1
|
Krittanawong C, Britt WM, Rizwan A, Siddiqui R, Khawaja M, Khan R, Joolharzadeh P, Newman N, Rivera MR, Tang WHW. Clinical Update in Heart Failure with Preserved Ejection Fraction. Curr Heart Fail Rep 2024; 21:461-484. [PMID: 39225910 DOI: 10.1007/s11897-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW To review the most recent clinical trials and data regarding epidemiology, pathophysiology, diagnosis, and treatment of heart failure with preserved ejection fraction with an emphasis on the recent trends in cardiometabolic interventions. RECENT FINDINGS Heart failure with preserved ejection fraction makes up approximately half of overall heart failure and is associated with significant morbidity, mortality, and overall burden on the healthcare system. It is a complex, heterogenous syndrome and clinical trials, to this point, have not revealed quite as many effective treatment options when compared to heart failure with reduced ejection fraction. Nevertheless, there is an expanding amount of data insight into the pathogenesis of this disease and the potential for newer therapies and management strategies. Heart failure with preserved ejection fraction pathology has been found to be linked to abnormal energetics, myocyte hypertrophy, cell signaling, inflammation, ischemia, and fibrosis. These mechanisms also intricately overlap with the significant comorbidities often associated with heart failure with preserved ejection fraction including, but not limited to, atrial fibrillation, chronic kidney disease, hypertension, obesity and coronary artery disease. Treatment of this disease, therefore, should focus on the management and strict regulation of these comorbidities by pharmacologic and nonpharmacologic means. In this review, a clinical update is provided reviewing the most recent clinical trials and data regarding epidemiology, pathophysiology, diagnosis, and treatment of heart failure with preserved ejection fraction with an emphasis on the recent trend in cardiometabolic interventions.
Collapse
Affiliation(s)
| | - William Michael Britt
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Affan Rizwan
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Muzamil Khawaja
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rabisa Khan
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Pouya Joolharzadeh
- John T Milliken Department of Medicine, Division of Cardiovascular Disease, Barnes-Jewish Hospital, St Louis, United States
| | - Noah Newman
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mario Rodriguez Rivera
- Advanced Heart Failure and Transplant, Barnes-Jewish Hospital Washington University in St Louis School of Medicine, St.Louis, MO, USA
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
2
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2024:10.1038/s41569-024-01067-1. [PMID: 39198624 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Liu D, Zeng F, Chen Z, Qin Z, Liu Z. Regulation of cardiac fibrosis in mice with TAC/DOCA-induced HFpEF by resistin-like molecule gamma and adenylate cyclase 1. FEBS Open Bio 2024; 14:1101-1115. [PMID: 38710658 PMCID: PMC11216931 DOI: 10.1002/2211-5463.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Dawei Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChina
- Department of Cardiology, Bishan Hospital of ChongqingBishan Hospital of Chongqing Medical UniversityChina
| | - Fanling Zeng
- Health Management CenterThe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Zhiyu Chen
- Orthopedic Laboratory of Chongqing Medical UniversityChina
| | - Zheng Qin
- Department of Vascular SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Zhiqiang Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChina
| |
Collapse
|
4
|
Moreyra C, Moreyra E, Rozich JD. Heart Failure With Preserved Ejection Fraction: Will Cardiac Magnetic Imaging Impact on Diagnosis, Treatment, and Outcomes?: Explaining the Need for Advanced Imaging to Clinical Stakeholders. Cardiol Rev 2024; 32:371-377. [PMID: 36576375 DOI: 10.1097/crd.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clinicians frequently equate symptoms of volume overload to heart failure (HF) but such generalization may preclude diagnostic or etiologic precision essential to optimizing outcomes. HF itself must be specified as the disparate types of cardiac pathology have been traditionally surmised by examination of left ventricular (LV) ejection fraction (EF) as either HF with preserved LVEF (HFpEF-LVEF >50%) or reduced LVEF of (HFrEF-LVEF <40%). More recent data support a third, potentially transitional HF subtype, but therapy, assessment, and prognosis have been historically dictated within the corresponding LV metrics determined by echocardiography. The present effort asks whether this historically dominant role of echocardiography is now shifting slightly, becoming instead a shared if not complimentary test. Will there be a gradual increasing profile for cardiac magnetic resonance as the attempt to further refine our understanding, diagnostic accuracy, and outcomes for HFpEF is attempted?
Collapse
Affiliation(s)
- Camila Moreyra
- From the Cardiology Department, Sanatorium Allende, Córdoba, Argentina
| | - Eduardo Moreyra
- From the Cardiology Department, Sanatorium Allende, Córdoba, Argentina
| | | |
Collapse
|
5
|
Alcaide P, Kallikourdis M, Emig R, Prabhu SD. Myocardial Inflammation in Heart Failure With Reduced and Preserved Ejection Fraction. Circ Res 2024; 134:1752-1766. [PMID: 38843295 PMCID: PMC11160997 DOI: 10.1161/circresaha.124.323659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Heart failure (HF) is characterized by a progressive decline in cardiac function and represents one of the largest health burdens worldwide. Clinically, 2 major types of HF are distinguished based on the left ventricular ejection fraction (EF): HF with reduced EF and HF with preserved EF. While both types share several risk factors and features of adverse cardiac remodeling, unique hallmarks beyond ejection fraction that distinguish these etiologies also exist. These differences may explain the fact that approved therapies for HF with reduced EF are largely ineffective in patients suffering from HF with preserved EF. Improving our understanding of the distinct cellular and molecular mechanisms is crucial for the development of better treatment strategies. This article reviews the knowledge of the immunologic mechanisms underlying HF with reduced and preserved EF and discusses how the different immune profiles elicited may identify attractive therapeutic targets for these conditions. We review the literature on the reported mechanisms of adverse cardiac remodeling in HF with reduced and preserved EF, as well as the immune mechanisms involved. We discuss how the knowledge gained from preclinical models of the complex syndrome of HF as well as from clinical data obtained from patients may translate to a better understanding of HF and result in specific treatments for these conditions in humans.
Collapse
Affiliation(s)
- Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston MA
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy and Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Ramona Emig
- Department of Immunology, Tufts University School of Medicine, Boston MA
| | - Sumanth D. Prabhu
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
6
|
Makarov I, Voronkina D, Gurshchenkov A, Ryzhkov A, Starshinova A, Kudlay D, Mitrofanova L. Are Endomyocardial Ventricular Biopsies Useful for Assessing Myocardial Fibrosis? J Clin Med 2024; 13:3275. [PMID: 38892986 PMCID: PMC11172522 DOI: 10.3390/jcm13113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myocardial fibrosis is an important factor in the progression of cardiovascular diseases. However, there is still no universal lifetime method of myocardial fibrosis assessment that has a high prognostic significance. The aim of the study was to determine the significance of ventricular endomyocardial biopsies for the assessment of myocardial fibrosis and to identify the severity of myocardial fibrosis in different cardiovascular diseases. Material and Methods: Endomyocardial biopsies (EMBs) of 20 patients with chronic lymphocytic myocarditis (CM), endomyocardial fragments obtained during septal reduction of 21 patients with hypertrophic cardiomyopathy (HCM), and 36 patients with a long history of hypertensive and ischemic heart disease (HHD + IHD) were included in the study. The control group was formed from EMBs taken on 12-14 days after heart transplantation (n = 28). Also, for one patient without clinical and morphological data for cardiovascular pathology, postmortem myocardial fragments were taken from typical EMB and septal reduction sites. The relative area of fibrosis was calculated as the ratio of the total area of collagen fibers to the area of the whole biopsy. Endocardium and subendocardial fibrosis were not included in the total biopsy area. Results: The relative fibrosis area in the EMBs in the CM patient group was 5.6 [3.3; 12.6]%, 11.1 [6.6; 15.9]% in the HHD + IHD patient group, 13.4 [8.8; 16.7]% in the HCM patient group, and 2.7 [1.5; 4.6]% in the control group. When comparing the fibrosis area of the CM patients in repeat EMBs, it was found that the fibrosis area in the first EMBs was 7.6 [4.8; 12.0]%, and in repeat EMBs, it was 5.3 [3.2; 7.6]%. No statistically significant differences were found between the primary and repeat EMBs (p = 0.15). In ROC analysis, the area of fibrosis in the myocardium of 1.1% (or lower than one) was found to be highly specific for the control group of patients compared to the study patients. Conclusions: EMB in the assessment of myocardial fibrosis has a questionable role because of the heterogeneity of fibrotic changes in the myocardium.
