1
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Inborn Errors of Immunity Predisposing to Herpes Simplex Virus Infections of the Central Nervous System. Pathogens 2023; 12:pathogens12020310. [PMID: 36839582 PMCID: PMC9961685 DOI: 10.3390/pathogens12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Herpesvirus infections can lead to a number of severe clinical manifestations, particularly when involving the central nervous system (CNS), causing encephalitis and meningitis. However, understanding of the host factors conferring increased susceptibility to these diseases and their complications remains incomplete. Previous studies have uncovered defects in the innate Toll-like receptor 3 pathway and production of type I interferon (IFN-I) in children and adults that predispose them to herpes simplex encephalitis. More recently, there is accumulating evidence for an important role of IFN-independent cell-autonomous intrinsic mechanisms, including small nucleolar RNAs, RNA lariat metabolism, and autophagy, in restricting herpesvirus replication and conferring protection against CNS infection. The present review first describes clinical manifestations of HSV infection with a focus on neurological complications and then summarizes the host-pathogen interactions and innate immune pathways responsible for sensing herpesviruses and triggering antiviral responses and immunity. Next, we review the current landscape of inborn errors of immunity and the underlying genetic defects and disturbances of cellular immune pathways that confer increased susceptibility to HSV infection in CNS. Ultimately, we discuss some of the present outstanding unanswered questions relating to inborn errors of immunity and HSV CNS infection together with some perspectives and future directions for research in the pathogenesis of these severe diseases in humans.
Collapse
|
3
|
Consonni F, Gambineri E, Favre C. ALPS, FAS, and beyond: from inborn errors of immunity to acquired immunodeficiencies. Ann Hematol 2022; 101:469-484. [PMID: 35059842 PMCID: PMC8810460 DOI: 10.1007/s00277-022-04761-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary immune regulatory disorder characterized by benign or malignant lymphoproliferation and autoimmunity. Classically, ALPS is due to mutations in FAS and other related genes; however, recent research revealed that other genes could be responsible for similar clinical features. Therefore, ALPS classification and diagnostic criteria have changed over time, and several ALPS-like disorders have been recently identified. Moreover, mutations in FAS often show an incomplete penetrance, and certain genotypes have been associated to a dominant or recessive inheritance pattern. FAS mutations may also be acquired or could become pathogenic when associated to variants in other genes, delineating a possible digenic type of inheritance. Intriguingly, variants in FAS and increased TCR αβ double-negative T cells (DNTs, a hallmark of ALPS) have been identified in multifactorial autoimmune diseases, while FAS itself could play a potential role in carcinogenesis. These findings suggest that alterations of FAS-mediated apoptosis could trespass the universe of inborn errors of immunity and that somatic mutations leading to ALPS could only be the tip of the iceberg of acquired immunodeficiencies.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy.
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy
| |
Collapse
|
4
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
5
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
6
|
Herpes simplex virus encephalitis of childhood: inborn errors of central nervous system cell-intrinsic immunity. Hum Genet 2020; 139:911-918. [PMID: 32040615 DOI: 10.1007/s00439-020-02127-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Over the last 15 years, human genetic and immunological studies have provided proof-of-principle that childhood HSE can result from inborn errors of central nervous system (CNS)-specific, cell-intrinsic immunity to HSV-1. HSE-causing mutations of eight genes disrupt known (TLR3-dependent IFN-α/β immunity) and novel (dependent on DBR1 or snoRNA31) antiviral mechanisms. Monogenic inborn errors confer susceptibility to forebrain (TLR3-IFN or snoRNA31) or brainstem (DBR1) HSE. Most of these disorders display incomplete clinical penetrance, with the possible exception of DBR1 deficiency. They account for a small, but non-negligible proportion of cases (about 7%). These findings pave the way for the gradual definition of the genetic and immunological architecture of childhood HSE, with both biological and clinical implications.
