SM. Identification of 3H-naphtho[1,2,3-de]quinoline-2,7-diones as inhibitors of apoptosis signal-regulating kinase 1 (ASK1). J Med Chem 2011; 54:2680-6. [PMID: 21449566 DOI: 10.1021/jm200117h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) has recently emerged as an attractive therapeutic target for the treatment of cardiac and neurodegenerative disorders. The selective inhibitors of ASK1 may become important compounds for the development of clinical agents. We have identified the ASK1 inhibitor among 3H-naphtho[1,2,3-de]quinoline-2,7-diones using receptor-based virtual screening. In vitro kinase assay revealed that ethyl 2,7-dioxo-2,7-dihydro-3H-naphtho[1,2,3-de]quinoline-1-carboxylate (NQDI-1) inhibited ASK1 with a K(i) of 500 nM. The competitive character of inhibition is demonstrated in Lineweaver-Burk plots. In our preliminary selectivity study this compound exhibited strong specific inhibitory activity toward ASK1.
Collapse
Affiliation(s)
- Galyna P Volynets
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
23
|
Chang H, Zhang L, Xu PT, Li Q, Sheng JJ, Wang YY, Chen Y, Zhang LN, Yu ZB. Nuclear translocation of calpain-2 regulates propensity toward apoptosis in cardiomyocytes of tail-suspended rats. J Cell Biochem 2011; 112:571-80. [DOI: 10.1002/jcb.22947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Moreira-Gonçalves D, Henriques-Coelho T, Fonseca H, Ferreira RM, Amado F, Leite-Moreira A, Duarte JA. Moderate exercise training provides left ventricular tolerance to acute pressure overload. Am J Physiol Heart Circ Physiol 2010; 300:H1044-52. [PMID: 21186273 DOI: 10.1152/ajpheart.01008.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the impact of moderate exercise training on the cardiac tolerance to acute pressure overload. Male Wistar rats were randomly submitted to exercise training or sedentary lifestyle for 14 wk. At the end of this period, the animals were anaesthetized, mechanically ventilated, and submitted to hemodynamic evaluation with biventricular tip pressure manometers. Acute pressure overload was induced by banding the descending aorta to induce a 60% increase of peak systolic left ventricular pressure during 120 min. This resulted in the following experimental groups: 1) sedentary without banding (SED + Sham), 2) sedentary with banding (SED + Band), and 3) exercise trained with banding (EX + Band). In response to aortic banding, SED + Band animals could not sustain the 60% increase of peak systolic pressure for 120 min, even with additional narrowing of the banding. This was accompanied by a reduction of dP/dt(max) and dP/dt(min) and a prolongation of the time constant tau, indicating impaired systolic and diastolic function. This impairment was not observed in EX + Band (P < 0.05 vs. SED + Band). Additionally, compared with SED + Band, EX + Band presented less myocardial damage, exhibited attenuated protein expression of active caspase-3 and NF-κB (P < 0.016), and showed less protein carbonylation and nitration (P < 0.05). These findings support our hypothesis that exercise training has a protective role in the modulation of the early cardiac response to pressure overload.
