1
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2025; 62:4802-4836. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
2
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
3
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
4
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Varrias D, Saralidze T, Borkowski P, Pargaonkar S, Spanos M, Bazoukis G, Kokkinidis D. Atrial Fibrillation and Dementia: Pathophysiological Mechanisms and Clinical Implications. Biomolecules 2024; 14:455. [PMID: 38672471 PMCID: PMC11048426 DOI: 10.3390/biom14040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Numerous longitudinal studies suggest a strong association between cardiovascular risk factors and cognitive impairment. Individuals with atrial fibrillation are at higher risk of dementia and cognitive dysfunction, as atrial fibrillation increases the risk of cerebral hypoperfusion, inflammation, and stroke. The lack of comprehensive understanding of the observed association and the complex relationship between these two diseases makes it very hard to provide robust guidelines on therapeutic indications. With this review, we attempt to shed some light on how atrial fibrillation is related to dementia, what we know regarding preventive interventions, and how we could move forward in managing those very frequently overlapping conditions.
Collapse
Affiliation(s)
- Dimitrios Varrias
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Tinatin Saralidze
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Pawel Borkowski
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Sumant Pargaonkar
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - George Bazoukis
- School of Medicine, European University Cyprus, 2417 Nicosia, Cyprus
| | - Damianos Kokkinidis
- Section of Cardiovascular Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Yaghoobi Z, Seyed Bagher Nazeri SS, Asadi A, Derafsh E, Talebi Taheri A, Tamtaji Z, Dadgostar E, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-coding RNAs and Aquaporin 4: Their Role in the Pathogenesis of Neurological Disorders. Neurochem Res 2024; 49:583-596. [PMID: 38114727 DOI: 10.1007/s11064-023-04067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | | | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Addiction Institute, and Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, St Kitts and Nevis
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
8
|
Xiao HH, Zhang FR, Li S, Guo FF, Hou JL, Wang SC, Yu J, Li XY, Yang HJ. Xinshubao tablet rescues cognitive dysfunction in a mouse model of vascular dementia: Involvement of neurogenesis and neuroinflammation. Biomed Pharmacother 2024; 172:116219. [PMID: 38310654 DOI: 10.1016/j.biopha.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.
Collapse
Affiliation(s)
- Hong-He Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Feng-Rong Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jin-Li Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi-Cong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China.
| | - Xian-Yu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
9
|
Toribio-Fernandez R, Ceron C, Tristão-Pereira C, Fernandez-Nueda I, Perez-Castillo A, Fernandez-Ferro J, Moro MA, Ibañez B, Fuster V, Cortes-Canteli M. Oral anticoagulants: A plausible new treatment for Alzheimer's disease? Br J Pharmacol 2024; 181:760-776. [PMID: 36633908 DOI: 10.1111/bph.16032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) and cardiovascular disease (CVD) are strongly associated. Both are multifactorial disorders with long asymptomatic phases and similar risk factors. Indeed, CVD signatures such as cerebral microbleeds, micro-infarcts, atherosclerosis, cerebral amyloid angiopathy and a procoagulant state are highly associated with AD. However, AD and CVD co-development and the molecular mechanisms underlying such associations are not understood. Here, we review the evidence regarding the vascular component of AD and clinical studies using anticoagulants that specifically evaluated the development of AD and other dementias. Most studies reported a markedly decreased incidence of composite dementia in anticoagulated patients with atrial fibrillation, with the highest benefit for direct oral anticoagulants. However, sub-analyses by differential dementia diagnosis were scarce and inconclusive. We finally discuss whether anticoagulation could be a plausible preventive/therapeutic approach for AD and, if so, which would be the best drug and strategy to maximize clinical benefit and minimize potential risks. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Toribio-Fernandez
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Ceron
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Irene Fernandez-Nueda
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Jose Fernandez-Ferro
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Stroke Unit, Neurology Service, Hospital Universitario Rey Juan Carlos (HURJC), Madrid, Spain
| | - Maria Angeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Borja Ibañez
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de enfermedades cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta Cortes-Canteli
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Yao X, Attia ZI, Behnken EM, Hart MS, Inselman SA, Weber KC, Li F, Stricker NH, Stricker JL, Friedman PA, Noseworthy PA. Realtime Diagnosis from Electrocardiogram Artificial Intelligence-Guided Screening for Atrial Fibrillation with Long Follow-Up (REGAL): Rationale and design of a pragmatic, decentralized, randomized controlled trial. Am Heart J 2024; 267:62-69. [PMID: 37913853 DOI: 10.1016/j.ahj.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with increased risks of stroke and dementia. Early diagnosis and treatment could reduce the disease burden, but AF is often undiagnosed. An artificial intelligence (AI) algorithm has been shown to identify patients with previously unrecognized AF; however, monitoring these high-risk patients has been challenging. Consumer wearable devices could be an alternative to enable long-term follow-up. OBJECTIVES To test whether Apple Watch, used as a long-term monitoring device, can enable early diagnosis of AF in patients who were identified as having high risk based on AI-ECG. DESIGN The Realtime diagnosis from Electrocardiogram (ECG) Artificial Intelligence (AI)-Guided Screening for Atrial Fibrillation (AF) with Long Follow-up (REGAL) study is a pragmatic trial that will accrue up to 2,000 older adults with a high likelihood of unrecognized AF determined by AI-ECG to reach our target of 1,420 completed participants. Participants will be 1:1 randomized to intervention or control and will be followed up for 2 years. Patients in the intervention arm will receive or use their existing Apple Watch and iPhone and record a 30-second ECG using the watch routinely or if an abnormal heart rate notification is prompted. The primary outcome is newly diagnosed AF. Secondary outcomes include changes in cognitive function, stroke, major bleeding, and all-cause mortality. The trial will utilize a pragmatic, digitally-enabled, decentralized design to allow patients to consent and receive follow-up remotely without traveling to the study sites. SUMMARY The REGAL trial will examine whether a consumer wearable device can serve as a long-term monitoring approach in older adults to detect AF and prevent cognitive function decline. If successful, the approach could have significant implications on how future clinical practice can leverage consumer devices for early diagnosis and disease prevention. CLINICALTRIALS GOV: : NCT05923359.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Emma M Behnken
- Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN
| | - Melissa S Hart
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Shealeigh A Inselman
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Kayla C Weber
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Nikki H Stricker
- Division of Neurocognitive Disorders, Mayo Clinic, Rochester, MN
| | | | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
11
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
12
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
13
|
Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): insight from neurodegenerative diseases. Front Neurosci 2023; 17:1197094. [PMID: 37529232 PMCID: PMC10390316 DOI: 10.3389/fnins.2023.1197094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Neurodegenerative diseases are prevalent and currently incurable conditions that progressively impair cognitive, behavioral, and psychiatric functions of the central or peripheral nervous system. Fibrinogen, a macromolecular glycoprotein, plays a crucial role in the inflammatory response and tissue repair in the human body and interacts with various nervous system cells due to its unique molecular structure. Accumulating evidence suggests that fibrinogen deposits in the brains of patients with neurodegenerative diseases. By regulating pathophysiological mechanisms and signaling pathways, fibrinogen can exacerbate the neuro-pathological features of neurodegenerative diseases, while depletion of fibrinogen contributes to the amelioration of cognitive function impairment in patients. This review comprehensively summarizes the molecular mechanisms and biological functions of fibrinogen in central nervous system cells and neurodegenerative diseases, including Alzheimer's disease, Multiple Sclerosis, Parkinson's disease, Vascular dementia, Huntington's disease, and Amyotrophic Lateral Sclerosis. Additionally, we discuss the potential of fibrinogen-related treatments in the management of neurodegenerative disorders.
Collapse
|
14
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
15
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
16
|
Kim S, Sharma C, Jung UJ, Kim SR. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051383. [PMID: 37239054 DOI: 10.3390/biomedicines11051383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer's disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
18
|
Badimon A, Torrente D, Norris EH. Vascular Dysfunction in Alzheimer's Disease: Alterations in the Plasma Contact and Fibrinolytic Systems. Int J Mol Sci 2023; 24:7046. [PMID: 37108211 PMCID: PMC10138543 DOI: 10.3390/ijms24087046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. The classical hallmarks of AD include extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles, although they are often accompanied by various vascular defects. These changes include damage to the vasculature, a decrease in cerebral blood flow, and accumulation of Aβ along vessels, among others. Vascular dysfunction begins early in disease pathogenesis and may contribute to disease progression and cognitive dysfunction. In addition, patients with AD exhibit alterations in the plasma contact system and the fibrinolytic system, two pathways in the blood that regulate clotting and inflammation. Here, we explain the clinical manifestations of vascular deficits in AD. Further, we describe how changes in plasma contact activation and the fibrinolytic system may contribute to vascular dysfunction, inflammation, coagulation, and cognitive impairment in AD. Given this evidence, we propose novel therapies that may, alone or in combination, ameliorate AD progression in patients.
Collapse
Affiliation(s)
| | | | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
19
|
Gouveia FV, Lea‐Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer's mice. Ann Clin Transl Neurol 2023; 10:507-519. [PMID: 36715553 PMCID: PMC10109287 DOI: 10.1002/acn3.51737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is often associated with neuropsychiatric symptoms, including agitation and aggressive behavior. These symptoms increase with disease severity, ranging from 10% in mild cognitive impairment to 50% in patients with moderate-to-severe AD, pose a great risk for self-injury and injury to caregivers, result in high rates of institutionalization and great suffering for patients and families. Current pharmacological therapies have limited efficacy and a high potential for severe side effects. Thus, there is a growing need to develop novel therapeutics tailored to safely and effectively reduce agitation and aggressive behavior in AD. Here, we investigate for the first time the use of focused ultrasound combined with anesthetic-loaded nanodroplets (nanoFUS) targeting the amygdala (key structure in the neurocircuitry of agitation) as a novel minimally invasive tool to modulate local neural activity and reduce agitation and aggressive behavior in the TgCRND8 AD transgenic mice. METHODS Male and female animals were tested in the resident-intruder (i.e., aggressive behavior) and open-field tests (i.e., motor agitation) for baseline measures, followed by treatment with active- or sham-nanoFUS. Behavioral testing was then repeated after treatment. RESULTS Active-nanoFUS neuromodulation reduced aggressive behavior and agitation in male mice, as compared to sham-treated controls. Treatment with active-nanoFUS increased the time male mice spent in social-non-aggressive behaviors. INTERPRETATION Our results show that neuromodulation with active-nanoFUS may be a potential therapeutic tool for the treatment of neuropsychiatric symptoms, with special focus on agitation and aggressive behaviors. Further studies are necessary to establish cellular, molecular and long-term behavioral changes following treatment with nanoFUS.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioM5G 1X8Canada
| | - Harriet Lea‐Banks
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Isabelle Aubert
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
| | - Nir Lipsman
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| | - Kullervo Hynynen
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Institute of Biomedical Engineering, University of TorontoTorontoOntarioM5S 1A1Canada
| | - Clement Hamani
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| |
Collapse
|
20
|
Berk-Rauch HE, Choudhury A, Richards AT, Singh PK, Chen ZL, Norris EH, Strickland S, Ahn HJ. Striatal fibrinogen extravasation and vascular degeneration correlate with motor dysfunction in an aging mouse model of Alzheimer’s disease. Front Aging Neurosci 2023; 15:1064178. [PMID: 36967821 PMCID: PMC10034037 DOI: 10.3389/fnagi.2023.1064178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Alzheimer’s Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered.Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice.Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.