Collapse
|
7
|
Bibert S, Piret J, Quinodoz M, Collinet E, Zoete V, Michielin O, Menasria R, Meylan P, Bihl T, Erard V, Fellmann F, Rivolta C, Boivin G, Bochud PY. Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog 2019; 15:e1008168. [PMID: 31869396 PMCID: PMC6944389 DOI: 10.1371/journal.ppat.1008168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/06/2020] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
We report here two cases of Herpes simplex virus encephalitis (HSE) in adult patients with very rare, previously uncharacterized, non synonymous heterozygous G634R and R203W substitution in mannan-binding lectin serine protease 2 (MASP2), a gene encoding a key protease of the lectin pathway of the complement system. None of the 2 patients had variants in genes involved in the TLR3-interferon signaling pathway. Both MASP2 variants induced functional defects in vitro, including a reduced (R203W) or abolished (G634R) protein secretion, a lost capability to cleave MASP-2 precursor into its active form (G634R) and an in vivo reduced antiviral activity (G634R). In a murine model of HSE, animals deficient in mannose binding lectins (MBL, the main pattern recognition molecule associated with MASP-2) had a decreased survival rate and an increased brain burden of HSV-1 compared to WT C57BL/6J mice. Altogether, these data suggest that MASP-2 deficiency can increase susceptibility to adult HSE. Human herpes virus type 1 (HSV-1) infects a large number of individuals during their life, with manifestations usually limited to mild and self-limiting inflammation of the oral mucosa (cold sore). However, HSV-1 can cause a very severe disease of the brain called Herpes simplex encephalitis (HSE) in 1 out of 250’000–500’000 individuals per year. The reasons why HSV-1 can cause such a devastating disease in a very limited number of individuals are unknown. Increasing evidence suggests that susceptibility to HSE in children can results from genetic variations in the immune system, in particular in a viral detection pathway called the Toll-like receptor 3 (TLR3)–interferon (IFN) axis. Fewer data are available to explain HSE in adult patients. Here, we describe two adult patients with HSE who carry mutations in a gene called mannan-binding lectin serine protease 2 (MASP2), which is part of an immune pathway different from the TLR3-IFN axis, called the lectin pathway of the complement system. We demonstrate that MASP2 mutations induce functional defects in immune defense against HSV-1 that prevent viral replication. Mice deficient in the lectin pathway have higher mortality compared to wild-type mice after HSV-1 infection. Altogether, our study suggests that susceptibility to HSE in adults relies of immune deficiencies that are different from those causing HSE in children.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Piret
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne Switzerland
| | - Emilie Collinet
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer research, University of Lausanne, Lausanne, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Quartier Sorge, Génopode, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer research, University of Lausanne, Lausanne, Switzerland
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Quartier Sorge, Génopode, Lausanne, Switzerland
- Department of Oncology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafik Menasria
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Pascal Meylan
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Titus Bihl
- Canton Hospital of Fribourg, Fribourg, Switzerland
| | | | - Florence Fellmann
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Guy Boivin
- Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
9
|
Boisson B, Honda Y, Ajiro M, Bustamante J, Bendavid M, Gennery AR, Kawasaki Y, Ichishima J, Osawa M, Nihira H, Shiba T, Tanaka T, Chrabieh M, Bigio B, Hur H, Itan Y, Liang Y, Okada S, Izawa K, Nishikomori R, Ohara O, Heike T, Abel L, Puel A, Saito MK, Casanova JL, Hagiwara M, Yasumi T. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest 2018; 129:583-597. [PMID: 30422821 DOI: 10.1172/jci124011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic IKBKG (also known as NEMO) mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose 3 boys with EDA-ID died from ID. We identify the same private variant in an intron of IKBKG, IVS4+866 C>T, which was inherited from and occurred de novo in the European mother and Japanese mother, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudoexon (PE) generating a frameshift. Its leakiness accounts for NF-κB activation being impaired but not abolished in the boys' cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in induced pluripotent stem cell-derived (iPSC-derived) macrophages, and higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the PE, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Matthieu Bendavid
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jose Ichishima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Shiba
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Hong Hur
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,The Charles Bronfman Institute for Personalized Medicine, and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Kazusa DNA Research Institute, Kisarazu, Japan
| | - Toshio Heike
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute (HHMI), New York, New York, USA
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Graham J, Wong CE, Day J, McFaddin E, Ochsner U, Hoang T, Young CL, Ribble W, DeGroote MA, Jarvis T, Sun X. Discovery of benzothiazole amides as potent antimycobacterial agents. Bioorg Med Chem Lett 2018; 28:3177-3181. [PMID: 30172617 PMCID: PMC6263154 DOI: 10.1016/j.bmcl.2018.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
Abstract
From a high throughput screening of commercially available libraries against nontuberculous mycobacteria and Mycobacterium tuberculosis, numerous hits were identified with moderate activity. Extensive medicinal chemistry optimization has led to a series of potent benzothiazole amide antimycobacterial agents. Replacement of the adamantyl group with cyclohexyl derivatives and further development of this series resulted in an advanced lead compound, CRS400393, which demonstrated excellent potency and a mycobacteria-specific spectrum of activity. MIC values ranged from 0.03 to 0.12 μg/mL against Mycobacterium abscessus and other rapid-grower NTM, and 1-2 μg/mL against Mycobacterium avium complex. The preliminary mechanism of action studies suggested these agents may target MmpL3, a mycobacterial mycolic acid transporter. The series has demonstrated in vivo efficacy in a proof of concept mouse model of M. abscessus infection.