Collapse
Affiliation(s)
- Igor Makarov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Daria Voronkina
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Alexander Gurshchenkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Anton Ryzhkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Anna Starshinova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Dmitry Kudlay
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia;
- Institute of Immunology FMBA of Russia, Moscow 115478, Russia
| | - Lubov Mitrofanova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| |
Collapse
|
7
|
Xia W, Zhang M, Liu C, Wang S, Xu A, Xia Z, Pang L, Cai Y. Exploring the therapeutic potential of tetrahydrobiopterin for heart failure with preserved ejection fraction: A path forward. Life Sci 2024; 345:122594. [PMID: 38537900 DOI: 10.1016/j.lfs.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Miao Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Guangdong, China
| | - Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
8
|
Tian J, Li W, Zeng L, Li Y, Du J, Li Y, Li B, Su G. HBI-8000 improves heart failure with preserved ejection fraction via the TGF-β1/MAPK signalling pathway. J Cell Mol Med 2024; 28:e18238. [PMID: 38509729 PMCID: PMC10955178 DOI: 10.1111/jcmm.18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-β1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-β1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-β1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.
Collapse
Affiliation(s)
- Jing Tian
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wenjing Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Lu Zeng
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Yang Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jiamin Du
- Department of Cardiology, Jinan Central Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Bin Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
9
|
Minamisawa M, Inciardi RM, Claggett B, Cikes M, Liu L, Prasad N, Biering-Sørensen T, Lam CSP, Shah SJ, Zile MR, O'Meara E, Redfield MM, McMurray JJV, Solomon SD, Shah AM. Clinical implications of subclinical left ventricular dysfunction in heart failure with preserved ejection fraction: The PARAGON-HF study. Eur J Heart Fail 2024; 26:871-881. [PMID: 38369856 DOI: 10.1002/ejhf.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Left ventricular (LV) subclinical impairment has been described in heart failure with preserved ejection fraction (HFpEF). We assessed the relationship between LV myocardial deformation by strain imaging and recurrent hospitalization for heart failure (HF) or cardiovascular death in a large international HFpEF population. METHODS AND RESULTS We assessed two-dimensional speckle-tracking based global longitudinal strain (GLS) in 790 patients (mean age 74 ± 8 years, 54% female) with adequate image quality enrolled in the PARAGON-HF echocardiography study. We examined the relationship of GLS with total HF hospitalizations and cardiovascular death (the primary composite outcome) after accounting for clinical confounders. Approximately 47% of the population had evidence of LV subclinical dysfunction, defined as absolute GLS <16%. Impaired GLS was significantly associated with higher values of circulating baseline N-terminal pro-B-type-natriuretic peptide. After a median follow-up of 3.0 years, there were 407 total HF hospitalizations and cardiovascular deaths. After multivariable adjustment, worse GLS was associated with a greater risk for the primary composite outcome (adjusted hazard ratio per 1% decrease: 1.06; 95% confidence interval 1.02-1.11; p = 0.008). GLS did not modify the treatment effect of sacubitril/valsartan compared with valsartan for the composite outcome (p for interaction >0.1). CONCLUSIONS In a large HFpEF population, impaired LV function was observed even among patients with preserved ejection fraction, and was associated with an increased risk of total HF hospitalizations or cardiovascular death, accounting for clinical confounders. These findings highlight the key role of subtle LV systolic impairment in the pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Masatoshi Minamisawa
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Riccardo M Inciardi
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Brian Claggett
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maja Cikes
- Department for Cardiovascular Diseases, University of Zagreb School of Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - Li Liu
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Narayana Prasad
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tor Biering-Sørensen
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
- University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Michael R Zile
- The Medical University of South Carolina and the Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Eileen O'Meara
- Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | | | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amil M Shah
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Song HJ, Kim HY, Park S, Lee SH. Factors influencing self-care behaviour in patients with heart failure: Grit as a behavioural support factor. Int J Nurs Pract 2024; 30:e13151. [PMID: 36945789 DOI: 10.1111/ijn.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
AIMS This study aimed to examine the relationship between heart failure knowledge, self-efficacy, social support, grit and self-care behaviour in patients with heart failure and to identify factors associated with patients' self-care behaviour. BACKGROUND Most patients with heart failure are not as active in implementing self-care behavioural practices as recommended by the guidelines. DESIGN This descriptive cross-sectional study was designed based on Bandura's Social Cognitive Theory. METHODS This study included 138 patients who were diagnosed with heart failure in an outpatient department of cardiology at a tertiary hospital in Korea. Data were collected between July and October 2020 using a structured questionnaire and electronic medical records. Data were analysed using the SPSS/WIN 27.0 program. RESULTS Grit had the strongest association with self-care behaviour among patients with heart failure, followed by social support, self-efficacy and heart failure knowledge. These variables accounted for approximately 52% of the variance in self-care behaviour. CONCLUSIONS Health-care professionals should assess patients' grit and develop patient-tailored grit enhancement programmes. Based on the social cognitive theory, nursing intervention programmes that can simultaneously manage cognitive (knowledge and self-efficacy), social and environmental (social support) and behavioural support (grit) factors should be developed and applied to nursing practices to promote self-care.
Collapse
Affiliation(s)
- Hyun Jin Song
- Department of Nursing, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hye Young Kim
- College of Nursing, Jeonbuk Research Institute of Nursing Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sookkyoung Park
- College of Nursing, Jeonbuk Research Institute of Nursing Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sun Hwa Lee
- Division of Cardiology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Miyahara D, Izumo M, Sato Y, Shoji T, Murata R, Oda R, Okuno T, Kuwata S, Akashi YJ. Prediction of symptom development and aortic valve replacement in patients with low-gradient severe aortic stenosis. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae018. [PMID: 38529170 PMCID: PMC10961946 DOI: 10.1093/ehjopen/oeae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Aims Current evidence on the prognostic value of exercise stress echocardiography (ESE) in asymptomatic patients with low-gradient severe aortic stenosis (AS) is limited. Therefore, this study aimed to elucidate its prognostic implications for patients with low-gradient severe AS and determine the added value of ESE in risk stratification for this population. Methods and results This retrospective observational study included 122 consecutive asymptomatic patients with either moderate [mean pressure gradient (MPG) < 40 mmHg and aortic valve area (AVA) 1.0-1.5 cm2] or low-gradient severe (MPG < 40 mmHg and AVA < 1.0 cm2) AS and preserved left ventricular ejection fraction (≥50%) who underwent ESE. All patients were followed up for AS-related events. Of 143 patients, 21 who met any exclusion criteria, including early interventions, were excluded, and 122 conservatively managed patients [76.5 (71.0-80.3) years; 48.3% male] were included in this study. During a median follow-up period of 989 (578-1571) days, 64 patients experienced AS-related events. Patients with low-gradient severe AS had significantly lower event-free survival rates than those with moderate AS (log-rank test, P < 0.001). Multivariable Cox regression analysis showed that the mitral E/e' ratio during exercise was independently associated with AS-related events (hazard ratio = 1.075, P < 0.001) in patients with low-gradient severe AS. Conclusion This study suggests that asymptomatic patients with low-gradient severe AS have worse prognoses than those with moderate AS. Additionally, the mitral E/e' ratio during exercise is a useful parameter for risk stratification in patients with low-gradient severe AS.
