1
|
Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2024; 327:L382-L394. [PMID: 39010821 DOI: 10.1152/ajplung.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Cross talk between T cells and airway smooth muscle (ASM) may play a role in modulating asthmatic airway inflammation and remodeling. Infiltrating T cells have been observed within the ASM bundles of asthmatics, and a wide range of direct and indirect interactions between T cells and ASM has been demonstrated using various in vitro and in vivo model systems. Contact-dependent mechanisms such as ligation and activation of cellular adhesion and costimulatory molecules, as well as the formation of lymphocyte-derived membrane conduits, facilitate the adhesion, bidirectional communication, and transfer of materials between T and ASM cells. T cell-derived cytokines, particularly of the Th1, Th2, and Th17 subsets, modulate the secretome, proliferation, and contractility of ASM cells. This review summarizes the mechanisms governing T cell-ASM cross talk in the context of asthma. Understanding the underlying mechanistic basis is important for directing future research and developing therapeutic interventions targeted toward this complex interaction.
Collapse
Affiliation(s)
- Muyang Zhou
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joyce Jang
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Schettini N, Pacetti L, Corazza M, Borghi A. The Role of OX40-OX40L Axis in the Pathogenesis of Atopic Dermatitis. Dermatitis 2024. [PMID: 38700255 DOI: 10.1089/derm.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
OX40 is a co-stimulatory immune checkpoint molecule that promotes the activation and the effector function of T lymphocytes through interaction with its ligand (OX40L) on antigen-presenting cells. OX40-OX40L axis plays a crucial role in Th1 and Th2 cell expansion, particularly during the late phases or long-lasting response. Atopic dermatitis is characterized by an immune dysregulation of Th2 activity and by an overproduction of proinflammatory cytokines such as interleukin (IL)-4 and IL-13. Other molecules involved in its pathogenesis include thymic stromal lymphopoietin, IL-33, and IL-25, which contribute to the promotion of OX40L expression on dendritic cells. Lesional skin in atopic dermatitis exhibits a higher level of OX40L+-presenting cells compared with other dermatologic diseases or normal skin. Recent clinical trials using antagonizing anti-OX40 or anti-OX40L antibodies have shown symptom improvement and cutaneous manifestation alleviation in patients with atopic dermatitis. These findings suggest the relevance of the OX40-OX40L axis in atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Natale Schettini
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Lucrezia Pacetti
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Corazza
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Borghi
- From the Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Sadrolashrafi K, Guo L, Kikuchi R, Hao A, Yamamoto RK, Tolson HC, Bilimoria SN, Yee DK, Armstrong AW. An OX-Tra'Ordinary Tale: The Role of OX40 and OX40L in Atopic Dermatitis. Cells 2024; 13:587. [PMID: 38607026 PMCID: PMC11011471 DOI: 10.3390/cells13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instrumental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L. T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31) that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment. Novel therapies targeting the OX40 pathway are currently in development, several of which have demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of AD management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - April W. Armstrong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Rewerska B, Sher LD, Alpizar S, Pauser S, Pulka G, Mozaffarian N, Salhi Y, Martinet C, Jabert W, Gudi G, CA V, GN S, Macoin J, Anstett V, Turrini R, Doucey MA, Blein S, Konto C, Machkova M. Phase 2b randomized trial of OX40 inhibitor telazorlimab for moderate-to-severe atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100195. [PMID: 38187863 PMCID: PMC10770725 DOI: 10.1016/j.jacig.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2024]
Abstract
Background Telazorlimab is a humanized anti-OX40 monoclonal antibody being studied for treatment of T-cell-mediated diseases. Objective This randomized, placebo-controlled, phase 2b dose-range finding study investigated efficacy, safety, pharmacokinetics, and immunogenicity of telazorlimab in subjects with atopic dermatitis. Methods In this 2-part study (NCT03568162), adults (≥18 years) with moderate-to-severe disease were randomized to various regimens of subcutaneous telazorlimab or placebo for 16 weeks' blinded treatment, followed by 38 weeks' open-label treatment and 12 weeks' drug-free follow-up. Telazorlimab treatment groups (following a loading dose) in part 1 were 300 mg every 2 weeks; 300 mg every 4 weeks; or 75 mg every 4 weeks. Part 2 evaluated telazorlimab 600 mg every 2 weeks. The primary end point was percentage change from baseline in Eczema Area and Severity Index (EASI) at week 16. Safety assessments included incidence of treatment-emergent adverse events. Results The study randomized 313 subjects in part 1 and 149 in part 2. At 16 weeks, the least squares mean percentage change from baseline in EASI was significantly greater in subjects receiving telazorlimab 300 mg every 2 weeks (part 1) and 600 mg every 2 weeks (part 2) versus placebo (-54.4% vs -34.2% for part 1 and -59.0% vs -41.8% for part 2, P = .008 for both). Telazorlimab was well tolerated, with similar distribution of adverse events between telazorlimab- and placebo-treated subjects in both part 1 and part 2. Conclusion Telazorlimab, administered subcutaneously at 300 mg every 2 weeks or 600 mg every 2 weeks following a loading dose, was well tolerated and induced significant and progressive clinical improvement in adults with moderate-to-severe atopic dermatitis.
Collapse
Affiliation(s)
| | | | - Sady Alpizar
- Clinical Research Trials of Florida Inc, Tampa, Fla
| | - Sylvia Pauser
- KliFOs—Klinische Forschung Osnabrück, Osnabrück, Germany
| | - Grazyna Pulka
- School of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | - Vinu CA
- Ichnos Sciences, New York, NY
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Villéger R, Chulkina M, Mifflin RC, Markov NS, Trieu J, Sinha M, Johnson P, Saada JI, Adegboyega PA, Luxon BA, Beswick EJ, Powell DW, Pinchuk IV. Loss of alcohol dehydrogenase 1B in cancer-associated fibroblasts: contribution to the increase of tumor-promoting IL-6 in colon cancer. Br J Cancer 2023; 128:537-548. [PMID: 36482184 PMCID: PMC9938173 DOI: 10.1038/s41416-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marina Chulkina
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Randy C Mifflin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Nikolay S Markov
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Judy Trieu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Mala Sinha
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Paul Johnson
- Department of Surgery, UTMB, Galveston, TX, 77555, USA
| | - Jamal I Saada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Patrick A Adegboyega
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, 63106, USA
| | - Bruce A Luxon
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Don W Powell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, 77555, USA
| | - Irina V Pinchuk
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
6
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Xu L, Tian D, Zhou M, Ma J, Sun G, Jin H, Li M, Zhang D, Wu J. OX40 Expression in Eosinophils Aggravates OVA-Induced Eosinophilic Gastroenteritis. Front Immunol 2022; 13:841141. [PMID: 35720294 PMCID: PMC9201343 DOI: 10.3389/fimmu.2022.841141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background & Aims Eosinophils are the main inflammatory effector cells that damage gastrointestinal tissue in eosinophilic gastrointestinal diseases (EGIDs). Activation of the OX40 pathway aggravates allergic diseases, such as asthma, but it is not clear whether OX40 is expressed in eosinophils to regulate inflammation in EGIDs. In this study, we assessed the expression and effect of OX40 on eosinophils in WT and Ox40-/- eosinophilic gastroenteritis (EGE) mice. Methods Eosinophil infiltration, ovalbumin (OVA)-specific Ig production, OX40 expression and inflammatory factor levels in the intestine and bone marrow (BM) were investigated to evaluate inflammation. Results We confirmed that OVA-challenged mice produced high levels of Ox40, Mbp, Ccl11, Il5, Il4, Il13, and Il6 mRNA and a low level of Ifng mRNA in the intestine. Increased eosinophils were observed in intestinal and lymph tissues, accompanied by significantly upregulated OX40 and Type 2 cytokine production in eosinophils of EGE mice. Ox40 deficiency ameliorated OVA-induced inflammation, eosinophil infiltration, and cytokine production in the intestine. Consistently, Ox40-/ - eosinophils exhibited decreased proliferation and proinflammatory function. The stimulation of the agonistic anti-OX40 antibody, OX86, promoted the effect of OX40 on eosinophils. The present study also showed that Ox40 deficiency dampened the Traf2/6-related NF-κB signaling pathway in eosinophils. Conclusions OX40 may play a critical role in the progress of OVA-induced EGE by promoting the maturation and function of eosinophils via the Traf2/6-related NF-κB signaling pathway.