Collapse
Affiliation(s)
- Hanna E. Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Allison T. Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Hyung Jin Ahn,
| |
Collapse
|
21
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Kantor AB, Akassoglou K, Stavenhagen JB. Fibrin-Targeting Immunotherapy for Dementia. J Prev Alzheimers Dis 2023; 10:647-660. [PMID: 37874085 PMCID: PMC11227370 DOI: 10.14283/jpad.2023.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Blood-brain barrier (BBB) disruption is an early event in the development of Alzheimer's disease. It precedes extracellular deposition of amyloid-β in senile plaques and blood vessel walls, the intracellular accumulation of neurofibrillary tangles containing phosphorylated tau protein, microglial activation, and neuronal cell death. BBB disruption allows the coagulation protein fibrinogen to leak from the blood into the brain, where it is converted by thrombin cleavage into fibrin and deposits in the parenchyma and CNS vessels. Fibrinogen cleavage by thrombin exposes a cryptic epitope termed P2 which can bind CD11b and CD11c on microglia, macrophages and dendritic cells and trigger an inflammatory response toxic to neurons. Indeed, genetic and pharmacological evidence demonstrates a causal role for fibrin in innate immune cell activation and the development of neurodegenerative diseases. The P2 inflammatory epitope is spatially and compositionally distinct from the coagulation epitope on fibrin. Mouse monoclonal antibody 5B8, which targets the P2 epitope without interfering with the clotting process, has been shown to reduce neurodegeneration and neuroinflammation in animal models of Alzheimer's disease and multiple sclerosis. The selectivity and efficacy of this anti-human fibrin-P2 antibody in animal models supports the development of a monoclonal antibody drug targeting fibrin P2 for the treatment of neurodegenerative diseases. THN391 is a humanized, affinity-matured antibody which has a 100-fold greater affinity for fibrin P2 and improved development properties compared to the parental 5B8 antibody. It is currently in a Phase 1 clinical trial.
Collapse
Affiliation(s)
- A B Kantor
- Jeffrey Stavenhagen, PhD, Therini Bio, Inc, Sacramento, CA, USA,
| | | | | |
Collapse
|
23
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
24
|
Zhang Y, Guo K, Zhang P, Zhang M, Li X, Zhou S, Sun H, Wang W, Wang H, Hu Y. Exploring the mechanism of YangXue QingNao Wan based on network pharmacology in the treatment of Alzheimer’s disease. Front Genet 2022; 13:942203. [PMID: 36105078 PMCID: PMC9465410 DOI: 10.3389/fgene.2022.942203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
It is clinical reported that YangXue QingNao Wan (YXQNW) combined with donepezil can significantly improve the cognitive function of AD patients. However, the mechanism is not clear. A network pharmacology approach was employed to predict the protein targets and affected pathways of YXQNW in the treatment of AD. Based on random walk evaluation, the correlation between YXQNW and AD was calculated; while a variety of AD clinical approved Western drugs were compared. The targets of YXQNW were enriched and analyzed by using the TSEA platform and MetaCore. We proved that the overall correlation between YXQNW and AD is equivalent to clinical Western drugs, but the mechanism of action is very different. Firstly, YXQNW may promote cerebral blood flow velocity by regulating platelet aggregation and the vasoconstriction/relaxation signal pathway, which has been verified by clinical meta-analysis. Secondly, YXQNW may promote Aβ degradation in the liver by modulating the abnormal glucose and lipid metabolisms via the adiponectin-dependent pathway, RXR/PPAR-dependent lipid metabolism signal pathway, and fatty acid synthase activity signal pathway. We also verified whether YXQNW indeed promoted Aβ degradation in hepatic stellate cells. This work provides a novel scientific basis for the mechanism of YXQNW in the treatment of AD.
Collapse
Affiliation(s)
- Yuying Zhang
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Pengfei Zhang
- Tianjin Pharmaceutical and Cosmetic Evaluation and Inspection Center, Tianjin, China
| | | | - Xiaoqiang Li
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Shuiping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co. Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co. Ltd., Tianjin, China
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co. Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co. Ltd., Tianjin, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Key Laboratory of Bioactive Materials Ministry of Education, School of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Hui Wang, ; Yunhui Hu,
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
- *Correspondence: Hui Wang, ; Yunhui Hu,
| |
Collapse
|
25
|
Long-term microglial phase-specific dynamics during single vessel occlusion and recanalization. Commun Biol 2022; 5:841. [PMID: 35986097 PMCID: PMC9391347 DOI: 10.1038/s42003-022-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular occlusion leading to brain dysfunctions is usually considered evoking microglia-induced inflammation response. However, it remains unclear how microglia interact with blood vessels in the development of vascular occlusion-related brain disorders. Here, we illuminate long-term spatiotemporal dynamics of microglia during single vessel occlusion and recanalization. Microglia display remarkable response characteristics in different phases, including acute reaction, rapid diffusion, transition and chronic effect. Fibrinogen-induced microglial cluster promotes major histocompatibility complex II (MHCII) expression. Microglial soma represents a unique filament-shape migration and has slower motility compared to the immediate reaction of processes to occlusion. We capture proliferative microglia redistribute territory. Microglial cluster resolves gradually and microglia recover to resting state both in the morphology and function in the chronic effect phase. Therefore, our study offers a comprehensive analysis of spatiotemporal dynamics of microglia and potential mechanisms to both vessel occlusion and recanalization. Microglial phase-specific response suggests the morphological feature-oriented phased intervention would be an attractive option for vascular occlusion-related diseases treatments. The spatiotemporal dynamics of the microglial inflammatory response to single vessel occlusion and recanalization are analysed, revealing four different response phases.