Collapse
Affiliation(s)
- Daniel Moreira-Gonçalves
- Faculty of Medicine, Department of Physiology, Department of Sport Biology, Research Center in Physical Activity and Health, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
25
|
Minamino T, Komuro I, Kitakaze M. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 2010; 107:1071-82. [PMID: 21030724 DOI: 10.1161/circresaha.110.227819] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease constitutes a major and increasing health burden in developed countries. Although treatments have progressed, the development of novel treatments for patients with cardiovascular diseases remains a major research goal. The endoplasmic reticulum (ER) is the cellular organelle in which protein folding, calcium homeostasis, and lipid biosynthesis occur. Stimuli such as oxidative stress, ischemic insult, disturbances in calcium homeostasis, and enhanced expression of normal and/or folding-defective proteins lead to the accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers the unfolded protein response (UPR) to maintain ER homeostasis. The UPR involves a group of signal transduction pathways that ameliorate the accumulation of unfolded protein by increasing ER-resident chaperones, inhibiting protein translation and accelerating the degradation of unfolded proteins. The UPR is initially an adaptive response but, if unresolved, can lead to apoptotic cell death. Thus, the ER is now recognized as an important organelle in deciding cell life and death. There is compelling evidence that the adaptive and proapoptotic pathways of UPR play fundamental roles in the development and progression of cardiovascular diseases, including heart failure, ischemic heart diseases, and atherosclerosis. Thus, therapeutic interventions that target molecules of the UPR component and reduce ER stress will be promising strategies to treat cardiovascular diseases. In this review, we summarize the recent progress in understanding UPR signaling in cardiovascular disease and its related therapeutic potential. Future studies may clarify the most promising molecules to be investigated as targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | | | | |
Collapse
|
26
|
McCarty MF. Practical prevention of cardiac remodeling and atrial fibrillation with full-spectrum antioxidant therapy and ancillary strategies. Med Hypotheses 2010; 75:141-7. [PMID: 20083360 DOI: 10.1016/j.mehy.2009.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/19/2009] [Indexed: 11/26/2022]
Abstract
A wealth of research data points to increased oxidative stress as a key driver of the cardiac remodeling triggered by chronic pressure overload, loss of functional myocardial tissue, or atrial fibrillation. Oxidative stress is a mediator of the cardiomyocyte hypertrophy and apoptosis, the cardiac fibrosis, and the deficits in cardiac function which typify this syndrome, and may play a role in initiating and sustaining atrial fibrillation. Nox2- and Nox4-dependent NADPH oxidase activity appears to be a major source of this oxidative stress, and oxidants can induce conformational changes in xanthine dehydrogenase, nitric oxide synthase, and the mitochondrial respiratory chain which increase their capacity to generate superoxide as well. Consistent with these insights, various synthetic antioxidants have been shown to suppress cardiac remodeling in rodents subjected to myocardial infarction, aortic constriction, or rapid atrial pacing. It may prove feasible to achieve comparable benefits in humans through use of a "full-spectrum antioxidant therapy" (FSAT) that features a complementary array of natural antioxidants. Spirulina is a rich source of phycocyanobilin, a derivative and homolog of biliverdin that appears to mimic the potent inhibitory impact of biliverdin and free bilirubin on NADPH oxidase activity. Mega-doses of folate can markedly increase intracellular levels of tetrahydrofolates which have potent and versatile radical-scavenging activities - including efficient quenching of peroxynitrite-derived radicals Supplemental coenzyme Q10, already shown to improve heart function in clinical congestive failure, can provide important antioxidant protection to mitochondria. Phase 2 inducer nutraceuticals such as lipoic acid, administered in conjunction with N-acetylcysteine, have the potential to blunt the impact of oxidative stress by boosting myocardial levels of glutathione. While taurine can function as an antioxidant for myeloperoxidase-derived radicals, its positive inotropic effect on the failing heart seems more likely to reflect an effect on intracellular calcium dynamics. These measures could aid control of cardiac modeling less directly by lowering elevated blood pressure, or by aiding the perfusion of ischemic cardiac regions through an improvement in coronary endothelial function. Since nitric oxide functions physiologically to oppose cardiomyocyte hypertrophy and cardiac fibrosis, and is also a key regulator of blood pressure and endothelial function, cocoa flavanols - which provoke endothelial release of nitric oxide - might usefully complement the antioxidant measures recommended here.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