Collapse
Affiliation(s)
- Longwei Xu
- Department of Gastroenterology, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dan Tian
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Minsi Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiuyue Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Guangyong Sun
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Hua Jin
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Mingyang Li
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jing Wu
- Department of Gastroenterology, Peking University Ninth School of Clinical Medicine, Beijing, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
8
|
Bonam SR, Chauvin C, Mathew MJ, Bayry J. IFN-γ Induces PD-L1 Expression in Primed Human Basophils. Cells 2022; 11:801. [PMID: 35269423 PMCID: PMC8909048 DOI: 10.3390/cells11050801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) plays a key role in maintaining immune tolerance and also in immune evasion of cancers and pathogens. Though the identity of stimuli that induce PD-L1 in various human innate cells and their function are relatively well studied, data on the basophils remain scarce. In this study, we have identified one of the factors, such as IFN-γ, that induces PD-L1 expression in human basophils. Interestingly, we found that basophil priming by IL-3 is indispensable for IFN-γ-induced PD-L1 expression in human basophils. However, priming by other cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP) was dispensable. Analyses of a published microarray data set on IL-3-treated basophils indicated that IL-3 enhances IFNGR2, one of the chains of the IFNGR heterodimer complex, and CD274, thus providing a mechanistic insight into the role of IL-3 priming in IFN-γ-induced PD-L1 expression in human basophils.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
| | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France; (S.R.B.); (C.C.)
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
9
|
Gu C, Upchurch K, Horton J, Wiest M, Zurawski S, Millard M, Kane RR, Joo H, Miller LA, Oh S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front Immunol 2021; 12:678036. [PMID: 34305908 PMCID: PMC8293820 DOI: 10.3389/fimmu.2021.678036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Upchurch
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Joshua Horton
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | - Mark Millard
- Department of Pulmonology, Baylor University Medical Center, Dallas, TX, United States
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States.,Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| |
Collapse
|
10
|
Stachyra K, Dudzisz-Śledź M, Bylina E, Szumera-Ciećkiewicz A, Spałek MJ, Bartnik E, Rutkowski P, Czarnecka AM. Merkel Cell Carcinoma from Molecular Pathology to Novel Therapies. Int J Mol Sci 2021; 22:6305. [PMID: 34208339 PMCID: PMC8231245 DOI: 10.3390/ijms22126305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon and highly aggressive skin cancer. It develops mostly within chronically sun-exposed areas of the skin. MCPyV is detected in 60-80% of MCC cases as integrated within the genome and is considered a major risk factor for MCC. Viral negative MCCs have a high mutation burden with a UV damage signature. Aberrations occur in RB1, TP53, and NOTCH genes as well as in the PI3K-AKT-mTOR pathway. MCC is highly immunogenic, but MCC cells are known to evade the host's immune response. Despite the characteristic immunohistological profile of MCC, the diagnosis is challenging, and it should be confirmed by an experienced pathologist. Sentinel lymph node biopsy is considered the most reliable staging tool to identify subclinical nodal disease. Subclinical node metastases are present in about 30-50% of patients with primary MCC. The basis of MCC treatment is surgical excision. MCC is highly radiosensitive. It becomes chemoresistant within a few months. MCC is prone to recurrence. The outcomes in patients with metastatic disease are poor, with a historical 5-year survival of 13.5%. The median progression-free survival is 3-5 months, and the median overall survival is ten months. Currently, immunotherapy has become a standard of care first-line therapy for advanced MCC.
Collapse
Affiliation(s)
- Karolina Stachyra
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Mateusz J. Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Yang Y, Chai X, Xin W, Wang D, Dai C, Qian F, Yang T. Generation and characterization of a high-affinity chimeric anti-OX40 antibody with potent antitumor activity. FEBS Lett 2021; 595:1587-1603. [PMID: 33792041 DOI: 10.1002/1873-3468.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
OX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients. Using a hybridoma platform and three different types of immunization strategies, namely recombinant protein, DNA, and overexpressing cells, we identified a chimeric anti-OX40 antibody (mAb035-hIgG1 from DNA immunization) that shows excellent binding specificity, and slightly stronger activation of human memory CD4+ T cells and similar potent antitumor activity compared with BMS 986178, an anti-OX40 antibody currently being evaluated for the treatment of solid tumors. This paper further systematically investigates the antigen-specific immune response, the number of binders, epitope bins, and functional activities of antibodies among different immunization strategies. Interestingly, we found that different immunization strategies affect the biological activity of monoclonal antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Antineoplastic Agents, Immunological/isolation & purification
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Biological Assay
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CHO Cells
- Cricetulus
- Female
- Freund's Adjuvant/administration & dosage
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- Humans
- Hybridomas/chemistry
- Hybridomas/immunology
- Immunization/methods
- Immunoglobulin Fc Fragments/biosynthesis
- Immunoglobulin Fc Fragments/isolation & purification
- Immunoglobulin Fc Fragments/pharmacology
- Jurkat Cells
- Luciferases/genetics
- Luciferases/metabolism
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred BALB C
- NF-kappa B/genetics
- NF-kappa B/immunology
- Receptors, OX40/antagonists & inhibitors
- Receptors, OX40/genetics
- Receptors, OX40/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/pharmacology
Collapse
Affiliation(s)
- Yongli Yang
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
- Shanghai ChemPartner Co., Ltd., China
| | | | | | | | | | - Feng Qian
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
12
|
Th1 responses in vivo require cell-specific provision of OX40L dictated by environmental cues. Nat Commun 2020; 11:3421. [PMID: 32647184 PMCID: PMC7347572 DOI: 10.1038/s41467-020-17293-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The OX40-OX40L pathway provides crucial co-stimulatory signals for CD4 T cell responses, however the precise cellular interactions critical for OX40L provision in vivo and when these occur, remains unclear. Here, we demonstrate that provision of OX40L by dendritic cells (DCs), but not T cells, B cells nor group 3 innate lymphoid cells (ILC3s), is critical specifically for the effector Th1 response to an acute systemic infection with Listeria monocytogenes (Lm). OX40L expression by DCs is regulated by cross-talk with NK cells, with IFNγ signalling to the DC to enhance OX40L in a mechanism conserved in both mouse and human DCs. Strikingly, DC expression of OX40L is redundant in a chronic intestinal Th1 response and expression by ILC3s is necessary. Collectively these data reveal tissue specific compartmentalisation of the cellular provision of OX40L and define a mechanism controlling DC expression of OX40L in vivo. The OX40-OX40L axis is a crucial component of the costimulatory requirement of CD4 T cell responses. Here, the authors show context and cell type specific expression of OX40L for driving Th1 cell generation during acute and chronic models of infection.
Collapse
|
13
|
Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:9-20. [PMID: 31767987 DOI: 10.1038/s41575-019-0228-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IBD treatment is undergoing a transformation with an expanding repertoire of drugs targeting different aspects of the immune response. Three novel classes of drugs have emerged in the past decade that target leukocyte trafficking to the gut (vedolizumab), neutralize key cytokines with antibodies (ustekinumab) and inhibit cytokine signalling pathways (tofacitinib). In advanced development are other drugs for IBD, including therapies targeting other cytokines such as IL-23 and IL-6. However, all agents tested so far are hampered by primary and secondary loss of response, so it is desirable to develop personalized strategies to identify which patients should be treated with which drugs. Stratification of patients with IBD by clinical parameters alone lacks sensitivity, and alternative modalities are now needed to deliver precision medicine in IBD. High-resolution profiling of immune response networks in individual patients is a promising approach and different technical platforms, including in vivo real-time molecular endoscopy, tissue transcriptomics and germline genetics, are promising tools to help predict responses to specific therapies. However, important challenges remain regarding the clinical utility of these technologies, including their scalability and accessibility. This Review focuses on unravelling some of the complexity of mucosal immune responses in IBD pathogenesis and how current and emerging analytical platforms might be harnessed to effectively stratify and individualise IBD therapy.