Collapse
Affiliation(s)
- James Graham
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Christina E Wong
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Joshua Day
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | | | - Urs Ochsner
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Teresa Hoang
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Casey L Young
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Wendy Ribble
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Mary A DeGroote
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Thale Jarvis
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA
| | - Xicheng Sun
- Crestone, Inc, 6075 Longbow Dr. Suite 130, Boulder, CO 80301, USA.
| |
Collapse
|
11
|
Liu D, Chen Q, Zhu H, Gong L, Huang Y, Li S, Yue C, Wu K, Wu Y, Zhang W, Huang G, Zhang L, Pu S, Wang D. Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation 2018; 41:654-666. [PMID: 29264743 PMCID: PMC5874272 DOI: 10.1007/s10753-017-0720-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The objective of the study is to explore the role of respiratory syncytial virus Toll-like receptor 3 (TLR3)-mediated immune response in the pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A total of 20 AECOPD patients and 10 normal volunteers were studied. TLR3 was detected by RT-PCR, and respiratory syncytial virus (RSV) was detected by nested RT-PCR. Then, A549 cells were infected by RSV at different time points and at different viral titers. TLR3 mRNA was detected by RT-PCR, the protein of TLR3 and interferon regulatory factor 3 (IRF3) were detected by western blot, and IRF3 protein localization was detected by immunofluorescence. Interferon-β (IFN-β) and interleukin-6 (IL-6) were detected by ELISA. A total of 4 (20%) of the 20 AECOPD patients sampled were infected with RSV. The forced expiratory volume in 1 second (FEV1) percentage was lower in the AECOPD patients infected with RSV compared to those not infected (P = 0.03). The expression of IL-6 in the two groups was diametrically opposite (P = 0.04). The AECOPD group (n = 20) showed an increase in TLR3 mRNA compared with that of the control group (n = 10) (P = 0.02). The RSV-infected AECOPD group (n = 4) showed an obvious increase in TLR3 mRNA compared with that of the control group (P = 0.03). There was a significant correlation between severity of reduction in lung function at exacerbation and the increasing expression of TLR3 in AECOPD patients. The TLR3 signaling pathway was activated in lung epithelial cells. TLR3 mRNA/protein levels were increased in A549 infected with RSV compared with those of the control group. IRF3 protein also increased along with the occurrence of nuclear transfer in A549 infected with RSV. IFN-β and IL-6 were also increased in the RSV-infected A549 cells compared with those of the control (P = 0.00 and 0.00, respectively). Increased TLR3 expression in AECOPD patients is associated with declining lung function. TLR3 may be a risk factor for RSV-infected AECOPD patients.
Collapse
Affiliation(s)
- Daishun Liu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China.
| | - Qian Chen
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Honglan Zhu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Ling Gong
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Yi Huang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Shiguang Li
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Changwu Yue
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Kaifeng Wu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Yang Wu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Wei Zhang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Guichuan Huang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Ling Zhang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Shenglan Pu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Daoxin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
12
|
Alsweed A, Alsuhibani M, Casanova JL, Al-Hajjar S. Approach to recurrent Herpes Simplex Encephalitis in children. Int J Pediatr Adolesc Med 2018; 5:35-38. [PMID: 30805531 PMCID: PMC6363264 DOI: 10.1016/j.ijpam.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/05/2018] [Indexed: 06/09/2023]
Abstract
Herpes Simplex Encephalitis (HSE) is one of the commonest viral encephalitis and its recurrence is being increasingly reported were HSE relapse rate came up to 5%. Both herpes simplex virus (HSV) types can lead to encephalitis and it was established that HSV-1 is capable of nervous system invasion, latency, and recurrence. The recurrence of HSE used to be attributed to immunological compromise, but reports show many cases have no obvious immune system impairment. Further investigations revealed genetic predispositions to HSV infection that would explain the host vulnerability to its recurrence. In this review, we discuss the gene mutations that may predispose to recurrent HSE and the importance of early diagnosis and treatment.