27
|
Hikoso S, Yamaguchi O, Nakano Y, Takeda T, Omiya S, Mizote I, Taneike M, Oka T, Tamai T, Oyabu J, Uno Y, Matsumura Y, Nishida K, Suzuki K, Kogo M, Hori M, Otsu K. The I{kappa}B kinase {beta}/nuclear factor {kappa}B signaling pathway protects the heart from hemodynamic stress mediated by the regulation of manganese superoxide dismutase expression. Circ Res 2009; 105:70-9. [PMID: 19478205 DOI: 10.1161/circresaha.108.193318] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiomyocyte death plays an important role in the pathogenesis of heart failure. The nuclear factor (NF)-kappaB signaling pathway regulates cell death, however, the effect of NF-kappaB pathway on cell death can vary in different cells or stimuli. The purpose of the present study was to clarify the in vivo role of the NF-kappaB pathway in response to pressure overload. First, we subjected C57Bl6/J mice to pressure overload by means of transverse aortic constriction (TAC) and examined the activity of the NF-kappaB pathway in response to pressure overload. IkappaB kinase (IKK) and NF-kappaB were activated after TAC. Then, we investigated the role of the activation using cardiac-specific IKKbeta-deficient mice (CKO). CKO displayed normal global cardiac structure and function compared with control littermates. We subjected CKO and control mice to pressure overload. One week after TAC, CKO showed cardiac dilation, dysfunction, and lung congestion, which are characteristics of heart failure. The number of apoptotic cells in the hearts of CKO mice increased significantly after TAC. The levels of manganese superoxide dismutase mRNA and protein expression in CKO after TAC were significantly attenuated compared with control mice. The levels of oxidative stress and c-Jun N-terminal kinase (JNK) activation in CKO after TAC were significantly greater than those in control mice. Isoproterenol-induced cell death of isolated adult CKO cardiomyocytes was inhibited by treatment with either a manganese superoxide dismutase mimetic or a JNK inhibitor. Thus, the IKKbeta/NF-kappaB signaling pathway plays a protective role in cardiomyocytes because of the attenuation of oxidative stress and JNK activation in a setting of acute pressure overload.
Collapse
Affiliation(s)
- Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hattori K, Naguro I, Runchel C, Ichijo H. The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 2009; 7:9. [PMID: 19389260 PMCID: PMC2685135 DOI: 10.1186/1478-811x-7-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase kinase family, which activates c-Jun N-terminal kinase and p38 in response to a diverse array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. In the past decade, various regulatory mechanisms of ASK1 have been elucidated, including its oxidative stress-dependent activation. Recently, it has emerged that ASK family proteins play key roles in cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the recent findings on ASK family proteins and their implications in various diseases.
Collapse
Affiliation(s)
- Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
29
|
French CJ, Spees JL, Zaman AKMT, Taatjes DJ, Sobel BE. The magnitude and temporal dependence of apoptosis early after myocardial ischemia with or without reperfusion. FASEB J 2008; 23:1177-85. [PMID: 19095733 DOI: 10.1096/fj.08-116509] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In view of the conventional wisdom in the cardiology literature that apoptosis is extensive early after myocardial ischemia, predicated largely from results with the TUNEL assay known to be nonspecific, this study was performed to delineate its extent with multiple assays and at multiple intervals. Coronary occlusion with and without subsequent revascularization was induced in 10-wk-old C57BL6 mice subjected to 1 or 4 h of transient ligation followed by 24 h of reperfusion, or 24 h persistent ligation. Apoptosis was quantified throughout the left ventricle immunohistochemically by assay of TUNEL, single-stranded DNA (ssDNA), and cleaved caspase 3; electron microscopy (EM); and activity assays of caspase 3 and 8. TUNEL staining was marked, but ssDNA and cleaved caspase 3 staining were significantly less (P<0.001 compared with TUNEL), and apoptosis defined by EM was virtually absent in all groups. Caspase 3 and caspase 8 activities per milligram protein were not significantly different from those in normal hearts. Only rare, potentially apoptotic cells were seen by EM in hearts from any group. Thus, the results with TUNEL were not specific, and the extent of apoptosis was markedly less than that predicated on the results with the TUNEL procedure. Apoptosis is de minimus early after transitory or persistent ischemia, though it is overestimated by TUNEL assays. Thus, antiapoptotic interventions per se are not likely to preserve substantial amounts of myocardium early after ischemic insults.