Collapse
Affiliation(s)
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nick Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK. .,Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
14
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Zhang M, Ming S, Gong S, Liang S, Luo Y, Liang Z, Cao C, Lao J, Shang Y, Li X, Wang M, Zhong G, Xu L, Wu M, Wu Y. Activation-Induced Cell Death of Mucosal-Associated Invariant T Cells Is Amplified by OX40 in Type 2 Diabetic Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:2614-2620. [DOI: 10.4049/jimmunol.1900367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
|
16
|
Fouladi S, Masjedi M, G. Hakemi M, Ghasemi R, Eskandari N. Correlation of OX40 ligand on B cells with serum total IgE and IL-4 levels by CD4 + T cells in allergic rhinitis. Allergol Immunopathol (Madr) 2019; 47:234-240. [PMID: 30454861 DOI: 10.1016/j.aller.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/07/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION AND OBJECTIVES Allergic rhinitis (AR) is a classic Th2-mediated disease, with important contributions to the pathology of interleukins 4, 5, and 13. The co-stimulatory molecule of OX40 and its ligand interaction participate in the immune response by regulation of Th1/Th2 cells balance. Considering the paucity of information on the relation between OX40 ligand (OX40L) and AR, this study aimed to examine its expression on B lymphocytes. PATIENTS AND METHODS This case-control study consisted of 20 AR patients and 20 healthy subjects. The serum level of total immunoglobulin E (IgE) was measured using the electro-chemiluminescence (ECL) technology. The percentage of B-lymphocytes expressing OX40L was assessed by flow cytometry. The amounts of IL-4 in CD4+ T cells culture supernatant was also measured by the enzyme-linked immunosorbent assay (ELISA). RESULTS OX40L expression on B lymphocytes of patients was significantly higher than the control group (44.32±19.21% vs. 2.79±2.48% respectively, p<0.001). In AR patients, OX40L expression correlated positively with the levels of serum total IgE and IL-4 produced by CD4+ T lymphocytes (p<0.01 - p<0.05) respectively. CONCLUSIONS Collectively, the findings of this work suggest that there is a relationship between the OX40L expression level on B lymphocytes and allergic markers such as IgE and IL-4 in patients with allergic rhinitis.
Collapse
|
17
|
Rahmani F, Hadinedoushan H, Ghasemi N. Relative Expression of OX40, OX40L mRNA, and OX40L Serum Levels in Women with Recurrent Spontaneous Abortion. Immunol Invest 2019; 48:480-489. [PMID: 30794011 DOI: 10.1080/08820139.2019.1567530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study determined the roles of OX40 and OX40L in women with recurrent spontaneous abortion (RSA). We compared the expression of OX40 and OX40L genes in peripheral blood mRNA levels and serum levels of OX40L in women with a history of RSA to the control group. In this case-control study, 40 women with a history of RSA (case group), and 40 others with no history of abortion (control group) were investigated. The expressions of OX40 mRNA and OX40L mRNA were determined in the two groups using the quantitative polymerase chain reaction. Also, the enzyme-linked immunosorbent assay was used to determine the levels of serum OX40L in the two groups. There were no significant differences in the maternal age of women in the two groups (30.1 ± 4.28 years in the case vs. 30.03 ± 4.23 years in the control group). There was no difference in terms of the levels of OX40 and OX40L mRNA between the groups (p = 0.08 and p = 0.56, respectively). In addition, there was no significant correlation between the expression of OX40 and OX40L mRNA levels with age or the number of abortions. The correlation between OX40 and OX40L mRNA levels was not significant. RSA history group turned to show a higher level of serum OX40L than the control group (p = 0.03). In conclusion, our findings demonstrated that the expression of OX40 mRNA and OX40L mRNA was similar between women with a history of RSA and the control group. The elevation of serum OX40L level may be considered as a risk factor for RSA.
Collapse
Affiliation(s)
- Fateme Rahmani
- a Department of Immunology, Reproductive Immunology Research Center , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Hossein Hadinedoushan
- a Department of Immunology, Reproductive Immunology Research Center , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Nasrin Ghasemi
- b Abortion Research Centre, Reproductive Sciences Institute , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| |
Collapse
|
18
|
Martins MR, Santos RLD, Jatahy KDN, Matta MCD, Batista TP, Júnior JIC, Begnami MDFS, Torres LC. Could OX40 agonist antibody promote activation of the anti-tumor immune response in gastric cancer? J Surg Oncol 2018. [PMID: 29529339 DOI: 10.1002/jso.25001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES OX40, a membrane-bound molecule of the tumor-necrosis-factor-receptor superfamily, is a critical costimulatory receptor during the immune response, especially to T cells, but studies described their presence of OX-40 on neutrophils and monocytes, suggesting a potential role in the activation of immune response. Our aim was to characterize costimulatory receptors OX40 expression on circulating leukocytes in gastric cancer to identify novel targets for immunotherapy. METHODS Peripheral blood mononuclear cells were isolated from 24 gastric cancer patients and 34 healthy controls and the expression of costimulatory (OX40) receptors were analyzed on T cells, neutrophil and monocyte using monoclonal antibodies by flow cytometry. RESULTS We found that the higher levels of OX40 + T cells, monocytes/OX40+ and neutrophils/OX40+ from gastric cancer patients when compared to controls (P < 0.0001), and also higher levels of OX40+ T cells when compared to stages III and IV (P = 0.02). Percentage levels of total T cells were similar between patients and controls. CONCLUSIONS OX40 as a therapeutic agent has been investigated in many preclinical tumor models. Our findings suggest that of levels of costimulatory in T cells in GC will direct future studies on the role that costimulatory receptors play in the failure of T cell-mediated immunity.
Collapse
Affiliation(s)
- Mário R Martins
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer-Hospital do Cancer de Pernambuco (SPCC-HCP), Recife, Brazil
| | - Rogério L D Santos
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer-Hospital do Cancer de Pernambuco (SPCC-HCP), Recife, Brazil
| | - Kleber D N Jatahy
- Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | - Marina C D Matta
- Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | - Thales P Batista
- Surgical Department, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | - José Iran C Júnior
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer-Hospital do Cancer de Pernambuco (SPCC-HCP), Recife, Brazil.,Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | - Maria D F S Begnami
- Anatomic Pathology Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Leuridan C Torres
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer-Hospital do Cancer de Pernambuco (SPCC-HCP), Recife, Brazil.,Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| |
Collapse
|
19
|
Willoughby J, Griffiths J, Tews I, Cragg MS. OX40: Structure and function - What questions remain? Mol Immunol 2017; 83:13-22. [PMID: 28092803 DOI: 10.1016/j.molimm.2017.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 02/08/2023]
Abstract
OX40 is a type 1 transmembrane glycoprotein, reported nearly 30 years ago as a cell surface antigen expressed on activated T cells. Since its discovery, it has been validated as a bone fide costimulatory molecule for T cells and member of the TNF receptor family. However, many questions still remain relating to its function on different T cell sub-sets and with recent interest in its utility as a target for antibody-mediated immunotherapy, there is a growing need to gain a better understanding of its biology. Here, we review the expression pattern of OX40 and its ligand, discuss the structure of the receptor:ligand interaction, the downstream signalling it can elicit, its function on different T cell subsets and how antibodies might engage with it to provide effective immunotherapy.