Collapse
Affiliation(s)
- Abdulrahman Alsweed
- Department of Pediatrics, Section of Infectious Disease, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Al-Imam Muhammad ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammed Alsuhibani
- Department of Pediatrics, Section of Infectious Disease, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, USA
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Sami Al-Hajjar
- Department of Pediatrics, Section of Infectious Disease, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Functional Evaluation of an IKBKG Variant Suspected to Cause Immunodeficiency Without Ectodermal Dysplasia. J Clin Immunol 2017; 37:801-810. [PMID: 28993958 DOI: 10.1007/s10875-017-0448-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Hypomorphic IKBKG mutations in males are typically associated with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Some mutations cause immunodeficiency without EDA (NEMO-ID). The immunological profile associated with these NEMO-ID variants is not fully documented. We present a 2-year-old patient with suspected immunodeficiency in which a hemizygous p.Glu57Lys IKBKG variant was identified. At the age of 1 year, he had an episode of otitis media that evolved into a bilateral mastoiditis (Pseudomonas spp). Hypogammaglobulinemia, specific (polysaccharide) antibody deficiency, and low switched memory B cell subsets were noticed. The mother was heterozygous for the variant but had no signs of incontinentia pigmenti. Patient peripheral blood mononuclear cells produced low amounts of IL-6 after stimulation with IL-1β, Pam3CSK4, and FSL-1. In patient fibroblasts, IκB-α was degraded normally upon stimulation with IL-1β or TNF-α. Transduction of wild-type and variant NEMO in NEMO-/- deficient SV40 fibroblasts revealed a slight but significant reduction of IL-6 production upon stimulation with IL-1β and TNF-α. In conclusion, we demonstrated that p.Glu57Lys leads to specific immunological defects in vitro. No other pathogenic PID variants were identified through whole exome sequencing. As rare polymorphisms have been described in IKBKG and polygenic inheritance remains an option in the presented case, this study emphasizes the need for thorough functional and genetic evaluation when encountering and interpreting suspected disease-causing NEMO-ID variants.
Collapse
|
14
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
15
|
Khan TA, Schimke LF, Amaral EP, Ishfaq M, Barbosa Bonfim CC, Rahman H, Iqbal A, D'Império Lima MR, Costa Carvalho BT, Cabral-Marques O, Condino-Neto A. Interferon-gamma reduces the proliferation of M. tuberculosis within macrophages from a patient with a novel hypomorphic NEMO mutation. Pediatr Blood Cancer 2016; 63:1863-6. [PMID: 27391872 DOI: 10.1002/pbc.26098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/26/2016] [Accepted: 05/14/2016] [Indexed: 12/24/2022]
Abstract
X-linked ectodermal dysplasia with immunodeficiency (XL-EDA-ID) is caused by mutations in the nuclear factor-kappa B essential modulator (NEMO) gene. Here, we report the clinical and genetic features of a XL-EDA-ID patient who developed bacillus Calmette-Guérin infection. Patient lymphocytes failed to degrade IκB-α, and sequencing of NEMO identified the novel mutation c.1238A>C/p.H413P. Furthermore, patient monocyte-derived macrophages ingested Mycobacterium tuberculosis normally, but failed to control the intracellular proliferation of bacilli, a defect which was improved in the presence of interferon-gamma (IFN-γ). This work expands the genetic spectrum of XL-EDA-ID and demonstrates improvement in macrophage function in a NEMO-deficient patient by IFN-γ.