Collapse
Affiliation(s)
- Daisuke Miyahara
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Masaki Izumo
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Yukio Sato
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Tatsuro Shoji
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Risako Murata
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Ryutaro Oda
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Taishi Okuno
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Shingo Kuwata
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Yoshihiro J Akashi
- Department of Cardiology, St Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| |
Collapse
|
12
|
Zhang TY, An DA, Zhou H, Chen B, Lu R, Fang W, Wang Q, Huang J, Jin H, Shen J, Zhou Y, Hu J, Bautista M, Ouchi T, Wu LM, Mou S. Left Ventricular Vertical Run-Length Nonuniformity MRI Adds Prognostic Value to MACE in Patients with End-Stage Renal Disease. J Magn Reson Imaging 2024; 59:522-532. [PMID: 37203257 DOI: 10.1002/jmri.28792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Vertical run-length nonuniformity (VRLN) is a texture feature representing heterogeneity within native T1 images and reflects the extent of cardiac fibrosis. In uremic cardiomyopathy, interstitial fibrosis was the major histological alteration. The prognostic value of VRLN in patients with end-stage renal disease (ESRD) remains unclear. PURPOSE To evaluate the prognostic value of VRLN MRI in patients with ESRD. STUDY TYPE Prospective. POPULATION A total of 127 ESRD patients (30 participants in the major adverse cardiac events, MACE group). FIELD STRENGTH/SEQUENCE 3.0 T/steady-state free precession sequence, modified Look-Locker imaging. ASSESSMENT MRI image qualities were assessed by three independent radiologists. VRLN values were measured in the myocardium on the mid-ventricular short-axis slice of T1 mapping. Left ventricular (LV) mass, LV end-diastolic and end-systolic volume, as well as LV global strain cardiac parameters were measured. STATISTICAL TESTS The primary endpoint was the incident of MACE from enrollment time to January 2023. MACE is a composite endpoint consisting of all-cause mortality, acute myocardial infarction, stroke, heart failure hospitalization, and life-threatening arrhythmia. Cox proportional-hazards regression was performed to test whether VRLN independently correlated with MACE. The intraclass correlation coefficients of VRLN were calculated to evaluate intraobserver and interobserver reproducibility. The C-index was computed to examine the prognostic value of VRLN. P-value <0.05 were considered statistically significant. RESULTS Participants were followed for a median of 26 months. VRLN, age, LV end-systolic volume index, and global longitudinal strain remained significantly associated with MACE in the multivariable model. Adding VRLN to a baseline model containing clinical and conventional cardiac MRI parameters significantly improved the accuracy of the predictive model (C-index of the baseline model: 0.781 vs. the model added VRLN: 0.814). DATA CONCLUSION VRLN is a novel marker for risk stratification toward MACE in patients with ESRD, superior to native T1 mapping and LV ejection fraction. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hang Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Binghua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Fang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiaying Huang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haijiao Jin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianxiao Shen
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yin Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, 48201, USA
| | - Matthew Bautista
- Department of Radiology, Wayne State University, Detroit, Michigan, 48201, USA
| | - Takahiro Ouchi
- Department of Radiology, Wayne State University, Detroit, Michigan, 48201, USA
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
13
|
Aboonabi A, McCauley MD. Myofilament dysfunction in diastolic heart failure. Heart Fail Rev 2024; 29:79-93. [PMID: 37837495 PMCID: PMC10904515 DOI: 10.1007/s10741-023-10352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Diastolic heart failure (DHF), in which impaired ventricular filling leads to typical heart failure symptoms, represents over 50% of all heart failure cases and is linked with risk factors, including metabolic syndrome, hypertension, diabetes, and aging. A substantial proportion of patients with this disorder maintain normal left ventricular systolic function, as assessed by ejection fraction. Despite the high prevalence of DHF, no effective therapeutic agents are available to treat this condition, partially because the molecular mechanisms of diastolic dysfunction remain poorly understood. As such, by focusing on the underlying molecular and cellular processes contributing to DHF can yield new insights that can represent an exciting new avenue and propose a novel therapeutic approach for DHF treatment. This review discusses new developments from basic and clinical/translational research to highlight current knowledge gaps, help define molecular determinants of diastolic dysfunction, and clarify new targets for treatment.
Collapse
Affiliation(s)
- Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Fernandes I, Funakoshi S, Hamidzada H, Epelman S, Keller G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat Commun 2023; 14:8183. [PMID: 38081833 PMCID: PMC10713677 DOI: 10.1038/s41467-023-43312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiac fibroblasts play an essential role in the development of the heart and are implicated in disease progression in the context of fibrosis and regeneration. Here, we establish a simple organoid culture platform using human pluripotent stem cell-derived epicardial cells and ventricular cardiomyocytes to study the development, maturation, and heterogeneity of cardiac fibroblasts under normal conditions and following treatment with pathological stimuli. We demonstrate that this system models the early interactions between epicardial cells and cardiomyocytes to generate a population of fibroblasts that recapitulates many aspects of fibroblast behavior in vivo, including changes associated with maturation and in response to pathological stimuli associated with cardiac injury. Using single cell transcriptomics, we show that the hPSC-derived organoid fibroblast population displays a high degree of heterogeneity that approximates the heterogeneity of populations in both the normal and diseased human heart. Additionally, we identify a unique subpopulation of fibroblasts possessing reparative features previously characterized in the hearts of model organisms. Taken together, our system recapitulates many aspects of human cardiac fibroblast specification, development, and maturation, providing a platform to investigate the role of these cells in human cardiovascular development and disease.
Collapse
Affiliation(s)
- Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Peter Munk Cardiac Centre, University Health Networ, Toronto, ON, M5G1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
15
|
Holst T, Hua X, Sinning C, Waschki B, Reichenspurner H, Girdauskas E, Petersen J. Hemodynamics and Diastolic Function after Native Aortic Valve Preserving vs. Replacing Surgery. Thorac Cardiovasc Surg 2023. [PMID: 37726023 DOI: 10.1055/a-2178-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Alterations in left ventricular (LV) diastolic function following native tissue-preserving aortic valve (AV) procedures have not been systematically investigated. Furthermore, no comparisons have been made between these changes and those observed after prosthetic AV replacement. METHODS From October 2017 to August 2020, 74 patients aged <65 years were referred to our institution for elective AV surgery. Preoperative and postoperative (i.e., discharge, 3-month and 1-year follow-up) transthoracic echocardiography was analyzed. RESULTS Native tissue-preserving surgery was performed in 55 patients (AV repair: n = 42, Ross procedure: n = 13). The remaining 19 patients underwent prosthetic AV replacement. Preoperatively and at discharge, transvalvular hemodynamics and LV diastolic function were comparable in both groups. At 1-year follow-up, native valve (NV) patients showed significantly lower mean transvalvular gradient (7 ± 5 vs. 9 ± 3 mmHg, p = 0.046) and peak velocity (1.74 ± 0.51 vs. 2.26 ± 0.96 m/s, p = 0.004), and significantly better septal e' (9.1 ± 2.7 vs. 7.7 ± 2.5 cm/s, p = 0.043) and lateral e' (14.7 ± 3.1 vs. 11.7 ± 3.7 cm/s, p = 0.001). From preoperatively to 1-year postoperatively, septal and lateral e' and E/e' improved markedly after NV preservation (septal e': +0.7 cm/s, p = 0.075; lateral e': +2.3 cm/s, p < 0.001; E/e': -1.5, p = 0.001) but not after AV replacement (septal e': +0.2 cm/s, p = 0.809; lateral e': +0.8 cm/s, p = 0.574; E/e': -1.2, p = 0.347). Significant negative linear correlations between postoperative transvalvular gradients and absolute changes in lateral e' and E/e' were detected during follow-up. CONCLUSION Preservation of native tissue in AV surgery results in superior transvalvular hemodynamics compared with prosthetic AV replacement. This may induce faster LV reverse remodeling and may explain more pronounced improvement in LV diastolic function.
Collapse
Affiliation(s)
- Theresa Holst
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg, Germany
- Department of Cardiothoracic Surgery, University Hospital Augsburg, Augsburg, Bayern, Germany
| | - Xiaoqin Hua
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg, Germany
| | - Christoph Sinning
- Department of Cardiology, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg Germany
| | - Benjamin Waschki
- Department of Cardiology, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg Germany
- Department of Internal Medicine, Itzehoe Hospital, Itzehoe, Schleswig-Holstein, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg, Germany
- Department of Cardiothoracic Surgery, University Hospital Augsburg, Augsburg, Bayern, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
17
|
Bonanni A, Vinci R, d’Aiello A, Grimaldi MC, Di Sario M, Tarquini D, Proto L, Severino A, Pedicino D, Liuzzo G. Targeting Collagen Pathways as an HFpEF Therapeutic Strategy. J Clin Med 2023; 12:5862. [PMID: 37762803 PMCID: PMC10531642 DOI: 10.3390/jcm12185862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as the number of patients affected by this condition is constantly increasing due to a rising average lifespan. The absence of validated drugs effective in reducing hospitalization rates and mortality may reflect the impossibility of applying a one size fits all approach as in HFrEF, heading for a personalized approach. Available evidence demonstrated the link between collagen quantity and quality alterations, and cardiac remodeling. In the context of fibrosis, collagen cross-linking is strictly involved, displaying two types of mechanisms: enzymatic and non-enzymatic. In the murine model, enzymatic inhibition of fibrosis-inducing protease-activated receptor-1 (PAR1) and transforming growth factor (TGF)-β signaling appeared to reduce cardiac fibrosis. On the other hand, in the case of non-enzymatic cross-linking, sodium glucose co-transporter type 2 inhibitors (SGLT2is), appeared to counteract the deposition of advanced glycation end-products (AGEs), which in turn contributed to ventricular remodeling. In this review, we address the mechanisms associated with collagen alterations to identify potential targets of cardiac fibrosis in HFpEF patients.