Collapse
|
26
|
Grossmann K. Direct Oral Anticoagulants (DOACs) for Therapeutic Targeting of Thrombin, a Key Mediator of Cerebrovascular and Neuronal Dysfunction in Alzheimer's Disease. Biomedicines 2022; 10:1890. [PMID: 36009437 PMCID: PMC9405823 DOI: 10.3390/biomedicines10081890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Although preclinical research and observer studies on patients with atrial fibrillation concluded that direct oral anticoagulants (DOACs) can protect against dementia like Alzheimer's disease (AD), clinical investigation towards therapeutical approval is still pending. DOACs target pathological thrombin, which is, like toxic tau and amyloid-ß proteins (Aß), an early hallmark of AD. Especially in hippocampal and neocortical areas, the release of parenchymal Aß into the blood induces thrombin and proinflammatory bradykinin synthesis by activating factor XII of the contact system. Thrombin promotes platelet aggregation and catalyzes conversion of fibrinogen to fibrin, leading to degradation-resistant, Aß-containing fibrin clots. Together with oligomeric Aß, these clots trigger vessel constriction and cerebral amyloid angiopathy (CAA) with vessel occlusion and hemorrhages, leading to vascular and blood-brain barrier (BBB) dysfunction. As consequences, brain blood flow, perfusion, and supply with oxygen (hypoxia) and nutrients decrease. In parenchymal tissue, hypoxia stimulates Aß synthesis, leading to Aß accumulation, which is further enhanced by BBB-impaired perivascular Aß clearance. Aß trigger neuronal damage and promote tau pathologies. BBB dysfunction enables thrombin and fibrin(ogen) to migrate into parenchymal tissue and to activate glial cells. Inflammation and continued Aß production are the results. Synapses and neurons die, and cognitive abilities are lost. DOACs block thrombin by inhibiting its activity (dabigatran) or production (FXa-inhibitors, e.g., apixaban, rivaroxaban). Therefore, DOAC use could preserve vascular integrity and brain perfusion and, thereby, could counteract vascular-driven neuronal and cognitive decline in AD. A conception for clinical investigation is presented, focused on DOAC treatment of patients with diagnosed AD in early-stage and low risk of major bleeding.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
28
|
Zhu WM, Neuhaus A, Beard DJ, Sutherland BA, DeLuca GC. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Brain 2022; 145:2276-2292. [PMID: 35551356 PMCID: PMC9337814 DOI: 10.1093/brain/awac174] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer’s disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer’s disease.
Collapse
Affiliation(s)
- Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ain Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Ho BL, Hsieh SW, Chou PS, Yang YH. Effects of Dabigatran on Dementia Pathogenesis and Neuropsychological Function: A Review. J Alzheimers Dis 2022; 86:1589-1601. [PMID: 35213379 DOI: 10.3233/jad-215513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Patients with atrial fibrillation (AF) carry higher risks of cognitive consequences and psychological burden. An optimal anticoagulant therapy would be expected to better preserve neuropsychological function in addition to effective prevention of stroke and systemic thromboembolism. OBJECTIVE The aim of this review is to explore the effects of the non-vitamin K antagonist oral anticoagulant (NOAC) dabigatran, a direct thrombin inhibitor, on cognitive and psychological function as well as dementia pathogenesis. METHODS We performed a comprehensive search of PubMed/Medline for all types of relevant articles using a combination of dabigatran and associated keywords updated to August 31, 2021. All titles and abstracts were screened for eligibility, and potentially relevant papers were collected for inclusion. RESULTS The pooled results demonstrated neutral to positive impacts of dabigatran on cognitive and psychological outcomes, including laboratory results in animal models of Alzheimer's disease, and reduced incidences of anxiety/depression and dementia for AF patients. Dabigatran also exhibited better therapeutic profiles than warfarin in preclinical and observational research. CONCLUSION Given limited strength of evidence from heterogeneous studies, our review proposed modest beneficial effects of dabigatran on neuropsychological function. Further clinical trials are warranted to affirm the pleiotropic protective effects of NOACs on dementia treatment.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Song Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Rivard L, Friberg L, Conen D, Healey JS, Berge T, Boriani G, Brandes A, Calkins H, Camm AJ, Yee Chen L, Lluis Clua Espuny J, Collins R, Connolly S, Dagres N, Elkind MSV, Engdahl J, Field TS, Gersh BJ, Glotzer TV, Hankey GJ, Harbison JA, Haeusler KG, Hills MT, Johnson LSB, Joung B, Khairy P, Kirchhof P, Krieger D, Lip GYH, Løchen ML, Madhavan M, Mairesse GH, Montaner J, Ntaios G, Quinn TJ, Rienstra M, Rosenqvist M, Sandhu RK, Smyth B, Schnabel RB, Stavrakis S, Themistoclakis S, Van Gelder IC, Wang JG, Freedman B. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022; 145:392-409. [PMID: 35100023 DOI: 10.1161/circulationaha.121.055018] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing evidence suggests a consistent association between atrial fibrillation (AF) and cognitive impairment and dementia that is independent of clinical stroke. This report from the AF-SCREEN International Collaboration summarizes the evidence linking AF to cognitive impairment and dementia. It provides guidance on the investigation and management of dementia in patients with AF on the basis of best available evidence. The document also addresses suspected pathophysiologic mechanisms and identifies knowledge gaps for future research. Whereas AF and dementia share numerous risk factors, the association appears to be independent of these variables. Nevertheless, the evidence remains inconclusive regarding a direct causal effect. Several pathophysiologic mechanisms have been proposed, some of which are potentially amenable to early intervention, including cerebral microinfarction, AF-related cerebral hypoperfusion, inflammation, microhemorrhage, brain atrophy, and systemic atherosclerotic vascular disease. The mitigating role of oral anticoagulation in specific subgroups (eg, low stroke risk, short duration or silent AF, after successful AF ablation, or atrial cardiopathy) and the effect of rhythm versus rate control strategies remain unknown. Likewise, screening for AF (in cognitively normal or cognitively impaired patients) and screening for cognitive impairment in patients with AF are debated. The pathophysiology of dementia and therapeutic strategies to reduce cognitive impairment warrant further investigation in individuals with AF. Cognition should be evaluated in future AF studies and integrated with patient-specific outcome priorities and patient preferences. Further large-scale prospective studies and randomized trials are needed to establish whether AF is a risk factor for cognitive impairment, to investigate strategies to prevent dementia, and to determine whether screening for unknown AF followed by targeted therapy might prevent or reduce cognitive impairment and dementia.