Collapse
Affiliation(s)
- Taj Ali Khan
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Lena Friederike Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo Pinheiro Amaral
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Muhammad Ishfaq
- Basic Science Research Department, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Caio César Barbosa Bonfim
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil
| | | | | | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Puel A, Kun Yang, Ku CL, von Bernuth H, Bustamante J, Santos OF, Lawrence T, Chang HH, Al-Mousa H, Picard C, Casanova JL. Heritable defects of the human TLR signalling pathways. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110040601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, three human primary immunodeficiencies associated with impaired TLR signalling were described. Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), either X-linked recessive or autosomal dominant, is caused by hypomorphic mutations in NEMO or hypermorphic mutation in IKBA, respectively, both involved in nuclear factor-κB (NF-κB) activation. These patients present with abnormal development of ectoderm-derived structures and suffer from a broad spectrum of infectious diseases. In vitro studies of the patients' cells showed an impaired, but not abolished, NF-κB activation in response to a large set of stimuli, including TLR agonists. More recently, patients with autosomal recessive amorphic mutations in IRAK4 have been reported, presenting no developmental defect and a more restricted spectrum of infectious diseases, mostly caused by pyogenic encapsulated bacteria, principally, but not exclusively Gram-positive. In vitro studies carried out with these patients' cells showed a specific impairment of the Toll—interleukin-1 receptor (TIR)—interleukin-1 receptor associated kinase (IRAK) signalling pathway. NF-κB- and mitogen activated protein kinase (MAPK) pathways are impaired in response to all TIR agonists tested. These data, therefore, suggest that TLRs play a critical role in host defence against pyogenic bacteria, but may be dispensable or redundant for immunity to most other infectious agents in humans.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France,
| | - Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, French-Chinese Laboratory of Genetics and Life Sciences, Rui-Jin Hospital, Shanghai University, Shanghai, China
| | - Cheng-Lung Ku
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Horst von Bernuth
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Orchidée Filipe Santos
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Tatiana Lawrence
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Huey-Hsuan Chang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Hamoud Al-Mousa
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| |
Collapse
|
17
|
A genetic perspective on granulomatous diseases with an emphasis on mycobacterial infections. Semin Immunopathol 2016; 38:199-212. [PMID: 26733044 DOI: 10.1007/s00281-015-0552-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Identification of the genetic factors predisposing to mycobacterial infections has been a subject of intense research activities. Current knowledge of the genetic and immunological basis of susceptibility to mycobacteria largely comes from natural human and experimental models of Bacille Calmette Guérin (BCG) and nontuberculous mycobacterial infections. These observations support the central role of the IL-12/IFN-γ pathway in controlling mycobacterial infection. In this review, we discuss the knowledge that associates both simple and complex inheritance with susceptibility to mycobacterial diseases. We place a special emphasis on monogenic disorders, since these clearly pinpoint pathways and can adduce mechanism. We also describe the clinical, immunological, and pathological features that may steer clinical investigation in the appropriate directions.
Collapse
|
18
|
Lee WI, Huang JL, Yeh KW, Cheng PJ, Jaing TH, Lin SJ, Chen LC, Ou LS, Yao TC. The effects of prenatal genetic analysis on fetuses born to carrier mothers with primary immunodeficiency diseases. Ann Med 2016; 48:103-10. [PMID: 26856578 DOI: 10.3109/07853890.2016.1140224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Prenatal genetic analysis in primary immunodeficiency diseases (PIDs) can decrease morbidity and mortality. METHODS We compared the postnatal prognoses of index cases and their subsequent sibling-fetuses using prenatal genetic analysis. RESULTS From 2007 to 2014, 14 sibling-fetuses receiving a prenatal diagnosis born to four mothers with WAS, three with X-CGD, and one each with IPEX, XLA and severe combined immunodeficiency [RAG2-SCID] were recruited. There were six affected, two carriers, and six wild types. Among the six affected, four [3X-CGD and 1RAG2-SCID] were terminated and two [1WAS and 1X-CGD] with early prophylactics underwent successful hematopoietic stem cell transplantation (HSCT) without infection. In the 12 index cases with a postnatal diagnosis, eight died (five due to infections and one each due to refractory bleeding, severe diarrhea, and post-transplant pneumothorax), two X-CGD underwent reconstituted HSCT after recurrent life-threatening infections, one WAS developed malignancy, and another WAS developed autoimmune disorders despite the administration of prophylactics and regular immunoglobulin infusion. CONCLUSION Instead of recurrent life-threatening infections leading to mortality in the postnatal diagnosis group, the severe PIDs who received early prophylactics were cured by HSCT, and all of mortality were terminations in the prenatal diagnosis group. Further large-scale studies are needed to validate this beneficial effect. Key message Prenatal genetic analysis in fetuses born to PIDs carrier mothers allows for the affected fetuses to receive optimal management including prophylactics against infections and HSCT if indicated. Patients with PIDs diagnosed postnatally who are prone to severe infections have higher rates of morbidity and mortality than their subsequent siblings who have a prenatal genetic diagnosis.