Collapse
Affiliation(s)
- Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Ramona Vinci
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Alessia d’Aiello
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Maria Chiara Grimaldi
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Marianna Di Sario
- Department of Anaesthesia and Intensive Care, IRCCS Istituto Clinico Humanitas, Humanitas University, 20089 Milan, Italy;
| | - Dalila Tarquini
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Luca Proto
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Anna Severino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| |
Collapse
|
18
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
19
|
Bashir Z, Chen EW, Tori K, Ghosalkar D, Aurigemma GP, Dickey JB, Haines P. Insight into different phenotypic presentations of heart failure with preserved ejection fraction. Prog Cardiovasc Dis 2023; 79:80-88. [PMID: 37442358 DOI: 10.1016/j.pcad.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for half of all HF diagnoses, and its prevalence is increasing at an alarming rate. Lately, it has been recognized as a clinical syndrome due to diverse underlying etiology and pathophysiological mechanisms. The classic echocardiographic features of HFpEF have been well described as preserved ejection fraction (≥50%), left ventricular hypertrophy, and left atrial enlargement. However, echocardiography can play a key role in identifying the principal underlying mechanism responsible for HFpEF in the individual patient. The recognition of different phenotypic presentations of HFpEF (infiltrative, metabolic, genetic, and inflammatory) can assist the clinician in tailoring the appropriate management, and offer prognostic information. The goal of this review is to highlight several key phenotypes of HFpEF and illustrate the classic clinical scenario and echocardiographic features of each phenotype with real patient cases.
Collapse
Affiliation(s)
- Zubair Bashir
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edward W Chen
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Dhairyasheel Ghosalkar
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University Hospital, NY, USA
| | - Gerard P Aurigemma
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - John B Dickey
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philip Haines
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
20
|
González-Candia A, Candia AA, Arias PV, Paz AA, Herrera EA, Castillo RL. Chronic intermittent hypobaric hypoxia induces cardiovascular dysfunction in a high-altitude working shift model. Life Sci 2023:121800. [PMID: 37245841 DOI: 10.1016/j.lfs.2023.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
AIMS Chronic intermittent hypobaric hypoxia (CIHH) exposure due to shift work occurs mainly in 4 × 4 or 7 × 7 days shifts in mining, astronomy, and customs activities, among other institutions. However, the long-lasting effects of CIHH on cardiovascular structure and function are not well characterized. We aimed to investigate the effects of CIHH on the cardiac and vascular response of adult rats simulating high-altitude (4600 m) x low-altitude (760 m) working shifts. MAIN METHODS We analyzed in vivo cardiac function through echocardiography, ex vivo vascular reactivity by wire myography, and in vitro cardiac morphology by histology and protein expression and immunolocalization by molecular biology and immunohistochemistry techniques in 12 rats, 6 exposed to CIHH in the hypoxic chamber, and respective normobaric normoxic controls (n = 6). KEY FINDINGS CIHH induced cardiac dysfunction with left and right ventricle remodeling, associated with an increased collagen content in the right ventricle. In addition, CIHH increased HIF-1α levels in both ventricles. These changes are associated with decreased antioxidant capacity in cardiac tissue. Conversely, CIHH decreased contractile capacity with a marked decreased in nitric oxide-dependent vasodilation in both, carotid and femoral arteries. SIGNIFICANCE These data suggest that CIHH induces cardiac and vascular dysfunction by ventricular remodeling and impaired vascular vasodilator function. Our findings highlight the impact of CIHH in cardiovascular function and the importance of a periodic cardiovascular evaluation in high-altitude workers.
Collapse
Affiliation(s)
| | - Alejandro A Candia
- Institute of Health Sciences, University of O'Higgins, Rancagua, Chile; Department for the Woman and Newborn Health Promotion, Universidad de Chile, Chile
| | - Pamela V Arias
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adolfo A Paz
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), University of Chile, Putre, Chile.
| | - Rodrigo L Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile.
| |
Collapse
|
21
|
Alex L, Tuleta I, Hanna A, Frangogiannis NG. Diabetes Induces Cardiac Fibroblast Activation, Promoting a Matrix-Preserving Nonmyofibroblast Phenotype, Without Stimulating Pericyte to Fibroblast Conversion. J Am Heart Assoc 2023; 12:e027463. [PMID: 36892073 PMCID: PMC10111546 DOI: 10.1161/jaha.122.027463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Interstitial and perivascular fibrosis may contribute to diabetes-associated heart failure. Pericytes can convert to fibroblasts under conditions of stress and have been implicated in the pathogenesis of fibrotic diseases. We hypothesized that in diabetic hearts, pericytes may convert to fibroblasts, contributing to fibrosis and to the development of diastolic dysfunction. Methods and Results Using pericyte:fibroblast dual reporter (NG2Dsred [neuron-glial antigen 2 red fluorescent protein variant]; PDGFRαEGFP [platelet-derived growth factor receptor alpha enhanced green fluorescent protein]) mice in a type 2 diabetic db/db background, we found that diabetes does not significantly affect pericyte density but reduces the myocardial pericyte:fibroblast ratio. Lineage tracing using the inducible NG2CreER driver, along with reliable labeling of fibroblasts with the PDGFRα reporter system, showed no significant pericyte to fibroblast conversion in lean and db/db hearts. In addition, db/db mouse cardiac fibroblasts did not undergo myofibroblast conversion and had no significant induction of structural collagens but exhibited a matrix-preserving phenotype, associated with increased expression of antiproteases, matricellular genes, matrix cross-linking enzymes, and the fibrogenic transcription factor cMyc. In contrast, db/db mouse cardiac pericytes had increased expression of Timp3, without any changes in expression of other fibrosis-associated genes. The matrix-preserving phenotype of diabetic fibroblasts was associated with induction of genes encoding oxidative (Ptgs2/cycloxygenase-2, and Fmo2) and antioxidant proteins (Hmox1, Sod1). In vitro, high glucose partially recapitulated the in vivo changes in diabetic fibroblasts. Conclusions Diabetic fibrosis is not mediated through pericyte to fibroblast conversion but involves acquisition of a matrix-preserving fibroblast program, which is independent of myofibroblast conversion and is only partially explained by the effects of the hyperglycemic environment.
Collapse
Affiliation(s)
- Linda Alex
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| |
Collapse
|
22
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
23
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
24
|
Dal Canto E, Scheffer M, Kortekaas K, Driessen-Waaijer A, Paulus WJ, van Heerebeek L. Natriuretic Peptide Levels and Stages of Left Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:867. [PMID: 36979846 PMCID: PMC10045594 DOI: 10.3390/biomedicines11030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In heart failure with preserved ejection fraction (HFpEF), natriuretic peptide (NP) levels are frequently lower. In several trials, the outcome differed between patients with low and high NP levels. This suggests that NP could be used to identify distinct stages of left ventricular (LV) remodeling and myocardial tissue composition. This study investigated cardiac remodeling/dysfunction and myocardial tissue characteristics assessed by echocardiography and cardiac magnetic resonance (CMR) in HFpEF patients in relation to NP levels. Clinical and echocardiographic data of 152 HFpEF patients were derived from outpatient visits. A total of 71 HFpEF patients underwent CMR-derived T1-mapping. Multivariable regression analyses were performed to examine the association of NT-proBNP categories (> median) and NT-proBNP as continuous variable with echocardiography and CMR-derived T1-mapping. Mean age was 71 ± 9, 93% of patients were women and median NT-proBNP was 195 pg/mL, with 35% of patients below the diagnostic cut-off value (<125 pg/mL). Patients with high NT-proBNP had comparable LV systolic function and LV relaxation but significantly worse LV stiffness and left atrial function compared with patients with low NT-proBNP. Higher NT-proBNP was significantly associated with higher LV stiffness and extracellular volume fraction (ECV) (β = 1.82, 95% CI: 0.19;3.44, p = 0.029). Higher NT-proBNP levels identify HFpEF patients with worse LV stiffness because of more severe myocardial extracellular matrix remodeling, representing an advanced stage of HFpEF.