Collapse
|
30
|
Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 2008; 81:457-64. [PMID: 19047340 DOI: 10.1093/cvr/cvn335] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In acute myocardial infarction (MI), reactive oxygen species (ROS) are generated in the ischaemic myocardium especially after reperfusion. ROS directly injure the cell membrane and cause cell death. However, ROS also stimulate signal transduction to elaborate inflammatory cytokines, e.g. tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and -6, in the ischaemic region and surrounding myocardium as a host reaction. Inflammatory cytokines also regulate cell survival and cell death in the chain reaction with ROS. Both ROS and inflammatory cytokines are cardiodepressant mainly due to impairment of intracellular Ca(2+) homeostasis. Inflammatory cytokines stimulate apoptosis through a TNF-alpha receptor/caspase pathway, whereas Ca(2+) overload induced by extensive ROS generation causes necrosis through enhanced permeability of the mitochondrial membrane (mitochondrial permeability transition). Apoptosis signal-regulating kinase-1 (ASK1) is an ROS-sensitive, mitogen-activated protein kinase kinase kinase that is activated by many stress signals and can activate nuclear factor kappaB and other transcription factors. ASK1-deficient mice demonstrate that the ROS/ASK1 pathway is involved in necrotic as well as apoptotic cell death, indicating that ASK1 may be a therapeutic target to reduce left ventricular (LV) remodelling after MI. ROS and inflammatory cytokines activate matrix metalloproteinases which degrade extracellular matrix, causing a slippage of myofibrils and hence LV dilatation. Consequently, collagen deposition is increased and tissue repair is enhanced with myocardial fibrosis and angiogenesis. Since the extent of LV remodelling is a major predictor of prognosis of the patients with MI, the therapeutic approach to attenuating LV remodelling is critically important.
Collapse
Affiliation(s)
- Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan.
| | | |
Collapse
|
31
|
Abstract
Heart failure (HF) has become the dominant cardiovascular disorder in the Western world and Japan, so there is an urgent need to clarify the mechanisms governing pathological remodeling mediated through cell death, and to identify ways of preventing and treating HF. Historically, there are 3 types of cell death: apoptosis, autophagy and necrosis. Apoptosis, a form of programmed cell death, has been well characterized and the molecular events involved in apoptotic death are well understood. Necrosis is often defined in a negative manner: death lacking the characteristics of programmed cell death and thus accidental and uncontrolled. However, recent studies indicate that necrosis is tightly regulated. Autophagy is a cell survival mechanism that involves degradation and recycling of cytoplasmic components. In contrast to the other 2 mechanisms, autophagy may mediate cell death under specific circumstances. In fact, damaged cardiomyocytes that show characteristics of autophagy have been observed during HF. However, a recent study indicated that upregulation of autophagy in the failing heart is an adaptive response. This review summarizes recent findings regarding the molecular mechanisms of cardiomyocyte cell death in HF.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
32
|
Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev 2008; 60:1177-92. [PMID: 18474407 DOI: 10.1016/j.addr.2008.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/04/2008] [Indexed: 11/22/2022]
Abstract
Ultrasound targeted microbubble destruction has evolved as a promising tool for organ specific gene and drug delivery. This technique has initially been developed as a method in myocardial contrast echocardiography, destroying intramyocardial microbubbles to characterize refill kinetics. When loading similar microbubbles with a bioactive substance, ultrasonic destruction of microbubbles may release the transported substance in the targeted organ. Furthermore, high amplitude oscillations of microbubbles lead to increased capillary and cell membrane permeability, thus facilitating tissue and cell penetration of the released substance. While this technique has been successfully used in many organs, its application in the cardiovascular system has dominated so far. Drug delivery using microbubbles has played a minor role in the cardiovascular system. In contrast, gene transfer has been successfully achieved in many studies. Both viral and non-viral vectors were used for loading on microbubbles. This review article will give an overview on studies that have applied ultrasound targeted microbubble destruction to deliver substances in the heart and blood vessels. It will show potential therapeutic targets, especially for gene therapy, describe feasible substances that can be loaded on microbubbles, and critically discuss prospects and limitations of this technique.
Collapse
|
33
|
|