Collapse
Affiliation(s)
- Wen-I Lee
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan ;,b Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine and Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Jing-Long Huang
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan ;,b Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine and Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Kuo-Wei Yeh
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Po-Jen Cheng
- c Department of Obstetrics/Gynecology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Tang-Her Jaing
- b Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine and Chang Gung Memorial Hospital , Taoyuan , Taiwan ;,d Department of Pediatrics, Division of Hematology and Oncology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Syh-Jae Lin
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Li-Chen Chen
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Liang-Shiou Ou
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Tsung-Chieh Yao
- a Department of Pediatrics, Division of Allergy , Asthma, Immunology and Rheumatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| |
Collapse
|
19
|
Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci 2015; 1356:1-21. [PMID: 25930993 PMCID: PMC4629506 DOI: 10.1111/nyas.12763] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| | - Noa Simchoni
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
20
|
Fusco F, Pescatore A, Conte MI, Mirabelli P, Paciolla M, Esposito E, Lioi MB, Ursini MV. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-κB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol 2015; 34:445-59. [PMID: 26269396 DOI: 10.3109/08830185.2015.1055331] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Francesca Fusco
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | - Alessandra Pescatore
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | | | | | - Mariateresa Paciolla
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy.,c University of Basilicata , Potenza , Italy
| | - Elio Esposito
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | | | - Matilde Valeria Ursini
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy.,b Fondazione SDN IRCCS , Naples , Italy
| |
Collapse
|
21
|
Piret J, Boivin G. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Rev Med Virol 2015. [PMID: 26205506 DOI: 10.1002/rmv.1848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
22
|
Host susceptibility to non-tuberculous mycobacterial infections. THE LANCET. INFECTIOUS DISEASES 2015; 15:968-80. [PMID: 26049967 DOI: 10.1016/s1473-3099(15)00089-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Non-tuberculous mycobacteria cause a broad range of clinical disorders, from cutaneous infections, such as cervical or intrathoracic lymphadenitis in children, to disseminated infections at all ages. Recognition of the underlying immune defect is crucial for rational treatment, preventive care, family screening, and, in some cases, transplantation. So far, at least seven autosomal mutations (in IL12B, IL12RB1, ISG15, IFNGR1, IFNGR2, STAT1, and IRF8) and two X-linked mutations (in IKBKG and CYBB), mostly presenting in childhood, have been reported to confer susceptibility to disseminated non-tuberculous mycobacterial infection. GATA2 deficiency and anti-interferon γ autoantibodies also give rise to disseminated infection, typically in late childhood or adulthood. Furthermore, isolated pulmonary non-tuberculous mycobacterial infection has been increasing in prevalence in people without recognised immune dysfunction. In this Review, we discuss how to detect and differentiate host susceptibility factors underlying localised and systemic non-tuberculous mycobacterial infections.
Collapse
|
23
|
Senegas A, Gautheron J, Maurin AGD, Courtois G. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell Mol Life Sci 2015; 72:1275-87. [PMID: 25432706 PMCID: PMC11113297 DOI: 10.1007/s00018-014-1793-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022]
Abstract
The transcription factor NF-κB plays a key role in numerous physiological processes such as inflammation, immunity, cell proliferation or control of cell death. Its activation is tightly controlled by a kinase complex, IκB kinase (IKK), composed of three core proteins: IKK1/IKKα, IKK2/IKKβ and NEMO/IKKγ. The first two are structurally related kinases whereas the third one is a regulatory subunit exhibiting affinity for upstream activators modified by polyubiquitin chains. Over the years, several inherited diseases caused by mutations of each of the three subunits of IKK have been identified in humans together with diseases caused by mutations of several of its substrates. They are associated with very specific and complex phenotypes involving a broad range of abnormalities such as impaired innate and acquired immune response, perturbed skin development and defects of the central nervous system. Here, we summarize the diverse clinical, cellular and molecular manifestations of IKK-related genetic diseases and show that studying patient-related mutations affecting the IKK subunits and some of their substrates offers the opportunity to understand the various functions of NF-κB in humans, complementing studies performed with mouse models. This analysis also provides glimpses about putative functions of IKK subunits that may be NF-κB-independent.