Collapse
Affiliation(s)
- Elisa Dal Canto
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Utrecht University Medical Centre, 3584 CX Utrecht, The Netherlands;
| | | | - Kirsten Kortekaas
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Walter J. Paulus
- Amsterdam University Medical Centers, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines 2022; 11:70. [PMID: 36672578 PMCID: PMC9856156 DOI: 10.3390/biomedicines11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem in nearly 50% of patients with heart failure. Therefore, research on new strategies for its diagnosis and management has become imperative in recent years. Few drugs have successfully improved clinical outcomes in this population. Therefore, numerous attempts are being made to find new pharmacological interventions that target the main mechanisms responsible for this disease. In recent years, pathological mechanisms such as cardiac fibrosis and inflammation, alterations in calcium handling, NO pathway disturbance, and neurohumoral or mechanic impairment have been evaluated as new pharmacological targets showing promising results in preliminary studies. This review aims to analyze the new strategies and mechanical devices, along with their initial results in pre-clinical and different phases of ongoing clinical trials for HFpEF patients. Understanding new mechanisms to generate interventions will allow us to create methods to prevent the adverse outcomes of this silent pandemic.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Esteban Romero-Hernández
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sebastián Weitz-Muñoz
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Martín Reyes
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Diego Vergara
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sergio Bustamante
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Marcelo Llancaqueo
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
26
|
Mark PB, Mangion K, Rankin AJ, Rutherford E, Lang NN, Petrie MC, Stoumpos S, Patel RK. Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients. Clin Kidney J 2022; 15:2186-2199. [PMID: 36381379 PMCID: PMC9664574 DOI: 10.1093/ckj/sfac146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 08/25/2023] Open
Abstract
Chronic kidney disease (CKD) is a risk factor for premature cardiovascular disease. As kidney function declines, the presence of left ventricular abnormalities increases such that by the time kidney replacement therapy is required with dialysis or kidney transplantation, more than two-thirds of patients have left ventricular hypertrophy. Historically, much research in nephrology has focussed on the structural and functional aspects of cardiac disease in CKD, particularly using echocardiography to describe these abnormalities. There is a need to translate knowledge around these imaging findings to clinical outcomes such as unplanned hospital admission with heart failure and premature cardiovascular death. Left ventricular hypertrophy and cardiac fibrosis, which are common in CKD, predispose to the clinical syndrome of heart failure with preserved left ventricular ejection fraction (HFpEF). There is a bidirectional relationship between CKD and HFpEF, whereby CKD is a risk factor for HFpEF and CKD impacts outcomes for patients with HFpEF. There have been major improvements in outcomes for patients with heart failure and reduced left ventricular ejection fraction as a result of several large randomized controlled trials. Finding therapy for HFpEF has been more elusive, although recent data suggest that sodium-glucose cotransporter 2 inhibition offers a novel evidence-based class of therapy that improves outcomes in HFpEF. These observations have emerged as this class of drugs has also become the standard of care for many patients with proteinuric CKD, suggesting that there is now hope for addressing the combination of HFpEF and CKD in parallel. In this review we summarize the epidemiology, pathophysiology, diagnostic strategies and treatment of HFpEF with a focus on patients with CKD.
Collapse
Affiliation(s)
- Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alastair J Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Rutherford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Nephrology, NHS Dumfries and Galloway, Dumfries, UK
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sokratis Stoumpos
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Rajan K Patel
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
27
|
Schulz A, Schuster A. Visualizing diastolic failure: Non-invasive imaging-biomarkers in patients with heart failure with preserved ejection fraction. EBioMedicine 2022; 86:104369. [PMID: 36423377 PMCID: PMC9691917 DOI: 10.1016/j.ebiom.2022.104369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction is an increasing challenge for modern day medicine and has been drawing more attention recently. Invasive right heart catheterization represents the mainstay for the diagnosis of diastolic dysfunction, however due to its attributable risk of an invasive procedure, other non-invasive clinical pathways are trying to approach this pathology in clinical practice. Diastolic failure is complex, and imaging is based on various parameters. In addition to transthoracic echocardiography, numerous novel imaging approaches, such as cardiac magnetic resonance imaging, computed tomography, positron emission (computed) tomography or single photon emission computed tomography techniques are being used to supplement deeper insights into causal pathology and might open targets for dedicated therapy options. This article provides insights into these sophisticated imaging techniques, their incremental value for the diagnosis of this poorly understood disease and recent promising results for an enhanced prognostication of outcome and therapy monitoring.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
28
|
Epidemiology, Diagnosis, Pathophysiology, and Initial Approach to Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:397-413. [DOI: 10.1016/j.ccl.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Safabakhsh S, Al-Shaheen A, Swiggum E, Mielniczuk L, Tremblay-Gravel M, Laksman Z. Arrhythmic Sudden Cardiac Death in Heart Failure With Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions. CJC Open 2022; 4:959-969. [PMID: 36444369 PMCID: PMC9700220 DOI: 10.1016/j.cjco.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly recognized disorder. Many clinical trials have failed to demonstrate benefit in patients with HFpEF but have recognized alarming rates of sudden cardiac death (SCD). Genetic testing has become standard in the workup of patients with otherwise unexplained cardiac arrest, but the genetic architecture of HFpEF, and the overlap of a genetic predisposition to HFpEF and arrhythmias, is poorly understood. An understanding of the genetics of HFpEF and related SCD has the potential to redefine and generate novel diagnostic, prognostic, and therapeutic tools. In this review, we examine recent pathophysiological and clinical advancements in our understanding of HFpEF, which reinforce the heterogeneity of the condition. We also discuss data describing SCD events in patients with HFpEF and review the current literature on genetic underpinnings of HFpEF. Mechanisms of arrhythmogenesis which may lead to SCD in this population are also explored. Lastly, we outline several areas of promise for experimentation and clinical trials that have the potential to further advance our understanding of and contribute to improved clinical care of this patient population.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elizabeth Swiggum
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Mielniczuk
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Zachary Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Hotta VT, Rassi DDC, Pena JLB, Vieira MLC, Rodrigues ACT, Cardoso JN, Ramires FJA, Nastari L, Mady C, Fernandes F. Análise Crítica e Limitações do Diagnóstico de Insuficiência Cardíaca com Fração de Ejeção Preservada (ICFEp). Arq Bras Cardiol 2022; 119:470-479. [PMID: 35830074 PMCID: PMC9438546 DOI: 10.36660/abc.20210052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Com o aumento da expectativa de vida da população e a maior frequência de fatores de risco como obesidade, hipertensão arterial e diabetes, espera-se um aumento na prevalência de insuficiência cardíaca com fração de ejeção preservada (ICFEp). Entretanto, no momento, o diagnóstico e o tratamento de pacientes com ICFEp permanecem desafiadores. O diagnóstico sindrômico de ICFEp inclui diversas etiologias e doenças com tratamentos específicos, mas que apresentam pontos em comum em relação à apresentação clínica e à avaliação laboratorial no que diz respeito aos biomarcadores como BNP e NT-ProBNP, à avaliação ecocardiográfica do remodelamento cardíaco e às pressões de enchimento diastólico ventricular esquerdo. Extensos ensaios clínicos randomizados envolvendo a terapia nesta síndrome falharam na demonstração de benefícios para o paciente, fazendo-se necessária uma reflexão acerca do diagnóstico, dos mecanismos de morbidade, da taxa de mortalidade e da reversibilidade. Na revisão, serão abordados os conceitos atuais, as controvérsias e, especialmente, os desafios no diagnóstico da ICFEp através de uma análise crítica do escore da European Heart Failure Association.
Collapse
|
31
|
D’Elia JA, Bayliss GP, Weinrauch LA. The Diabetic Cardiorenal Nexus. Int J Mol Sci 2022; 23:ijms23137351. [PMID: 35806355 PMCID: PMC9266839 DOI: 10.3390/ijms23137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The end-stage of the clinical combination of heart failure and kidney disease has become known as cardiorenal syndrome. Adverse consequences related to diabetes, hyperlipidemia, obesity, hypertension and renal impairment on cardiovascular function, morbidity and mortality are well known. Guidelines for the treatment of these risk factors have led to the improved prognosis of patients with coronary artery disease and reduced ejection fraction. Heart failure hospital admissions and readmission often occur, however, in the presence of metabolic, renal dysfunction and relatively preserved systolic function. In this domain, few advances have been described. Diabetes, kidney and cardiac dysfunction act synergistically to magnify healthcare costs. Current therapy relies on improving hemodynamic factors destructive to both the heart and kidney. We consider that additional hemodynamic solutions may be limited without the use of animal models focusing on the cardiomyocyte, nephron and extracellular matrices. We review herein potential common pathophysiologic targets for treatment to prevent and ameliorate this syndrome.