Collapse
Affiliation(s)
- Léna Rivard
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Leif Friberg
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | | | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Italy (G.B.)
| | | | | | - A John Camm
- Cardiovascular Clinical Academic Group, St Georges Hospital, London, UK (A.J.C.)
| | | | | | | | - Stuart Connolly
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Germany (N.D.)
| | | | - Johan Engdahl
- Karolinska Institutet, Department of Clinical Sciences, Danderyds Hospital, Stockholm, Sweden (J.E.)
| | - Thalia S Field
- University of British Columbia, Vancouver Stroke Program, Canada (T.S.F.)
| | | | | | - Graeme J Hankey
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia (G.J.H.)
| | | | - Karl G Haeusler
- Department of Neurology, Universitätsklinikum Würzburg, Germany (K.G.H.)
| | | | | | - Boyoung Joung
- Yonsei University College of Medicine, Seoul, South Korea (B.J.)
| | - Paul Khairy
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Paulus Kirchhof
- University Heart and Vascular Center UKE Hamburg, Germany (P. Kirchhof)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (P. Kirchhof)
- Institute of Cardiovascular Sciences, University of Birmingham, UK, and AFNET, Münster, Germany (P. Kirchhof)
| | - Derk Krieger
- University Hospital of Zurich, Switzerland (D.K.)
| | | | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø (M.L.L.)
| | - Malini Madhavan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (M.M.)
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain (J.M.)
- Stroke Research Program, Institute of Biomedicine of Seville, Spain (J.M.)
- IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Spain (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain (J.M.)
| | | | | | - Michiel Rienstra
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | | | | | - Breda Smyth
- Department of Public Health, Health Service Executive West, Galway, Ireland (B.S.)
| | | | | | | | - Isabelle C Van Gelder
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | - Ji-Guang Wang
- Jiaotong University School of Medicine, China (J.G.W.)
| | - Ben Freedman
- Charles Perkins Centre and Concord Hospital Cardiology, University of Sydney, Australia (B.F.)
| |
Collapse
|
31
|
Ali M, Bracko O. VEGF Paradoxically Reduces Cerebral Blood Flow in Alzheimer’s Disease Mice. Neurosci Insights 2022; 17:26331055221109254. [PMID: 35873789 PMCID: PMC9298729 DOI: 10.1177/26331055221109254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Vascular dysfunction plays a critical role in the development of Alzheimer’s disease. Cerebral blood flow reductions of 10% to 25% present early in disease pathogenesis. Vascular Endothelial Growth Factor-A (VEGF-A) drives angiogenesis, which typically addresses blood flow reductions and global hypoxia. However, recent evidence suggests aberrant VEGF-A signaling in Alzheimer’s disease may undermine its physiological angiogenic function. Instead of improving cerebral blood flow, VEGF-A contributes to brain capillary stalls and blood flow reductions, likely accelerating cognitive decline. In this commentary, we explore the evidence for pathological VEGF signaling in Alzheimer’s disease, and discuss its implications for disease therapy.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
32
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
33
|
Cerebrovascular alterations in NAFLD: Is it increasing our risk of Alzheimer's disease? Anal Biochem 2021; 636:114387. [PMID: 34537182 DOI: 10.1016/j.ab.2021.114387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease, which has been classified as an emerging epidemic not only confined to liver-related morbidity and mortality. It is also becoming apparent that NAFLD is associated with moderate cerebral dysfunction and cognitive decline. A possible link between NAFLD and Alzheimer's disease (AD) has only recently been proposed due to the multiple shared genes and pathological mechanisms contributing to the development of these conditions. Although AD is a progressive neurodegenerative disease, the exact pathophysiological mechanism remains ambiguous and similarly to NAFLD, currently available pharmacological therapies have mostly failed in clinical trials. In addition to the usual suspects (inflammation, oxidative stress, blood-brain barrier alterations and ageing) that could contribute to the NAFLD-induced development and progression of AD, changes in the vasculature, cerebral perfusion and waste clearance could be the missing link between these two diseases. Here, we review the most recent literature linking NAFLD and AD, focusing on cerebrovascular alterations and the brain's clearance system as risk factors involved in the development and progression of AD, with the aim of promoting further research using neuroimaging techniques and new mechanism-based therapeutic interventions.
Collapse
|
34
|
Singh PK, Chen ZL, Strickland S, Norris EH. Increased Contact System Activation in Mild Cognitive Impairment Patients with Impaired Short-Term Memory. J Alzheimers Dis 2021; 77:59-65. [PMID: 32651324 DOI: 10.3233/jad-200343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An activated plasma contact system is an abnormality observed in many Alzheimer's disease (AD) patients. Since mild cognitive impairment (MCI) patients often develop AD, we analyzed the status of contact system activation in MCI patients. We found that kallikrein activity, high molecular weight kininogen cleavage, and bradykinin levels- measures of contact system activation- were significantly elevated in MCI patient plasma compared to plasma from age- and education-matched healthy individuals. Changes were more pronounced in MCI patients with impaired short-term recall memory, indicating the possible role of the contact system in early cognitive changes.