Collapse
Affiliation(s)
- Anna Senegas
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Jérémie Gautheron
- Department of Gastroenterology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alice Gentil Dit Maurin
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Gilles Courtois
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
D'Assante R, Fusco A, Palamaro L, Giardino G, Gallo V, Cirillo E, Pignata C. Unraveling the Link Between Ectodermal Disorders and Primary Immunodeficiencies. Int Rev Immunol 2015; 35:25-38. [PMID: 25774666 DOI: 10.3109/08830185.2015.1010724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary immunodeficiencies (PIDs) include a heterogeneous group of mostly monogenic diseases characterized by functional/developmental alterations of the immune system. Skin and skin annexa abnormalities may be a warning sign of immunodeficiency, since both epidermal and thymic epithelium have ectodermal origin. In this review, we will focus on the most common immune disorders associated with ectodermal alterations. Elevated IgE levels represent the immunological hallmark of hyper-IgE syndrome, characterized by severe eczema and susceptibility to infections. Ectodermal dysplasia (ED) is a group of rare disorders that affect tissues of ectodermal origin. Hypoidrotic ED (HED), the most common form, is inherited as autosomal dominant, autosomal recessive or X-linked trait (XLHED). HED and XLHED are caused by mutations in NEMO and EDA-1 genes, respectively, and show similarities in the cutaneous involvement but differences in the susceptibility to infections and immunological phenotype. Alterations in the transcription factor FOXN1 gene, expressed in the mature thymic and skin epithelia, are responsible for human and murine athymia and prevent the development of the T-cell compartment associated to ectodermal abnormalities such as alopecia and nail dystrophy. The association between developmental abnormalities of the skin and immunodeficiencies suggest a role of the skin as a primary lymphoid organ. Recently, it has been demonstrated that a co-culture of human skin-derived keratinocytes and fibroblasts, in the absence of thymic components, can support the survival of human haematopoietic stem cells and their differentiation into T-lineage committed cells.
Collapse
Affiliation(s)
- Roberta D'Assante
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Anna Fusco
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Loredana Palamaro
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Giuliana Giardino
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Vera Gallo
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Emilia Cirillo
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Claudio Pignata
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| |
Collapse
|
25
|
Abstract
Identification of the molecular etiologies of primary immunodeficiencies has led to important insights into the development and function of the immune system. We report here the cause of combined immunodeficiency in 4 patients from 2 different consanguineous Qatari families with similar clinical and immunologic phenotypes. The patients presented at an early age with fungal, viral, and bacterial infections and hypogammaglobulinemia. Although their B- and T-cell numbers were normal, they had low regulatory T-cell and NK-cell numbers. Moreover, patients' T cells were mostly CD45RA(+)-naive cells and were defective in activation after T-cell receptor stimulation. All patients contained the same homozygous nonsense mutation in IKBKB (R286X), revealed by whole-exome sequencing with undetectable IKKβ and severely decreased NEMO proteins. Mutant IKKβ(R286X) was unable to complex with IKKα/NEMO. Immortalized patient B cells displayed impaired IκBα phosphorylation and NFκB nuclear translocation. These data indicate that mutated IKBKB is the likely cause of immunodeficiency in these 4 patients.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Genital herpes has a high global prevalence and burden of disease. This manuscript highlights recent advances in our understanding of genital herpes simplex virus (HSV) infections. RECENT FINDINGS Studies demonstrate a changing epidemiological landscape with an increasing proportion of genital herpes cases associated with HSV type 1. There is also growing evidence that the majority of infected individuals exhibit frequent, brief shedding episodes that are most often asymptomatic, which likely contribute to high HSV transmission rates. Given this finding as well as readily available serological assays, some have proposed that routine HSV screening be performed; however, this remains controversial and is not currently recommended. Host immune responses, particularly local CD4 and CD8 T cell activity, are crucial for HSV control and clearance following initial infection, during latency and after reactivation. Prior HSV immunity may also afford partial protection against HSV reinfection and disease. Although HSV vaccine trials have been disappointing to date and existing antiviral medications are limited, novel prophylactic and therapeutic modalities are currently in development. SUMMARY Although much remains unknown about genital herpes, improved knowledge of HSV epidemiology, pathogenesis and host immunity may help guide new strategies for disease prevention and control.
Collapse
|
27
|
Vinh DC. Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Rev Clin Immunol 2014; 10:1069-100. [PMID: 24881679 DOI: 10.1586/1744666x.2014.919224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traditionally, management of infectious diseases focuses on identification of the causative microbe and the use of pathogen-targeted therapy. With increasing antimicrobial resistance, novel approaches are required. One strategy is to modulate those natural host immune responses that critically mediate resistance to specific microbes. Clinically, this host-directed tactic could be used either alone or in combination with antimicrobial therapy. While conceptually attractive, there is potential concern that the pathways governing host resistance to pathogens in animal models may not extrapolate linearly to humans. Targeting these immune processes clinically may precipitate damaging, epiphenomenal responses. The field of Primary Immunodeficiencies focuses on the characterization of humans with inborn errors of immunity. These rare conditions permit the identification of those molecular and cellular processes that are central to human susceptibility to microbes. In efforts to compensate for defective host responses, this field has also provided a wealth of clinical experience in the effective use of cytokines to treat various active infections, while demonstrating their safety. In this review, we provide a historical perspective of the treatment of infectious diseases, evolving from a focus on the microbe, to an understanding of human immunity; we then outline the growing contribution of Primary Immunodeficiencies to the rational use of adjunctive cytokine immunotherapy in the management of infections.