Collapse
Affiliation(s)
- John A. D’Elia
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
| | - George P. Bayliss
- Division of Organ Transplantation, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-923-0800; Fax: +617-926-5665
| |
Collapse
|
32
|
Heart failure with reduced ejection fraction and diastolic dysfunction (HrEFwDD): Time for a new clinical entity. Int J Cardiol 2022; 363:123-124. [PMID: 35760160 DOI: 10.1016/j.ijcard.2022.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
|
33
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
34
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
35
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Al-U'datt DGF, Tranchant CC, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Allen BG, Jaradat S, Alqbelat J, Abu-Zaiton AS. Implications of enigmatic transglutaminase 2 (TG2) in cardiac diseases and therapeutic developments. Biochem Pharmacol 2022; 201:115104. [PMID: 35617996 DOI: 10.1016/j.bcp.2022.115104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
Cardiac diseases are the leading cause of mortality and morbidity worldwide. Mounting evidence suggests that transglutaminases (TGs), tissue TG (TG2) in particular, are involved in numerous molecular responses underlying the pathogenesis of cardiac diseases. The TG family has several intra- and extracellular functions in the human body, including collagen cross-linking, angiogenesis, cell growth, differentiation, migration, adhesion as well as survival. TGs are thiol- and calcium-dependent acyl transferases that catalyze the formation of a covalent bond between the γ-carboxamide group of a glutamine residue and an amine group, thus increasing the stability, rigidity, and stiffness of the myocardial extracellular matrix (ECM). Excessive accumulation of cross-linked collagen leads to increase myocardial stiffness and fibrosis. Beyond TG2 extracellular protein cross-linking action, mounting evidence suggests that this pleiotropic TG isozyme may also promote fibrotic diseases through cell survival and profibrotic pathway activation at the signaling, transcriptional and translational levels. Due to its multiple functions and localizations, TG2 fulfils critical yet incompletely understood roles in myocardial fibrosis and associated heart diseases, such as cardiac hypertrophy, heart failure, and age-related myocardial stiffness under several conditions. This review summarizes current knowledge and existing gaps regarding the ECM-dependent and ECM-independent roles of TG2 and highlights the therapeutic prospects of targeting TG2 to treat cardiac diseases.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed S Abu-Zaiton
- Department of Biological Sciences, Al al-bayt University, Al-Mafraq, Jordan
| |
Collapse
|
37
|
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac Fibrosis in the Pressure Overloaded Left and Right Ventricle as a Therapeutic Target. Front Cardiovasc Med 2022; 9:886553. [PMID: 35600469 PMCID: PMC9120363 DOI: 10.3389/fcvm.2022.886553] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Myocardial fibrosis is a remodeling process of the extracellular matrix (ECM) following cardiac stress. "Replacement fibrosis" is a term used to describe wound healing in the acute phase of an injury, such as myocardial infarction. In striking contrast, ECM remodeling following chronic pressure overload insidiously develops over time as "reactive fibrosis" leading to diffuse interstitial and perivascular collagen deposition that continuously perturbs the function of the left (L) or the right ventricle (RV). Examples for pressure-overload conditions resulting in reactive fibrosis in the LV are systemic hypertension or aortic stenosis, whereas pulmonary arterial hypertension (PAH) or congenital heart disease with right sided obstructive lesions such as pulmonary stenosis result in RV reactive fibrosis. In-depth phenotyping of cardiac fibrosis has made it increasingly clear that both forms, replacement and reactive fibrosis co-exist in various etiologies of heart failure. While the role of fibrosis in the pathogenesis of RV heart failure needs further assessment, reactive fibrosis in the LV is a pathological hallmark of adverse cardiac remodeling that is correlated with or potentially might even drive both development and progression of heart failure (HF). Further, LV reactive fibrosis predicts adverse outcome in various myocardial diseases and contributes to arrhythmias. The ability to effectively block pathological ECM remodeling of the LV is therefore an important medical need. At a cellular level, the cardiac fibroblast takes center stage in reactive fibrotic remodeling of the heart. Activation and proliferation of endogenous fibroblast populations are the major source of synthesis, secretion, and deposition of collagens in response to a variety of stimuli. Enzymes residing in the ECM are responsible for collagen maturation and cross-linking. Highly cross-linked type I collagen stiffens the ventricles and predominates over more elastic type III collagen in pressure-overloaded conditions. Research has attempted to identify pro-fibrotic drivers causing fibrotic remodeling. Single key factors such as Transforming Growth Factor β (TGFβ) have been described and subsequently targeted to test their usefulness in inhibiting fibrosis in cultured fibroblasts of the ventricles, and in animal models of cardiac fibrosis. More recently, modulation of phenotypic behaviors like inhibition of proliferating fibroblasts has emerged as a strategy to reduce pathogenic cardiac fibroblast numbers in the heart. Some studies targeting LV reactive fibrosis as outlined above have successfully led to improvements of cardiac structure and function in relevant animal models. For the RV, fibrosis research is needed to better understand the evolution and roles of fibrosis in RV failure. RV fibrosis is seen as an integral part of RV remodeling and presents at varying degrees in patients with PAH and animal models replicating the disease of RV afterload. The extent to which ECM remodeling impacts RV function and thus patient survival is less clear. In this review, we describe differences as well as common characteristics and key players in ECM remodeling of the LV vs. the RV in response to pressure overload. We review pre-clinical studies assessing the effect of anti-fibrotic drug candidates on LV and RV function and their premise for clinical testing. Finally, we discuss the mode of action, safety and efficacy of anti-fibrotic drugs currently tested for the treatment of left HF in clinical trials, which might guide development of new approaches to target right heart failure. We touch upon important considerations and knowledge gaps to be addressed for future clinical testing of anti-fibrotic cardiac therapies.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Kenzo Ichimura
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sushma Reddy
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Pediatric Cardiology, Stanford University, Stanford, CA, United States
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Edda Spiekerkoetter,
| |
Collapse
|
38
|
Ito S, Miranda WR, Nkomo VT, Lewis BR, Oh JK. Sex Differences in LV Remodeling and Hemodynamics in Aortic Stenosis. JACC Cardiovasc Imaging 2022; 15:1175-1189. [DOI: 10.1016/j.jcmg.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
39
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
40
|
Ministrini S. Could serum carboxyterminal telopeptide of collagen type I (CITP) have a role in the early diagnosis of heart failure with preserved ejection fraction (HFpEF)? Int J Cardiol 2022; 356:79-80. [PMID: 35301077 DOI: 10.1016/j.ijcard.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren (CH), Switzerland; Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, Università degli Studi di Perugia, piazzale Gambuli 1, 06129 Perugia (IT), Italy.
| |
Collapse
|
41
|
Travers JG, Tharp CA, Rubino M, McKinsey TA. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest 2022; 132:148554. [PMID: 35229727 PMCID: PMC8884906 DOI: 10.1172/jci148554] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with pathological fibrotic remodeling mediated by activated cardiac myofibroblasts representing a unifying theme across etiologies. Despite the profound contributions of myocardial fibrosis to cardiac dysfunction and heart failure, there currently exist limited clinical interventions that effectively target the cardiac fibroblast and its role in fibrotic tissue deposition. Exploration of novel strategies designed to mitigate or reverse myofibroblast activation and cardiac fibrosis will likely yield powerful therapeutic approaches for the treatment of multiple diseases of the heart, including heart failure with preserved or reduced ejection fraction, acute coronary syndrome, and cardiovascular disease linked to type 2 diabetes. In this Review, we provide an overview of classical regulators of cardiac fibrosis and highlight emerging, next-generation epigenetic regulatory targets that have the potential to revolutionize treatment of the expanding cardiovascular disease patient population.