Collapse
Affiliation(s)
- Pradeep K Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
35
|
First-in-Class Isonipecotamide-Based Thrombin and Cholinesterase Dual Inhibitors with Potential for Alzheimer Disease. Molecules 2021; 26:molecules26175208. [PMID: 34500640 PMCID: PMC8434007 DOI: 10.3390/molecules26175208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the direct thrombin (thr) inhibitor dabigatran has proven to be beneficial in animal models of Alzheimer’s disease (AD). Aiming at discovering novel multimodal agents addressing thr and AD-related targets, a selection of previously and newly synthesized potent thr and factor Xa (fXa) inhibitors were virtually screened by the Multi-fingerprint Similarity Searching aLgorithm (MuSSeL) web server. The N-phenyl-1-(pyridin-4-yl)piperidine-4-carboxamide derivative 1, which has already been experimentally shown to inhibit thr with a Ki value of 6 nM, has been flagged by a new, upcoming release of MuSSeL as a binder of cholinesterase (ChE) isoforms (acetyl- and butyrylcholinesterase, AChE and BChE), as well as thr, fXa, and other enzymes and receptors. Interestingly, the inhibition potency of 1 was predicted by the MuSSeL platform to fall within the low-to-submicromolar range and this was confirmed by experimental Ki values, which were found equal to 0.058 and 6.95 μM for eeAChE and eqBChE, respectively. Thirty analogs of 1 were then assayed as inhibitors of thr, fXa, AChE, and BChE to increase our knowledge of their structure-activity relationships, while the molecular determinants responsible for the multiple activities towards the target enzymes were rationally investigated by molecular cross-docking screening.
Collapse
|
36
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
37
|
Zolotoff C, Bertoletti L, Gozal D, Mismetti V, Flandrin P, Roche F, Perek N. Obstructive Sleep Apnea, Hypercoagulability, and the Blood-Brain Barrier. J Clin Med 2021; 10:jcm10143099. [PMID: 34300265 PMCID: PMC8304023 DOI: 10.3390/jcm10143099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of intermittent hypoxia (IH) and is recognized as an independent risk factor for vascular diseases that are mediated by a multitude of mechanistic pathophysiological cascades including procoagulant factors. The pro-coagulant state contributes to the development of blood clots and to the increase in the permeability of the blood-brain barrier (BBB). Such alteration of BBB may alter brain function and increase the risk of neurodegenerative diseases. We aim to provide a narrative review of the relationship between the hypercoagulable state, observed in OSA and characterized by increased coagulation factor activity, as well as platelet activation, and the underlying neural dysfunction, as related to disruption of the BBB. We aim to provide a critical overview of the existing evidence about the effect of OSA on the coagulation balance (characterized by increased coagulation factor activity and platelet activation) as on the BBB. Then, we will present the emerging data on the effect of BBB disruption on the risk of underlying neural dysfunction. Finally, we will discuss the potential of OSA therapy on the coagulation balance and the improvement of BBB.
Collapse
Affiliation(s)
- Cindy Zolotoff
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Correspondence: ; Tel.: +33-477-421-452
| | - Laurent Bertoletti
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Médecine Vasculaire et Thérapeutique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women’s and Children’s Hospital, University of Missouri, Columbia, MO 65201, USA;
| | - Valentine Mismetti
- Service de Pneumologie et d’Oncologie Thoracique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Pascale Flandrin
- Laboratoire d’Hématologie, Hôpital Nord, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Frédéric Roche
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Physiologie Clinique et de l’Exercice, Centre VISAS, CHU Saint Etienne, F-42270 Saint-Priest-en-Jarez, France
| | - Nathalie Perek
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
| |
Collapse
|
38
|
Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1501-1516. [PMID: 33444096 PMCID: PMC8221770 DOI: 10.1177/0271678x20982383] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Reductions of baseline cerebral blood flow (CBF) of ∼10-20% are a common symptom of Alzheimer's disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.