Collapse
Affiliation(s)
- Jane Willoughby
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Jordana Griffiths
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Biological Sciences, Life Science Building, University of Southampton, Highfield Campus, SO17 1BJ, UK
| | - Ivo Tews
- Biological Sciences, Life Science Building, University of Southampton, Highfield Campus, SO17 1BJ, UK; Institute for life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Institute for life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, UK.
| |
Collapse
|
20
|
Mackern-Oberti JP, Jara EL, Riedel CA, Kalergis AM. Hormonal Modulation of Dendritic Cells Differentiation, Maturation and Function: Implications for the Initiation and Progress of Systemic Autoimmunity. Arch Immunol Ther Exp (Warsz) 2016; 65:123-136. [PMID: 27585815 DOI: 10.1007/s00005-016-0418-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023]
Abstract
Hormonal homeostasis is crucial for keeping a competent and healthy immune function. Several hormones can modulate the function of various immune cells such as dendritic cells (DCs) by influencing the initiation of the immune response and the maintenance of peripheral tolerance to self-antigens. Hormones, such as estrogens, prolactin, progesterone and glucocorticoids may profoundly affect DCs differentiation, maturation and function leading to either a pro-inflammatory or an anti-inflammatory (or tolerogenic) phenotype. If not properly regulated, these processes can contribute to the pathogenesis of autoimmune disease. An unbalanced hormonal status may affect the production of pro-inflammatory cytokines, the expression of activating/inhibitory receptors and co-stimulatory molecules on conventional and plasmacytoid DCs (pDCs), conferring susceptibility to develop autoimmunity. Estrogen receptor (ER)-α signaling in conventional DCs can promote IFN-α and IL-6 production and induce the expression of CD40, CD86 and MHCII molecules. Furthermore, estrogen modulates the pDCs response to Toll-like receptor ligands enhancing T cell priming. During lupus pathogenesis, ER-α deficiency decreased the expression of MHC II on pDCs from the spleen. In contrast, estradiol administration to lupus-prone female mice increased the expression of co-stimulatory molecules, enhanced the immunogenicity and produced large amounts of IL-6, IL-12 and TNF-α by bone marrow-derived DCs. These data suggest that estradiol/ER signaling may play an active role during lupus pathology. Similarly, understanding hormonal modulation of DCs may favor the design of new therapeutic strategies based on autologous tolerogenic DCs transfer, especially in sex-biased systemic autoimmune diseases. In this review, we discuss recent data relative to the role of different hormones (estrogen, prolactin, progesterone and glucocorticoids) in DC function during systemic autoimmune pathogenesis.
Collapse
Affiliation(s)
- Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina. .,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Evelyn L Jara
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Millennium Institute of Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Endocrinología, Facultad de Medicina, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile. .,INSERM U1064, Nantes, France.
| |
Collapse
|
21
|
Hirano T, Kikuchi T, Tode N, Santoso A, Yamada M, Mitsuhashi Y, Komatsu R, Kawabe T, Tanimoto T, Ishii N, Tanaka Y, Nishimura H, Nukiwa T, Watanabe A, Ichinose M. OX40 ligand newly expressed on bronchiolar progenitors mediates influenza infection and further exacerbates pneumonia. EMBO Mol Med 2016; 8:422-36. [PMID: 26976612 PMCID: PMC4818750 DOI: 10.15252/emmm.201506154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza virus epidemics potentially cause pneumonia, which is responsible for much of the mortality due to the excessive immune responses. The role of costimulatory OX40-OX40 ligand (OX40L) interactions has been explored in the non-infectious pathology of influenza pneumonia. Here, we describe a critical contribution of OX40L to infectious pathology, with OX40L deficiency, but not OX40 deficiency, resulting in decreased susceptibility to influenza viral infection. Upon infection, bronchiolar progenitors increase in number for repairing the influenza-damaged epithelia. The OX40L expression is induced on the progenitors for the antiviral immunity during the infectious process. However, these defense-like host responses lead to more extensive infection owing to the induced OX40L with α-2,6 sialic acid modification, which augments the interaction with the viral hemagglutinin. In fact, the specific antibody against the sialylated site of OX40L exhibited therapeutic potency in mitigating the OX40L-mediated susceptibility to influenza. Our data illustrate that the influenza-induced expression of OX40L on bronchiolar progenitors has pathogenic value to develop a novel therapeutic approach against influenza.
Collapse
Affiliation(s)
- Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Tode
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Arif Santoso
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiya Mitsuhashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine University of the Ryukyus, Okinawa, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Sendai Medical Center National Hospital Organization, Sendai, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-Infective Agents, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 2015; 146:497-507. [PMID: 26173489 DOI: 10.1111/imm.12504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease in which excessive inflammation, autoantibodies and complement activation lead to multisystem tissue damage. The contribution of the individual genetic composition has been extensively studied, and several susceptibility genes related to immune pathways that participate in SLE pathogenesis have been identified. It has been proposed that SLE takes place when susceptibility factors interact with environmental stimuli leading to a deregulated immune response. Experimental evidence suggests that such events are related to the failure of T-cell and B-cell suppression mediated by defects in cell signalling, immune tolerance and apoptotic mechanism promoting autoimmunity. In addition, it has been reported that dendritic cells (DCs) from SLE patients, which are crucial in the modulation of peripheral tolerance to self-antigens, show an increased ratio of activating/inhibitory receptors on their surfaces. This phenotype and an augmented expression of co-stimulatory molecules is thought to be critical for disease pathogenesis. Accordingly, tolerogenic DCs can be a potential strategy for developing antigen-specific therapies to reduce detrimental inflammation without causing systemic immunosuppression. In this review article we discuss the most relevant data relative to the contribution of DCs to the triggering of SLE.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina.,Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Carolina Llanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|
23
|
Di C, Lin X, Zhang Y, Zhong W, Yuan Y, Zhou T, Liu J, Xia Z. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation. J Biol Chem 2015; 290:12523-36. [PMID: 25839234 DOI: 10.1074/jbc.m115.642637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40(-/-) mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Caixia Di
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xiaoliang Lin
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yanjie Zhang
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wenwei Zhong
- Department of Pediatrics, Shanghai Children's Medical Center affiliated with Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China, and
| | - Yufan Yuan
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Tong Zhou
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhenwei Xia
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China,
| |
Collapse
|
24
|
Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun Rev 2015; 14:127-39. [DOI: 10.1016/j.autrev.2014.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|
25
|
Lei W, Zeng DX, Zhu CH, Liu GQ, Zhang XQ, Wang CG, Wang Q, Huang JA. The upregulated expression of OX40/OX40L and their promotion of T cells proliferation in the murine model of asthma. J Thorac Dis 2014; 6:979-87. [PMID: 25093096 DOI: 10.3978/j.issn.2072-1439.2014.06.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 06/03/2014] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To investigate whether the expression of OX40/OX40 ligand (OX40L) was upregulated in a murine model of asthma and their significance in the pathogenesis of asthma. METHODS After an ovalbumin-sensitized/challenged murine model of asthma was established, the expressions of OX40, OX40L in peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage fluid (BALF) cell pellets were measured. Then T cell proliferation was analyzed by cell counting kit-8 (CCK8), and the protein levels of OX40 and OX40L in the lungs were determined by immunohistochemistry. The concentrations of IL-4 and IFN-γ in BALF and T cell culture supernatant were evaluated by ELISA. RESULTS The percentages of CD4(+)OX40(+), CD19(+)OX40L(+), F4/80(+)OX40L(+) in PBMCs and BALF cell pellets were higher in asthma group than in control group (all P<0.01). The proliferation capacity of T cells in asthma group was higher than that in control group (P<0.05). In asthma group, stimulation of OX40 by anti-OX40 mAb obviously promoted T cell proliferation and secretion of IL-4 and IFN-γ. Immunohistochemistry assay showed that OX40 and OX40L protein levels were higher in asthma group than those in control group (all P<0.05). CONCLUSIONS The expressions of OX40 and OX40L were upregulated in the murine asthmatic model. The upregulation of OX40/OX40L signals could induce the proliferation and cytokines secretion of T cells in asthmatic mice, indicating that OX40/OX40L signal was involved in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Wei Lei
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Da-Xiong Zeng
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Can-Hong Zhu
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Gao-Qin Liu
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Xiu-Qin Zhang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Chang-Guo Wang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Qin Wang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| | - Jian-An Huang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ; 2 Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215003, China ; 3 Institute of Medical Biotechnology of Soochow University, Suzhou 215007, China
| |
Collapse
|
26
|
Vogel IT, Gool SWV, Ceuppens JL. CD28/CTLA-4/B7 and CD40/CD40L costimulation and activation of regulatory T cells. World J Immunol 2014; 4:63-77. [DOI: 10.5411/wji.v4.i2.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/12/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Costimulatory signals are crucial for T cell activation. Attempts to block costimulatory pathways have been effective in preventing unwanted immune reactions. In particular, blocking the CD28/cytotoxic T lymphocyte antigen (CTLA)-4/B7 interaction (using CTLA-4Ig) and the CD40/CD40L interaction (using anti-CD40L antibodies) prevents T cell mediated autoimmune diseases, transplant rejection and graft vs host disease in experimental models. Moreover, CTLA-4Ig is in clinical use to treat rheumatoid arthritis (abatacept) and to prevent rejection of renal transplants (belatacept). Under certain experimental conditions, this treatment can even result in tolerance. Surprisingly, the underlying mechanisms of immune modulation are still not completely understood. We here discuss the evidence that costimulation blockade differentially affects effector T cells (Teff) and regulatory T cells (Treg). The latter are required to control inappropriate and unwanted immune responses, and their activity often contributes to tolerance induction and maintenance. Unfortunately, our knowledge on the costimulatory requirements of Treg cells is very limited. We therefore summarize the current understanding of the costimulatory requirements of Treg cells, and elaborate on the effect of anti-CD40L antibody and CTLA-4Ig treatment on Treg cell activity. In this context, we point out that the outcome of a treatment aiming at blocking the CD28/CTLA-4/B7 costimulatory interaction can vary with dosing, timing and underlying immunopathology.