Collapse
|
42
|
Gordon B, González-Fernández V, Dos-Subirà L. Myocardial fibrosis in congenital heart disease. Front Pediatr 2022; 10:965204. [PMID: 36467466 PMCID: PMC9715985 DOI: 10.3389/fped.2022.965204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial fibrosis resulting from the excessive deposition of collagen fibers through the myocardium is a common histopathologic finding in a wide range of cardiovascular diseases, including congenital anomalies. Interstitial fibrosis has been identified as a major cause of myocardial dysfunction since it distorts the normal architecture of the myocardium and impairs the biological function and properties of the interstitium. This review summarizes current knowledge on the mechanisms and detrimental consequences of myocardial fibrosis in heart failure and arrhythmias, discusses the usefulness of available imaging techniques and circulating biomarkers to assess this entity and reviews the current body of evidence regarding myocardial fibrosis in the different subsets of congenital heart diseases with implications in research and treatment.
Collapse
Affiliation(s)
- Blanca Gordon
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Víctor González-Fernández
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| |
Collapse
|
43
|
García-Izquierdo E, Mingo-Santos S, Olivo-Rodríguez C, Moñivas-Palomero V, Rivas-Lasarte M, Martín-López CE, Rosado-García S, Sánchez-López AJ, Redondo JM, Rodríguez-Pascual F, Segovia-Cubero J, Forteza-Gil A. Exploring the potential relationship between collagen cross-linking and impaired myocardial relaxation in Marfan syndrome: An observational study using serum biomarkers. Int J Cardiol 2022; 352:125-130. [DOI: 10.1016/j.ijcard.2022.01.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/09/2023]
|
44
|
Liu X, Xu S, Li Y, Chen Q, Zhang Y, Peng L. Identification of CALU and PALLD as Potential Biomarkers Associated With Immune Infiltration in Heart Failure. Front Cardiovasc Med 2021; 8:774755. [PMID: 34926621 PMCID: PMC8671636 DOI: 10.3389/fcvm.2021.774755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Inflammatory activation and immune infiltration play important roles in the pathologic process of heart failure (HF). The current study is designed to investigate the immune infiltration and identify related biomarkers in heart failure patients due to ischemic cardiomyopathy. Methods: Expression data of HF due to ischemic cardiomyopathy (CM) samples and non-heart failure (NF) samples were downloaded from gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between CM and NF samples were identified. Single sample gene set enrichment analysis (ssGSEA) was performed to explore the landscape of immune infiltration. Weighted gene co-expression network analysis (WGCNA) was applied to screen the most relevant module associated with immune infiltration. The diagnostic values of candidate genes were evaluated by receiver operating curves (ROC) curves. The mRNA levels of potential biomarkers in the peripheral blood mononuclear cells (PBMCs) isolated from 10 CM patients and 10 NF patients were analyzed to further assess their diagnostic values. Results: A total of 224 DEGs were identified between CM and NF samples in GSE5406, which are mainly enriched in the protein processing and extracellular matrix related biological processes and pathways. The result of ssGSEA showed that the abundance of dendritic cells (DC), mast cells, natural killer (NK) CD56dim cells, T cells, T follicular helper cells (Tfh), gammadelta T cells (Tgd) and T helper 2 (Th2) cells were significantly higher, while the infiltration of eosinophils and central memory T cells (Tcm) were lower in CM samples compared to NF ones. Correlation analysis revealed that Calumenin (CALU) and palladin (PALLD) were negatively correlated with the abundance of DC, NK CD56dim cells, T cells, Tfh, Tgd and Th2 cells, but positively correlated with the level of Tcm. More importantly, CALU and PALLD were significantly lower in PBMCs from CM patients compared to NF ones. Conclusion: Our study revealed that CALU and PALLD are potential biomarkers associated with immune infiltration in heart failure due to ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Department of Dermatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Polymorphic Variants in the GRK5 Gene Promoter Are Associated With Diastolic Dysfunction in Coronary Artery Bypass Graft Surgery Patients. Anesth Analg 2021; 134:858-868. [PMID: 34871184 DOI: 10.1213/ane.0000000000005809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The G-protein-coupled receptor kinase 5 (GRK5) is a mediator of cardiovascular homeostasis and participates in inflammation and cardiac fibrosis, both being involved in the development of diastolic dysfunction (DD). While mechanisms of transcriptional regulation of the GRK5 promoter are unclear, we tested the hypotheses, that (1) GRK5 expression varies depending on functional single nucleotide polymorphisms (SNPs) in the GRK5 promoter and (2) this is associated with DD in patients undergoing coronary artery bypass graft (CABG) surgery. METHODS We amplified and sequenced the GRK5 promoter followed by cloning, reporter assays, and electrophoretic mobility shift assays (EMSA). GRK5 messenger ribonucleic acid (mRNA) expression was determined in right atrial tissue sampled from 50 patients undergoing CABG surgery. In another prospective study, GRK5 genotypes were associated with determinants of diastolic function using transesophageal echocardiography in 255 patients with CABG with normal systolic left ventricular (LV) function. Specifically, we measured ejection fraction (EF), transmitral Doppler early filling velocity (E), tissue Doppler early diastolic lateral mitral annular velocity (E' lateral), and calculated E/E', E' norm and the difference of E' lateral and E' norm to account for age-related changes in diastolic function. RESULTS We identified 6 SNPs creating 3 novel haplotypes with the greatest promoter activation in haplotype tagging (ht) SNP T(-678)C T-allele constructs (P < .001). EMSAs showed allele-specific transcription factor binding proving functional activity. GRK5 mRNA expression was greatest in TT genotypes (TT: 131 fg/µg [95% CI, 108-154]; CT: 109 [95% confidence interval {CI}, 93-124]; CC: 83 [95% CI, 54-112]; P = .012). Moreover, GRK5 genotypes were significantly associated with determinants of diastolic function. Grading of DD revealed more grade 3 patients in TT compared to CT and CC genotypes (58% vs 38% vs 4%; P = .023). E´ lateral was lowest in TT genotypes (P = .007) and corresponding E/E' measurements showed 1.27-fold increased values in TT versus CC genotypes (P = .01), respectively. While E' norm values were not different between genotypes (P = .182), the difference between E' lateral and E' norm was significantly higher in TT genotypes compared to CC and CT genotypes (-1.2 [interquartile range {IQR}, 2.7], -0.5 [IQR, 3.4], and -0.4 [IQR, 4.2; P = .035], respectively). CONCLUSIONS A functional GRK5 SNP results in allele-dependent differences in GRK5 promoter activity and mRNA expression. This is associated with altered echocardiographic determinants of diastolic function. Thus, SNPs in the GRK5 promoter are associated with altered perioperative diastolic cardiac function. In the future, preoperative testing for these and other SNPs might allow to initiate more specific diagnostic and perioperative pathways to benefit patients at risk.
Collapse
|
46
|
Rismiati H, Lee HY. Hypertensive Heart Failure in Asia. Pulse (Basel) 2021; 9:47-56. [PMID: 35083170 PMCID: PMC8739847 DOI: 10.1159/000518661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hypertension (HT) is an important risk factor for heart failure (HF). The prevalence of HT among the HF population is higher in Asia than in other regions around the world. In Asia, HT is the most common cause of HF after ischemic heart disease. Hypertensive HF (HHF) results from structural and functional adaptations of the heart, which lead to left ventricular (LV) hypertrophy (LVH). Hypertensive LVH can cause ventricular diastolic dysfunction and becomes a risk factor for myocardial infarction, which is a well-known cause of LV systolic dysfunction. Asymptomatic systolic and diastolic LV dysfunction easily progress to clinically overt HF with other precipitating factors. Although the precise pathophysiology of HHF is still unclear, we have known that HHF can be reversed by effective control of blood pressure (BP). Thus, HT control is essential not only for primary prevention but also for the secondary prevention of HF. Here, we reviewed the epidemiology, pathophysiology, outcome, and implication of BP management in HHF patients, especially in the Asian population.