Collapse
Affiliation(s)
- Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jean C Cruz Hernández
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Singh PK, Badimon A, Chen Z, Strickland S, Norris EH. The contact activation system and vascular factors as alternative targets for Alzheimer's disease therapy. Res Pract Thromb Haemost 2021; 5:e12504. [PMID: 33977208 PMCID: PMC8105157 DOI: 10.1002/rth2.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. Extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles are classical hallmarks of AD pathology and thus are the prime targets for AD therapeutics. However, approaches to slow or stop AD progression and dementia by reducing Aβ production, neutralizing toxic Aβ aggregates, or inhibiting tau aggregation have been largely unsuccessful in clinical trials. The contribution of dysregulated vascular components and inflammation is evident in AD pathology. Vascular changes are detectable early in AD progression, so treatment of vascular defects along with anti-Aβ/tau therapy could be a successful combination therapeutic strategy for this disease. Here, we explain how vascular dysfunction mechanistically contributes to thrombosis as well as inflammation and neurodegeneration in AD pathogenesis. This review provides evidence that addressing vascular dysfunction in people with AD could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Ana Badimon
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
40
|
Grossmann K. Alzheimer's Disease-Rationales for Potential Treatment with the Thrombin Inhibitor Dabigatran. Int J Mol Sci 2021; 22:ijms22094805. [PMID: 33946588 PMCID: PMC8125318 DOI: 10.3390/ijms22094805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by neurodegenerative, but also vascular and hemostatic changes in the brain. The oral thrombin inhibitor dabigatran, which has been used for over a decade in preventing thromboembolism and has a well-known pharmacokinetic, safety and antidote profile, can be an option to treat vascular dysfunction in early AD, a condition known as cerebral amyloid angiopathy (CAA). Recent results have revealed that amyloid-β proteins (Aβ), thrombin and fibrin play a crucial role in triggering vascular and parenchymal brain abnormalities in CAA. Dabigatran blocks soluble thrombin, thrombin-mediated formation of fibrin and Aβ-containing fibrin clots. These clots are deposited in brain parenchyma and blood vessels in areas of CAA. Fibrin-Aβ deposition causes microvascular constriction, occlusion and hemorrhage, leading to vascular and blood-brain barrier dysfunction. As a result, blood flow, perfusion and oxygen and nutrient supply are chronically reduced, mainly in hippocampal and neocortical brain areas. Dabigatran has the potential to preserve perfusion and oxygen delivery to the brain, and to prevent parenchymal Aβ-, thrombin- and fibrin-triggered inflammatory and neurodegenerative processes, leading to synapse and neuron death, and cognitive decline. Beneficial effects of dabigatran on CAA and AD have recently been shown in preclinical studies and in retrospective observer studies on patients. Therefore, clinical studies are warranted, in order to possibly expand dabigatran approval for repositioning for AD treatment.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
41
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
42
|
β-Amyloid Orchestrates Factor XII and Platelet Activation Leading to Endothelial Dysfunction and Abnormal Fibrinolysis in Alzheimer Disease. Alzheimer Dis Assoc Disord 2021; 35:91-97. [PMID: 33629978 DOI: 10.1097/wad.0000000000000420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia in humans. However, to date, the cause of sporadic AD (SAD), which is the most frequent form, is still unknown. Although it has not been possible to determine the origin of this disease, the amyloid hypothesis is one of the most accepted to explain the etiology of AD. This hypothesis proposes that the pathogenesis of AD is derived from the toxic effect produced by the amyloid-β (Aβ) peptide in the brain parenchyma, but it does not make clear how Aβ is capable of producing such damage. Furthermore, it has been observed that SAD is accompanied by disruptions in the vascular system, such as damage to the blood-brain barrier. This facilitates the transfer of some systemic proteins, such as fibrinogen, to the brain parenchyma, where Aβ is abundant. Therefore, this Aβ interacts with fibrinogen, which favors the formation of clots resistant to fibrinolysis, inducing a risk of thrombosis and neuroinflammation. Notably, Aβ is not only of neuronal origin; platelets also contribute to high Aβ production in the circulation. The Aβ present in circulation favors the activation of coagulation factor XII, which leads to the generation of thrombin and bradykinin. In addition to Aβ-induced platelet activation, all these events favor the development of inflammatory processes that cause damage to the brain vasculature. This damage represents the beginning of the toxic effects of Aβ, which supports the amyloid hypothesis. This review addresses the relationship between alterations in the vascular and hemostatic systems caused by Aβ and how both alterations contribute to the progression of SAD.
Collapse
|
43
|
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Bihaqi SW, Rao HV, Sen A, Grammas P. Dabigatran reduces thrombin-induced neuroinflammation and AD markers in vitro: Therapeutic relevance for Alzheimer's disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100014. [PMID: 36324711 PMCID: PMC9616330 DOI: 10.1016/j.cccb.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Thrombin treatment induced proteins linked to neuroinflammation in SH-SY5Y cells. Thrombin exposure elevated the expression/ levels of proteins of AD pathway. EMSA showed dabigatran reduced activation of NFκB in SH-SY5Y cells. Dabigatran reduced thrombin-driven neuroinflammation and downstream AD pathology.
Background Vascular risk factors such as atherosclerosis, diabetes, and elevated homocysteine levels are strongly correlated with onset of Alzheimer's disease (AD). Emerging evidence indicates that blood coagulation protein thrombin is associated with vascular and non-vascular risk factors of AD. Here, we examined the effect of thrombin and its direct inhibitor dabigatran on key mediators of neuro-inflammation and AD pathology in the retinoic acid (RA)-differentiated human neuroblastoma cell line SH-SY5Y. Methods SH-SY5Y cells exposed to thrombin concentrations (10–100 nM) +/- 250 nM dabigatran for 24 h were analyzed for protein and gene expression. Electrophoretic mobility shift assay (EMSA) was used to determine DNA binding of NFkB. Western blotting, qRT-PCR and ELISA were used to measure the protein, mRNA, and activity levels of known AD hallmarks and signaling molecules. Results Dabigatran treatment attenuated thrombin-induced increase in DNA binding of NFκB by 175% at 50 nM and by 77% at 100 nM thrombin concentration. Thrombin also augmented accumulation of Aβ protein expression and phosphorylation of p38 MAPK, a downstream molecule in the signaling cascade, expression of pro-apoptotic mediator caspase 3, APP, tTau and pTau. Additionally, thrombin increased BACE1 activity, GSK3β expression, and APP, BACE1, Tau and GSK3β mRNA levels. Co-incubation with dabigatran attenuated thrombin-induced increases in the protein, mRNA, and activities of the aforesaid molecules to various extents (between −31% and −283%). Conclusion Our data demonstrates that thrombin promotes AD-related pathological changes in neuronal cultures and suggests that use of direct oral anticoagulants may provide a therapeutic benefit against thrombin-driven neuroinflammation and downstream pathology in AD.