Collapse
|
27
|
Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M. Regulation of pulmonary inflammation by mesenchymal cells. Pulm Pharmacol Ther 2014; 29:156-65. [PMID: 24657485 DOI: 10.1016/j.pupt.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered.
Collapse
Affiliation(s)
- Hatem Alkhouri
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Wilfred Jelco Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Navessa Padma Tania
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alaina Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Schuliga
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Lung Health Research Centre, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Weckmann M, Moir LM, Heckman CA, Black JL, Oliver BG, Burgess JK. Lamstatin--a novel inhibitor of lymphangiogenesis derived from collagen IV. J Cell Mol Med 2014; 16:3062-73. [PMID: 22998238 PMCID: PMC4393734 DOI: 10.1111/j.1582-4934.2012.01648.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/12/2012] [Indexed: 12/31/2022] Open
Abstract
The lymphatic system is essential for the maintenance of tissue homeostasis and immunity. Its dysfunction in disease (such as lymphangioleiomyomatosis) can lead to chylous effusions, oedema or dissemination of malignant cells. Collagen IV has six α chains, of which some of the non-collagenous-1 domains have endogenous anti-angiogenic properties, however, little is known about specific endogenous anti-lymphangiogenic characteristics. In this study we sought to investigate the expression levels of collagen IV non-collagenous-1 domains in lung tissue of patients with and without lymphangioleiomyomatosis to explore the hypothesis that a member of the collagen IV family, specifically the non-collagenous domain-1 of α5, which we named lamstatin, has anti-lymphangiogenic properties. Levels of lamstatin detected by immunohistochemistry were decreased in lungs of lymphangioleiomyomatosis patients. We produced recombinant lamstatin in an E.coli expression system and synthesized a 17-amino acid peptide from a theoretically identified, active region (CP17) and tested their effects in vitro and in vivo. Recombinant lamstatin and CP17 inhibited proliferation, migration and cord formation of human microvascular lung lymphatic endothelial cells, in vitro. Furthermore, lamstatin and CP17 decreased complexity and dysplasia of the tumour-associated lymphatic network in a lung adenocarcinoma xenograft mouse model. In this study we identified a novel, direct inhibitor of lymphangiogenesis, derived from collagen IV. This may prove useful for exploring new avenues of treatment for lymphangioleiomyomatosis and metastasis via the lymphatic system in general.
Collapse
Affiliation(s)
- Markus Weckmann
- Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 2013; 4:82. [PMID: 23565116 PMCID: PMC3615188 DOI: 10.3389/fimmu.2013.00082] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are sentinels of immunity, essential for homeostasis of T cell-dependent immune responses. Both functions of DC, initiation of antigen-specific T cell immunity and maintenance of tissue-specific tolerance originate from distinct stages of differentiation, immunogenic versus tolerogenic. Dependent on local micro milieu and inflammatory stimuli, tissue resident immature DC with functional plasticity differentiate into tolerogenic or immunogenic DC with stable phenotypes. They efficiently link innate and adaptive immunity and are ideally positioned to modify T cell-mediated immune responses. Since the T cell stimulatory properties of DC are significantly influenced by their expression of signal II ligands, it is critical to understand the impact of distinct costimulatory pathways on DC function. This review gives an overview of functional different human DC subsets with unique profiles of costimulatory molecules and outlines how different costimulatory pathways together with the immunosuppressive cytokine IL-10 bias immunogenic versus tolerogenic DC functions. Furthermore, we exemplarily describe protocols for the generation of two well-defined monocyte-derived DC subsets for their clinical use, immunogenic versus tolerogenic.
Collapse
Affiliation(s)
- Mario Hubo
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Black JL, Panettieri RA, Banerjee A, Berger P. Airway smooth muscle in asthma: just a target for bronchodilation? Clin Chest Med 2012; 33:543-58. [PMID: 22929101 DOI: 10.1016/j.ccm.2012.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Airway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has, thus, been considered as a target for bronchodilation. In asthma, however, there is a complex relationship between ASM and inflammatory cells, such as mast cells and T lymphocytes. Moreover, the increased ASM mass in asthmatic airways is one of the key features of airway remodeling. This article aims to review the main concepts about the 3 possible roles of ASM in asthma: (1) contractile tone, (2) inflammatory response, and (3) remodeling.
Collapse
Affiliation(s)
- Judith L Black
- University of Sydney, Discipline of Pharmacology and Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
31
|
Redhu NS, Gounni AS. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther 2012; 26:86-94. [PMID: 22580035 DOI: 10.1016/j.pupt.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 12/27/2022]
Abstract
The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.
Collapse
Affiliation(s)
- Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, 419 Apotex Centre, 750 McDermot Ave, Winnipeg, Manitoba, Canada R3E 0T5
| | | |
Collapse
|
32
|
Miglino N, Roth M, Tamm M, Borger P. Asthma and COPD - The C/EBP Connection. Open Respir Med J 2012; 6:1-13. [PMID: 22715349 PMCID: PMC3377872 DOI: 10.2174/1874306401206010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the two most prominent chronic inflammatory lung diseases with increasing prevalence. Both diseases are associated with mild or severe remodeling of the airways. In this review, we postulate that the pathologies of asthma and COPD may result from inadequate responses and/or a deregulated balance of a group of cell differentiation regulating factors, the CCAAT/Enhancer Binding Proteins (C/EBPs). In addition, we will argue that the exposure to environmental factors, such as house dust mite and cigarette smoke, changes the response of C/EBPs and are different in diseased cells. These novel insights may lead to a better understanding of the etiology of the diseases and may provide new aspects for therapies.