Collapse
Affiliation(s)
- Helsi Rismiati
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae-Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Ravassa S, López B, Ferreira JP, Girerd N, Bozec E, Pellicori P, Mariottoni B, Cosmi F, Hazebroek M, Verdonschot JAJ, Cuthbert J, Petutschnigg J, Moreno MU, Heymans S, Staessen JA, Pieske B, Edelmann F, Clark AL, Cleland JGF, Zannad F, Díez J, González A. Biomarker-based assessment of collagen cross-linking identifies patients at risk of heart failure more likely to benefit from spironolactone effects on left atrial remodelling. Insights from the HOMAGE clinical trial. Eur J Heart Fail 2021; 24:321-331. [PMID: 34841615 DOI: 10.1002/ejhf.2394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022] Open
Abstract
AIMS The HOMAGE randomized trial found that spironolactone reduced left atrial volume index (LAVI), E:A ratio, and a marker of collagen type I synthesis (procollagen type I C-terminal propeptide) in patients at risk of heart failure (HF). Previous trials showed that patients with HF, preserved ejection fraction and low serum collagen type I C-terminal telopeptide to matrix metalloproteinase-1 ratio (CITP:MMP-1), associated with high collagen cross-linking, had less improvement in diastolic function with spironolactone. We evaluated the interaction between serum CITP:MMP-1 and spironolactone on cardiac function in the HOMAGE trial. METHODS AND RESULTS Patients at risk of HF were randomized to spironolactone (n = 260) or not (n = 255). Blood sampling and echocardiography were done at baseline, one and nine months. CITP:MMP-1 was used as an indirect measure of collagen cross-linking. Higher baseline CITP:MMP-1 (i.e. lower collagen cross-linking) was associated with greater reductions in LAVI with spironolactone at both one (p = 0.003) and nine (p = 0.01) months, but no interaction was observed for E:A ratio. Spironolactone reduced LAVI after one and nine months only for those patients in the third tertile of CITP:MMP-1 (estimated lowest collagen cross-linking) [mean differencesspiro/control : -1.77 (95% confidence interval, CI -2.94 to -0.59) and -2.52 (95% CI -4.46 to -0.58) mL/m2 ; interaction pacross-tertiles = 0.005; interaction pthird tertile = 0.008] with a similar trend for N-terminal pro-B-type natriuretic peptide which was consistently reduced by spironolactone only in the lowest collagen cross-linking tertile [mean differencesspiro/control : -0.47 (95% CI -0.66 to -0.28) and -0.31 (95% CI -0.59 to -0.04) ng/L; interaction pacross-tertiles = 0.09; interaction pthird tertile < 0.001]. CONCLUSIONS These findings suggest that, for patients at risk of HF, the effects of spironolactone on left atrial remodelling may be more prominent in patients with less collagen cross-linking (indirectly assessed by serum CITP:MMP-1).
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - João Pedro Ferreira
- Université de Lorraine, Inserm, Centre d'Investigation Clinique Plurithématique 1433, U1116, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Nicolas Girerd
- Université de Lorraine, Inserm, Centre d'Investigation Clinique Plurithématique 1433, U1116, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Erwan Bozec
- Université de Lorraine, Inserm, Centre d'Investigation Clinique Plurithématique 1433, U1116, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Pierpaolo Pellicori
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Franco Cosmi
- Department of Cardiology, Cortona Hospital, Arezzo, Italy
| | - Mark Hazebroek
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joe Cuthbert
- Department of Cardiology, University of Hull, Castle Hill Hospital, Cottingham, UK
| | - Johannes Petutschnigg
- Department of Internal Medicine and Cardiology Campus Virchow Klinikum, Charité University Medicine Berlin and German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - María U Moreno
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan A Staessen
- Non-Profit Research Institute Alliance for the Promotion of Preventive Medicine, Mechelen (APPREMED), Mechelen, Belgium.,Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology Campus Virchow Klinikum, Charité University Medicine Berlin and German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology Campus Virchow Klinikum, Charité University Medicine Berlin and German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andrew L Clark
- Department of Cardiology, University of Hull, Castle Hill Hospital, Cottingham, UK
| | - John G F Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d'Investigation Clinique Plurithématique 1433, U1116, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain.,Departments of Nephrology and Cardiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA, Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | | |
Collapse
|
48
|
Pabel S, Hamdani N, Singh J, Sossalla S. Potential Mechanisms of SGLT2 Inhibitors for the Treatment of Heart Failure With Preserved Ejection Fraction. Front Physiol 2021; 12:752370. [PMID: 34803735 PMCID: PMC8602188 DOI: 10.3389/fphys.2021.752370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an unsolved and growing concern in cardiovascular medicine. While no treatment options that improve prognosis in HFpEF patients has been established so far, SGLT2 inhibitors (SGLT2i) are currently being investigated for the treatment of HFpEF patients. SGLT2i have already been shown to mitigate comorbidities associated with HFpEF such as type 2 diabetes and chronic renal disease, however, more recently there has been evidence that they may also directly improve diastolic function. In this article, we discuss some potential beneficial mechanisms of SGLT2i in the pathophysiology of HFpEF with focus on contractile function.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Institut für Forschung und Lehre (IFL), Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jagdeep Singh
- The Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Sansilvestri-Morel P, Harouki-Crochemore N, Bertin F, Bertheux H, Vermeil de Conchard G, Diguet N, Desfosses E, Lecomte M, Gonzalez A, Diez J, Tupinon-Mathieu I, Delerive P. Deficiency of Procollagen C-Proteinase Enhancer 1 in Mice has No Major Impact on Cardiac Collagen and Function Under Basal Conditions. J Cardiovasc Pharmacol 2021; 78:e703-e713. [PMID: 34369899 DOI: 10.1097/fjc.0000000000001122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Maturation of fibrillar collagen is known to play a crucial role in the pathophysiology of myocardial fibrosis. Procollagen C-proteinase enhancer 1 (PCPE1) has a key role in procollagen maturation and collagen fibril formation. The phenotype of both male and female PCPE1 knock-out mice was investigated under basal conditions to explore the potential of PCPE1 as a therapeutic target in heart failure. Global constitutive PCPE1-/- mice were generated. Serum procollagen I C-terminal propeptide, organ histology, and cutaneous wound healing were assessed in both wild type (WT) and PCPE1-/- mice. In addition, the cardiac expression of genes involved in collagen metabolism was investigated and the total and insoluble cardiac collagen contents determined. Cardiac function was evaluated by echocardiography. No differences in survival, clinical chemistry, or organ histology were observed in PCPE1-/- mice compared with WT. Serum procollagen I C-terminal propeptide was lower in PCPE1-/- mice. Cardiac mRNA expression of Bmp1, Col1a1, Col3a1, and Loxl2 was similar, whereas Tgfb and Loxl1 mRNA levels were decreased in PCPE1-/- mice compared with sex-matched WT. No modification of total or insoluble cardiac collagen content was observed between the 2 strains. Ejection fraction was slightly decreased in PCPE1-/- male mice, but not in females. Finally, wound healing was not altered in PCPE1-/- mice. PCPE1 deficiency does not trigger any major liabilities and does not affect cardiac collagen content nor its function under basal conditions. Further studies are required to evaluate its role under stressed conditions and determine its suitability as a therapeutic target for heart failure.
Collapse
Affiliation(s)
| | - Najah Harouki-Crochemore
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Florence Bertin
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | | | | | - Nicolas Diguet
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | | | - Mathilde Lecomte
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Arantxa Gonzalez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Spain
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Spain
- Departments of Cardiology and Cardiac Surgery and of Nephrology, Clínica Universidad de Navarra, Pamplona, Spain; and
| | - Isabelle Tupinon-Mathieu
- Cardiovascular and Metabolic Diseases, Institut de Recherches Internationales Servier, Suresnes, France
| | - Philippe Delerive
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| |
Collapse
|
50
|
Abstract
The number of therapies for heart failure (HF) with reduced ejection fraction has nearly doubled in the past decade. In addition, new therapies for HF caused by hypertrophic and infiltrative disease are emerging rapidly. Indeed, we are on the verge of a new era in HF in which insights into the biology of myocardial disease can be matched to an understanding of the genetic predisposition in an individual patient to inform precision approaches to therapy. In this Review, we summarize the biology of HF, emphasizing the causal relationships between genetic contributors and traditional structure-based remodelling outcomes, and highlight the mechanisms of action of traditional and novel therapeutics. We discuss the latest advances in our understanding of both the Mendelian genetics of cardiomyopathy and the complex genetics of the clinical syndrome presenting as HF. In the phenotypic domain, we discuss applications of machine learning for the subcategorization of HF in ways that might inform rational prescribing of medications. We aim to bridge the gap between the biology of the failing heart, its diverse clinical presentations and the range of medications that we can now use to treat it. We present a roadmap for the future of precision medicine in HF.
Collapse
|