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
- Corresponding author at: Department of Pathology, Anatomy and Cell biology, 1020 Locust Street, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Haripriya Vittal Rao
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Wake Forest Alzheimer's Disease Research Center, Winston Salem, NC 27101, United States
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
45
|
A direct thrombin inhibitor, dabigatran etexilate protects from renal fibrosis by inhibiting protease activated receptor-1. Eur J Pharmacol 2020; 893:173838. [PMID: 33359646 DOI: 10.1016/j.ejphar.2020.173838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Chronic kidney disease (CKD) involves interstitial fibrosis as an influential underlying pathological process associated with compromised renal function regardless of etiological cause of the injury. The tubulointerstitial fibrosis is found to be well correlated with declining renal function and its subsequent culmination into renal failure. Given the prominent role of thrombin in multiple diseases, it was tempting for us to investigate the outcome of a direct thrombin inhibitor in renal injury. We investigated the involvement of thrombin in renal injury and fibrosis by using an FDA approved orally active, direct thrombin inhibitor, dabigatran etexilate (DB). We used a robust experimental model of unilateral ureteral obstruction (UUO)-induced renal injury which shows progressive tubulointerstitial fibrosis (TIF) along with tubular injury and inflammation. The obstructed kidney showed severe TIF as compared to control kidneys. The administration of DB significantly inhibited UUO-induced collagen-1 and TIF by inhibition of thrombin activated protease activated receptor (PAR)-1 expression in fibrotic kidney. In addition, DB administration improved histoarchitecture of obstructed kidney, inhibited TGF-β and SNAI2-induced epithelial-mesenchymal transition (EMT) program. Our study highlights the importance of thrombin signalling in TIF and provides strong evidences to support the notion that a direct thrombin inhibitor ameliorates TIF by PAR-1 mediated mechanism.
Collapse
|
46
|
Alzheimer's Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:942-951. [PMID: 32130930 PMCID: PMC8046164 DOI: 10.1016/j.jacc.2019.10.062] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023]
Abstract
Alzheimer’s disease, the leading cause of dementia in the elderly, is a neurodegenerative condition characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, age-related vascular changes accompany or even precede the development of Alzheimer’s pathology, raising the possibility that they may have a pathogenic role. This review provides an appraisal of the alterations in cerebral and systemic vasculature, the heart, and hemostasis that occur in Alzheimer’s disease and their relationships to cognitive impairment. Although the molecular pathogenesis of these alterations remains to be defined, amyloid-β is a likely contributor in the brain as in the heart. Collectively, the evidence suggests that vascular pathology is a likely pathogenic contributor to age-related dementia, including Alzheimer’s disease, inextricably linked to disease onset and progression. Consequently, the contribution of vascular factors should be considered in preventive, diagnostic, and therapeutic approaches to address one of the major health challenges of our time.
Collapse
|
47
|
Martínez-Sellés M, Martínez-Larrú ME, Ibarrola M, Santos A, Díez-Villanueva P, Bayés-Genis A, Baranchuk A, Bayés-de-Luna A, Elosua R. Interatrial block and cognitive impairment in the BAYES prospective registry. Int J Cardiol 2020; 321:95-98. [DOI: 10.1016/j.ijcard.2020.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
|
48
|
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol 2020; 140:793-810. [PMID: 32865691 PMCID: PMC7666276 DOI: 10.1007/s00401-020-02215-w] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Therapies targeting late events in Alzheimer's disease (AD), including aggregation of amyloid beta (Aβ) and hyperphosphorylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of promoting novel mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
49
|
Herrera C, Bruña V, Abizanda P, Díez-Villanueva P, Formiga F, Torres R, Carreras J, Ayala R, Martin-Sánchez FJ, Bayés-Genis A, Elosua R, Bayés-de-Luna A, Martínez-Sellés M. Relation of Interatrial Block to Cognitive Impairment in Patients ≥ 70 Years of Age (From the CAMBIAD Case-control Study). Am J Cardiol 2020; 136:94-99. [PMID: 32946858 DOI: 10.1016/j.amjcard.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
The association between atrial fibrillation, stroke, and interatrial block (IAB) (P-wave duration ≥120 ms) is well recognized, particularly in the case of advanced IAB. We aimed to assess the association of IAB with mild cognitive impairment. Advanced Characterization of Cognitive Impairment in Elderly with Interatrial Block was a case-control multicenter study, conducted in subjects aged ≥70 years in sinus rhythm without significant structural heart disease. Diagnosis of mild cognitive impairment was performed by an expert geriatrician, internist, or neurologist in the presence of changes in cognitive function (Mini Mental State Examination score 20 to 25) without established dementia. A total of 265 subjects were included. Mean age was 79.6 ± 6.3 years and 174 (65.7%) were women; there were 143 cases with mild cognitive impairment and 122 controls with normal cognitive function. Compared with controls, cases had longer P-wave duration (116.2 ± 13.8 ms vs 112.5 ± 13.3 ms, p = 0.028), higher prevalence of IAB (73 [51.0%] vs 38 [31.1%], p = 0.001), higher prevalence of advanced IAB (28 [19.6%] vs 10 [8.2%], p = 0.002), and higher MVP ECG risk score (2.7 ± 1.4 vs 2.2 ± 1.3, p = 0.004). IAB was independently associated with mild cognitive impairment, both for partial (odds ratio 2.0, 95% CI: 1.1 to 3.9) and advanced IAB (odds ratio 2.8, 95% CI: 1.1 to 6.7). In conclusion, in subjects aged ≥70 years without significant structural heart disease, IAB is independently associated with mild cognitive impairment. This association is stronger in the case of advanced IAB.
Collapse
|
50
|
Iannucci J, Johnson SL, Majchrzak M, Barlock BJ, Akhlaghi F, Seeram NP, Sen A, Grammas P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer's disease mouse model. Biochem Biophys Rep 2020; 24:100862. [PMID: 33294639 PMCID: PMC7689047 DOI: 10.1016/j.bbrep.2020.100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target. Thrombin inhibition with dabigatran reduces markers of oxidative stress in vivo. Dabigatran treatment reduces tau pathology in vivo. Dabigatran treatment promotes factors related to cell survival, synaptic function.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Johnson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Benjamin J Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|