Collapse
Affiliation(s)
| | | | | | - Peter Borger
- Pulmonary Cell Research, Departments of Biomedicine and Pneumology, University Hospital Basel,
Switzerland
| |
Collapse
|
33
|
Gunst SJ, Panettieri RA. Point: alterations in airway smooth muscle phenotype do/do not cause airway hyperresponsiveness in asthma. J Appl Physiol (1985) 2012; 113:837-9. [PMID: 22518830 DOI: 10.1152/japplphysiol.00483.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Susan J Gunst
- Department of Cell and Integrated Physiology Indianapolis, Indiana University School of Medicine, Indiana, USA.
| | | |
Collapse
|
34
|
Abstract
The OX40 receptor is preferentially expressed by T cells, and its cognate ligand OX40L is primarily expressed by antigen-presenting cells such as dendritic cells following activation by thymic stromal lymphopoietin (TSLP). TSLP is released by the bronchial epithelium, airway smooth muscle, and some inflammatory cells in response to numerous insults such as allergens, viruses, and physical damage. OX40L is a costimulatory molecule that plays a sentinel role in the adaptive immune response by promoting T helper (Th) 2 polarization of naive T cells within the lymph node. These polarized T cells produce Th2 cytokines such as IL-4, IL-5, and IL-13, which have been implicated particularly in allergic eosinophilic asthma. Animal models have positioned both TSLP and OX40/OX40L as critical in the development of airway inflammation and hyperreactivity. In human disease, there is good evidence that TSLP is upregulated in asthma, but there are limited data to demonstrate overexpression of OX40 or OX40L in disease. Targeting the OX40/OX40L axis or TSLP presents a novel therapeutic strategy that has the potential of modifying the disease process and, therefore, impacting on its natural history. Whether this approach can demonstrate efficacy in established disease rather than at disease onset is unknown. Biologic therapies directed toward OX40/OX40L are in early phases of development, and results from these studies are eagerly awaited.
Collapse
Affiliation(s)
- Davinder Kaur
- Institute for Lung Health, Department of Infection, Inflammation, and Immunity, University of Leicester, Leicester, England
| | - Christopher Brightling
- Institute for Lung Health, Department of Infection, Inflammation, and Immunity, University of Leicester, Leicester, England.
| |
Collapse
|
35
|
Wythe SE, Dodd JS, Openshaw PJ, Schwarze J. OX40 ligand and programmed cell death 1 ligand 2 expression on inflammatory dendritic cells regulates CD4 T cell cytokine production in the lung during viral disease. THE JOURNAL OF IMMUNOLOGY 2012; 188:1647-55. [PMID: 22266281 DOI: 10.4049/jimmunol.1103001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 Th differentiation is influenced by costimulatory molecules expressed on conventional dendritic cells (DCs) in regional lymph nodes and results in specific patterns of cytokine production. However, the function of costimulatory molecules on inflammatory (CD11b(+)) DCs in the lung during recall responses is not fully understood, but it is important for development of novel interventions to limit immunopathological responses to infection. Using a mouse model in which vaccination with vaccinia virus vectors expressing the respiratory syncytial virus (RSV) fusion protein (rVVF) or attachment protein (rVVG) leads to type 1- or type 2-biased cytokine responses, respectively, upon RSV challenge, we found expression of CD40 and OX40 ligand (OX40L) on lung inflammatory DCs was higher in rVVF-primed mice than in rVVG-primed mice early after RSV challenge, whereas the reverse was observed later in the response. Conversely, programmed cell death 1 ligand 2 (PD-L2) was higher in rVVG-primed mice throughout. Inflammatory DCs isolated at the resolution of inflammation revealed that OX40L on type 1-biased DCs promoted IL-5, whereas OX40L on type 2-biased DCs enhanced IFN-γ production by Ag-reactive Th cells. In contrast, PD-L2 promoted IFN-γ production, irrespective of conditions, suppressing IL-5 only if expressed on type 1-biased DCs. Thus, OX40L and PD-L2 expressed on DCs differentially regulate cytokine production during recall responses in the lung. Manipulation of these costimulatory pathways may provide a novel approach to controlling pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Sarah E Wythe
- Center for Respiratory Infections, National Heart and Lung Institute, St. Mary's Campus, Imperial College London, London W2 1PG, UK
| | | | | | | |
Collapse
|
36
|
The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011; 2011:742710. [PMID: 22220184 PMCID: PMC3246780 DOI: 10.1155/2011/742710] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Abstract
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.
Collapse
|
37
|
Doherty TA, Croft M. Therapeutic potential of targeting TNF/TNFR family members in asthma. Immunotherapy 2011; 3:919-21. [PMID: 21843077 DOI: 10.2217/imt.11.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
38
|
Niimi K, Ge Q, Moir LM, Ammit AJ, Trian T, Burgess JK, Black JL, Oliver BGG. β2-Agonists upregulate PDE4 mRNA but not protein or activity in human airway smooth muscle cells from asthmatic and nonasthmatic volunteers. Am J Physiol Lung Cell Mol Physiol 2011; 302:L334-42. [PMID: 22101762 DOI: 10.1152/ajplung.00163.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β(2)-Adrenergic receptor (β2AR) agonists induce airway relaxation via cAMP. Phosphodiesterase (PDE)s degrade and regulate cAMP, and in airway smooth muscle (ASM) cells PDE4D degrades cAMP. Long-acting β(2)-agonists are now contraindicated as monotherapy for asthma, and increased PDE4D has been speculated to contribute to this phenomenon. In this study we investigated the expression of PDE4D in asthmatic and nonasthmatic ASM cells and its regulation by formoterol and budesonide. Primary ASM cells from people with or without asthma were stimulated with transforming growth factor (TGF)-β(1), formoterol, and/or budesonide. PDE4D mRNA was assessed by real-time PCR, or PCR to assess splice variant production. PDE4D protein was assessed by Western blotting, and we investigated the effect of formoterol on cAMP production and PDE activity. Interleukin (IL)-6 was assessed using ELISA. PDE4D mRNA was dose dependently upregulated by formoterol, with a single splice variant, PDE4D5, present. Formoterol did not induce PDE4D protein at time points between 3 to 72 h, whereas it did induce and increase IL-6 secretion. We pretreated cells with actinomycin D and a proteasome inhibitor, MG132, and found no evidence of alterations in mRNA, protein expression, or degradation of PDE4D. Finally PDE activity was not altered by formoterol. This study shows, for the first time, that PDE4D5 is predominantly expressed in human ASM cells from people with and without asthma and that formoterol does not upregulate PDE4D protein production. This leads us to speculate that continual therapy with β2AR agonists is unlikely to cause PDE4-mediated tachyphylaxis.
Collapse
Affiliation(s)
- Kyoko Niimi
- Cell Biology Group, Woolcock Institute of Medical Research, School of Medical Sciences, The Univ. of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sibilano R, Gri G, Frossi B, Tripodo C, Suzuki R, Rivera J, MacDonald AS, Pucillo CE. Technical advance: soluble OX40 molecule mimics regulatory T cell modulatory activity on FcεRI-dependent mast cell degranulation. J Leukoc Biol 2011; 90:831-8. [PMID: 21653238 DOI: 10.1189/jlb.1210651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tregs play a central role in modulating FcεRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca(++) influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but also in parenchyma, where it could be found in close proximity and apparently bound to MCs. This soluble molecule triggers MC-OX40L without the requirement of Tregs, thus allowing study of OX40L signaling pathways in MCs and in other OX40L-expressing cell populations. Importantly, as sOX40 inhibits MC degranulation, it may provide an in vivo therapeutic tool in allergic disease.
Collapse
Affiliation(s)
- Riccardo Sibilano
- Department of Biomedical Science and Technology, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, Kovacsovics-Bankowski M, Moudgil T, Twitty C, Walker EB, Hu HM, Urba WJ, Weinberg AD, Curti B, Fox BA. Signaling through OX40 enhances antitumor immunity. Semin Oncol 2010; 37:524-32. [PMID: 21074068 DOI: 10.1053/j.seminoncol.2010.09.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The existence of tumor-specific T cells, as well as their ability to be primed in cancer patients, confirms that the immune response can be deployed to combat cancer. However, there are obstacles that must be overcome to convert the ineffective immune response commonly found in the tumor environment to one that leads to sustained destruction of tumor. Members of the tumor necrosis factor (TNF) superfamily direct diverse immune functions. OX40 and its ligand, OX40L, are key TNF members that augment T-cell expansion, cytokine production, and survival. OX40 signaling also controls regulatory T-cell differentiation and suppressive function. Studies over the past decade have demonstrated that OX40 agonists enhance antitumor immunity in preclinical models using immunogenic tumors; however, treatment of poorly immunogenic tumors has been less successful. Combining strategies that prime tumor-specific T cells together with OX40 signaling could generate and maintain a therapeutic antitumor immune response.
Collapse
Affiliation(s)
- Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ge Q, Moir LM, Black JL, Oliver BG, Burgess JK. TGFβ1 induces IL-6 and inhibits IL-8 release in human bronchial epithelial cells: the role of Smad2/3. J Cell Physiol 2010; 225:846-54. [PMID: 20607798 DOI: 10.1002/jcp.22295] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human bronchial epithelial (HBE) cells contribute to asthmatic airway inflammation by secreting cytokines, chemokines, and growth factors, including interleukin (IL)-6, IL-8 and transforming growth factor (TGF) β1, all of which are elevated in asthmatic airways. This study examines the signaling pathways leading to TGFβ1 induced IL-6 and IL-8 in primary HBE cells from asthmatic and non-asthmatic volunteers. HBE cells were stimulated with TGFβ1 in the presence or absence of signaling inhibitors. IL-6 and IL-8 protein and mRNA were measured by ELISA and real-time PCR respectively, and cell signaling kinases by Western blot. TGFβ1 increased IL-6, but inhibited IL-8 production in both asthmatic and non-asthmatic cells; however, TGF induced significantly more IL-6 in asthmatic cells. Inhibition of JNK MAP kinase partially reduced TGFβ1 induced IL-6 in both cell groups. TGFβ1 induced Smad2 phosphorylation, and blockade of Smad2/3 prevented both the TGFβ1 modulated IL-6 increase and the decrease in IL-8 production in asthmatic and non-asthmatic cells. Inhibition of Smad2/3 also increased basal IL-8 release in asthmatic cells but not in non-asthmatic cells. Using CHIP assays we demonstrated that activated Smad2 bound to the IL-6, but not the IL-8 promoter region. We conclude that the Smad2/3 pathway is the predominant TGFβ1 signaling pathway in HBE cells, and this is altered in asthmatic bronchial epithelial cells. Understanding the mechanism of aberrant pro-inflammatory cytokine production in asthmatic airways will allow the development of alternative ways to control airway inflammation.
Collapse
Affiliation(s)
- Qi Ge
- Respiratory Research Group, Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
42
|
Weinberg AD. The role of OX40 (CD134) in T-cell memory generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:57-68. [PMID: 20795540 PMCID: PMC7123855 DOI: 10.1007/978-1-4419-6451-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Memory T-cell generation is limited by activation-induced cell death during the effector T-cell stage. Cell surface proteins are known to transmit signals that either accentuate or limit T-cell death after activation. This chapter will focus on the TNF-receptor family member OX40, which is expressed on effector T cells and when engaged greatly enhances survival of T cells leading to increased memory T-cell generation. Targeting OX40 in vivo can alter the fate ofT-cell survival. Enhancing OX40 signaling during Ag priming through agonists increases memory T-cell development, while blocking OX40 signaling decreases the memory T-cell pool. These two opposing outcomes provide therapeutic tools for blocking inflammation in autoimmune conditions and enhancing immunity in hosts harboring cancer or chronic pathogens. OX40 agonists and antagonists are in the first stages of human clinical trials and their therapeutic potential will soon be realized.
Collapse
Affiliation(s)
- Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan Street, 2N35, Portland, Oregon 97213, USA.
| |
Collapse
|
43
|
Karulf M, Kelly A, Weinberg AD, Gold JA. OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. THE JOURNAL OF IMMUNOLOGY 2010; 185:4856-62. [PMID: 20844189 DOI: 10.4049/jimmunol.1000404] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The initial phase of sepsis is characterized by massive inflammatory cytokine production that contributes to multisystem organ failure and death. Costimulatory molecules are a class of receptors capable of regulating cytokine production in adaptive immunity. Recent studies described their presence on neutrophils and monocytes, suggesting a potential role in the regulation of cytokine production in innate immunity. The purpose of this study was to determine the role for OX40-OX40 ligand (OX40L) interaction in the innate immune response to polymicrobial sepsis. Humans with sepsis demonstrated upregulation of OX40L on monocytes and neutrophils, with mortality and intensive care unit stay correlating with expression levels. In an animal model of polymicrobial sepsis, a direct role for OX40L in regulating inflammation was indicated by improved survival, decreased cytokine production, and a decrease in remote organ damage in OX40L(-/-) mice. The finding of similar results with an OX40L Ab suggests a potential therapeutic role for OX40L blockade in sepsis. The inability of anti-OX40L to provide significant protection in macrophage-depleted mice establishes macrophages as an indispensable cell type within the OX40/OX40L axis that helps to mediate the clinical signs of disease in sepsis. Conversely, the protective effect of anti-OX40L Ab in RAG1(-/-) mice further confirms a T cell-independent role for OX40L stimulation in sepsis. In conclusion, our data provide an in vivo role for the OX40/OX40L system in the innate immune response during polymicrobial sepsis and suggests a potential beneficial role for therapeutic blockade of OX40L in this devastating disorder.
Collapse
Affiliation(s)
- Matthew Karulf
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Providence Portland Medical Center, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
44
|
Zhang P, Manes TD, Pober JS, Tellides G. Human vascular smooth muscle cells lack essential costimulatory molecules to activate allogeneic memory T cells. Arterioscler Thromb Vasc Biol 2010; 30:1795-801. [PMID: 20539019 DOI: 10.1161/atvbaha.109.200758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The arterial media, populated by vascular smooth muscle cells (VSMC), is an immunoprivileged compartment and, in contrast to the intima or adventitia containing endothelial cells, is generally spared by inflammatory processes, such as arteriosclerosis. To determine mechanisms of medial immunoprivilege, we investigated the ability of human VSMC versus endothelial cells to activate allogeneic T cells in vitro. METHODS AND RESULTS Unlike cultured endothelial cells, cultured VSMC do not activate allogeneic memory CD4 or CD8 T cells and fail to effectively support T-cell proliferation to the polyclonal activator, phytohemagglutinin, consistent with a defect in costimulation function. Although many costimulators are comparably expressed on both cell types, endothelial cells but not VSMC basally express OX40 ligand and upregulate inducible costimulator ligand in response to proinflammatory cytokines. OX40 ligand-transduced, but not control- or inducible costimulator ligand-transduced, VSMC acquire the capacity to stimulate allogeneic memory CD4 T cells to produce cytokines and to proliferate in the presence of supplemental l-tryptophan. OX40 ligand overexpression, although not essential, also enhances allogeneic memory CD8 T-cell responses to VSMC after l-tryptophan supplementation. CONCLUSIONS The inability of cultured VSMC to activate memory T cells results from a lack of essential costimulators, particularly OX40 ligand, in addition to indoleamine 2,3-dioxygenase-mediated tryptophan depletion.
Collapse
Affiliation(s)
- Pei Zhang
- Departments of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
45
|
Roth M, Tamm M. The effects of omalizumab on IgE-induced cytokine synthesis by asthmatic airway smooth muscle cells. Ann Allergy Asthma Immunol 2010; 104:152-60. [PMID: 20306819 DOI: 10.1016/j.anai.2009.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Human airway smooth muscle cells (ASMCs) express high- and low-affinity IgE receptors and respond to IgE, thereby contributing to airway inflammation. OBJECTIVE To determine whether anti-IgE antibodies (omalizumab) block the response of ASMCs to IgE in patients with asthma. METHODS Airway smooth muscle cells, isolated from the biopsy specimens of patients with asthma, patients with chronic obstructive pulmonary disease, and control participants (6 in each group), were stimulated with IgE with and without omalizumab treatment, and cytokine secretion was determined by enzyme-linked immunosorbent assay, and messenger RNA (mRNA) secretion by real-time polymerase chain reaction, over 24 hours. IgE receptor expression was determined by immunoblotting. RESULTS IgE-stimulated mRNA synthesis encoded for interleukin (IL) 6, IL-8, and tumor necrosis factor a in ASMCs via mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2, or p38. The secretion of the respective cytokines increased significantly: IL-6, IL-8, and tumor necrosis factor a at 6 hours and IL-4 at 24 hours. Cytokine mRNA synthesis and protein secretion were inhibited by omalizumab in a dose-dependent manner. The expression of low- and high-affinity IgE receptors was not altered by omalizumab in ASMCs. CONCLUSIONS Omalizumab reduced IgE-stimulated synthesis and secretion of proinflammatory cytokines by human ASMCs. These findings imply a beneficial action of omalizumab in asthma therapy. This effect is not restricted to inflammatory cells; it also includes tissue-forming cells.
Collapse
Affiliation(s)
- Michael Roth
- Division of Pulmonary Cell Research, Department of Research, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
46
|
Wang X. T-cell co-stimulators as anti-inflammatory targets for atherosclerotic disease. Future Cardiol 2010; 2:187-95. [PMID: 19804075 DOI: 10.2217/14796678.2.2.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Currently, most pharmacological therapies for atherosclerosis rely on lowering plasma low-density lipoprotein levels. Several ongoing clinical trials are testing the possibility of reducing atherosclerosis with drugs that raise plasma high-density lipoprotein levels and/or promote high-density lipoprotein-mediated protective functions. Atherosclerosis can also be treated by targeting inflammatory cells. Recent studies have shown that atherosclerosis is primarily an inflammatory disease and that immune cells, particularly T cells, are found in atherosclerotic lesions throughout the early and late stages. Therefore, therapies that modulate T-cell co-stimulators might slow down the atherosclerosis process by inhibiting T-cell-mediated inflammation.
Collapse
Affiliation(s)
- Xiaosong Wang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
47
|
Abstract
TNFR/TNF superfamily members can control diverse aspects of immune function. Research over the past 10 years has shown that one of the most important and prominent interactions in this family is that between OX40 (CD134) and its partner OX40L (CD252). These molecules strongly regulate conventional CD4 and CD8 T cells, and more recent data are highlighting their ability to modulate NKT cell and NK cell function as well as to mediate cross-talk with professional antigen-presenting cells and diverse cell types such as mast cells, smooth muscle cells, and endothelial cells. Additionally, OX40-OX40L interactions alter the differentiation and activity of regulatory T cells. Blocking OX40L has produced strong therapeutic effects in multiple animal models of autoimmune and inflammatory disease, and, in line with a prospective clinical future, reagents that stimulate OX40 signaling are showing promise as adjuvants for vaccination as well as for treatment of cancer.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
48
|
Siddiqui S, Mistry V, Doe C, Stinson S, Foster M, Brightling C. Airway wall expression of OX40/OX40L and interleukin-4 in asthma. Chest 2010; 137:797-804. [PMID: 20139223 PMCID: PMC2851558 DOI: 10.1378/chest.09-1839] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The costimulatory molecule OX40 and its ligand, OX40L, mediate key aspects of allergic airway inflammation in animal models of asthma, including eosinophilic airway inflammation, airway hyperresponsiveness, and T helper 2 polarization. We sought to examine OX40/OX40L and interleukin (IL)-4 expression in asthma across severities. Methods: Bronchial biopsies were obtained from 27 subjects with asthma (mild Global Initiative for Asthma [GINA] 1 [n = 10], moderate GINA 2-3 [n = 7], and severe GINA 4-5 [n = 10]) and 13 healthy controls. The number of OX40+, OX40L+, IL-4+, and IL-4 receptor α (IL-4Rα)+ cells in the lamina propria and airway smooth muscle (ASM) bundle and the intensity of IL-4Rα+ expression by the ASM were assessed. Results: The number of OX40+, OX40L+, and IL-4+ cells in the lamina propria and OX40+ and IL-4+ cells in the ASM bundle was significantly increased in subjects with mild asthma, but not in those with moderate or severe asthma, compared with healthy controls. In the subjects with asthma, OX40/OX40L expression was positively correlated with the number of eosinophils and IL-4+ cells in the lamina propria. The number of IL-4Rα+ cells in the lamina propria was significantly increased in moderate-to-severe disease, but not in mild asthma, compared with controls. IL-4Rα expression by the ASM bundle was not different among groups. Conclusions: OX40/OX40L expression is increased in the bronchial submucosa in mild asthma, but not in moderate-to-severe disease, and is related to the degree of tissue eosinophilia and IL-4 expression. Whether these costimulatory molecules have a role as targets for asthma requires further investigation.
Collapse
Affiliation(s)
- Salman Siddiqui
- Institute of Lung Health, Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, LE3 9QP, England
| | | | | | | | | | | |
Collapse
|
49
|
Kajiwara K, Morishima H, Akiyama K, Yanagihara Y. Expression and function of the inducible costimulator ligand B7-H2 in human airway smooth muscle cells. Allergol Int 2009; 58:573-83. [PMID: 19776675 DOI: 10.2332/allergolint.09-oa-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/24/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND B7-H2 is a ligand for the inducible costimulator (ICOS). The aim of this study was to examine the expression and function of B7-H2 in human airway smooth muscle (ASM) cells and compare them with those of CD40 or OX40 ligand (OX40L). METHODS Expression of B7-H2, CD40 and OX40L in ASM cells and their respective counterparts in T cells was analyzed by RT-PCR or flow cytometry. The modulating effect of polyinosinic-polycytidylic acid (poly I:C) on expression of B7-H2, CD40 and OX40L was also examined. The function of these three molecules was evaluated by virtue of adhesion of anti-CD3-activated T cells, IL-6 and IL-8 production and DNA synthesis. RESULTS ASM cells constitutively expressed B7-H2, CD40 and OX40L that mediated adhesion of activated T cells expressing ICOS, CD40L and OX40. ASM cells responded to poly I:C with upregulated expression of B7-H2, CD40 and OX40L and displayed enhanced adhesion of activated T cells. Functional analysis performed on untreated ASM cells showed that engagement of B7-H2 with ICOS-Ig clearly induced DNA synthesis, whereas that of CD40 or OX40L with trimeric CD40L or OX40-Ig greatly increased IL-6 and IL-8 production. These responses were enhanced in poly I:C-treated ASM cells. CONCLUSIONS The data demonstrate that ASM cells express functionally active B7-H2, CD40 and OX40L and suggest that B7-H2-dependent signaling may play an active role in a proliferative response rather than in cytokine and chemokine production. In addition, the modulation of B7-H2, CD40 and OX40L expression and function by poly I:C may have important implications for the function of virus-infected ASM cells.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- CD3 Complex/immunology
- CD40 Antigens/biosynthesis
- CD40 Antigens/genetics
- Cell Adhesion/immunology
- Cell Separation
- Cells, Cultured
- Flow Cytometry
- Humans
- Inducible T-Cell Co-Stimulator Ligand
- Inducible T-Cell Co-Stimulator Protein
- Interleukin-6/metabolism
- Interleukin-8/metabolism
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- OX40 Ligand/biosynthesis
- OX40 Ligand/genetics
- Respiratory System/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Keiichi Kajiwara
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | | | | | | |
Collapse
|
50
|
Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol 2009; 29:187-201. [PMID: 19538134 DOI: 10.1615/critrevimmunol.v29.i3.10] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extent of T-cell activation, proliferation, and survival that follows T-cell receptor (TCR) ligation is controlled by several factors, including the strength of TCR stimulation, the availability of prosurvival cytokines, and the presence or absence of co-stimulatory signals. In addition to engagement of the CD28 co-stimulatory receptor by its natural ligands, B7.1 (CD80) and B7.2 (CD86), recent work has begun to elucidate the mechanisms by which signaling through the OX40 (CD134) co-stimulatory receptor, a member of the tumor necrosis factor receptor (TNFR) superfamily, affects T-cell responses. Importantly, OX40 ligation has been shown to augment CD4 and CD8 T-cell clonal expansion, effector differentiation, survival, and in some cases, abrogate the suppressive activity of regulatory FoxP3+CD25+CD4+ T cells. In this review, we focus on the mechanisms regulating OX40 expression on activated T cells as well as the role of OX40-mediated co-stimulation in boosting T-cell clonal expansion, effector differentiation, and survival.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, 4805 NE Glisan St., No. 5F37, Portland, OR 97213, USA
| | | | | |
Collapse
|