Collapse
Affiliation(s)
- Donald C Vinh
- Department of Medicine, Department of Medical Microbiology, Department of Human Genetics, Division of Infectious Diseases, Division of Allergy and Clinical Immunology, McGill University Health Centre - Montreal General Hospital, 1650 Cedar Ave, Rm A5-156, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
28
|
Haverkamp MH, Marciano BE, Frucht DM, Jain A, van de Vosse E, Holland SM. Correlating interleukin-12 stimulated interferon-γ production and the absence of ectodermal dysplasia and anhidrosis (EDA) in patients with mutations in NF-κB essential modulator (NEMO). J Clin Immunol 2014; 34:436-43. [PMID: 24682681 DOI: 10.1007/s10875-014-9998-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA. METHODS PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1β. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls. RESULTS PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1β than controls, whereas the production of these cytokines by patients without EDA was normal. CONCLUSION Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.
Collapse
Affiliation(s)
- Margje H Haverkamp
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands,
| | | | | | | | | | | |
Collapse
|
29
|
Frans G, Meyts I, Picard C, Puel A, Zhang SY, Moens L, Wuyts G, Van der Werff Ten Bosch J, Casanova JL, Bossuyt X. Addressing diagnostic challenges in primary immunodeficiencies: Laboratory evaluation of Toll-like receptor- and NF-κB-mediated immune responses. Crit Rev Clin Lab Sci 2014; 51:112-23. [DOI: 10.3109/10408363.2014.881317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
31
|
Towers RE, Murgiano L, Millar DS, Glen E, Topf A, Jagannathan V, Drögemüller C, Goodship JA, Clarke AJ, Leeb T. A nonsense mutation in the IKBKG gene in mares with incontinentia pigmenti. PLoS One 2013; 8:e81625. [PMID: 24324710 PMCID: PMC3852476 DOI: 10.1371/journal.pone.0081625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
Ectodermal dysplasias (EDs) are a large and heterogeneous group of hereditary disorders characterized by abnormalities in structures of ectodermal origin. Incontinentia pigmenti (IP) is an ED characterized by skin lesions evolving over time, as well as dental, nail, and ocular abnormalities. Due to X-linked dominant inheritance IP symptoms can only be seen in female individuals while affected males die during development in utero. We observed a family of horses, in which several mares developed signs of a skin disorder reminiscent of human IP. Cutaneous manifestations in affected horses included the development of pruritic, exudative lesions soon after birth. These developed into wart-like lesions and areas of alopecia with occasional wooly hair re-growth. Affected horses also had streaks of darker and lighter coat coloration from birth. The observation that only females were affected together with a high number of spontaneous abortions suggested an X-linked dominant mechanism of transmission. Using next generation sequencing we sequenced the whole genome of one affected mare. We analyzed the sequence data for non-synonymous variants in candidate genes and found a heterozygous nonsense variant in the X-chromosomal IKBKG gene (c.184C>T; p.Arg62*). Mutations in IKBKG were previously reported to cause IP in humans and the homologous p.Arg62* variant has already been observed in a human IP patient. The comparative data thus strongly suggest that this is also the causative variant for the observed IP in horses. To our knowledge this is the first large animal model for IP.
Collapse
Affiliation(s)
- Rachel E. Towers
- Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - David S. Millar
- Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Elise Glen
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Topf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Judith A. Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angus J. Clarke
- Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Rapid host immune response and viral dynamics in herpes simplex virus-2 infection. Nat Med 2013; 19:280-90. [PMID: 23467247 DOI: 10.1038/nm.3103] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 02/07/2023]
Abstract
Herpes simplex virus-2 (HSV-2) is periodically shed throughout the human genital tract. Although a high viral load correlates with the development of genital ulcers, shedding also commonly occurs even when ulcers are absent, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs within ganglia despite diverse and complementary host and viral mechanisms that predispose toward latency, suggesting that viral replication may be constantly occurring in a small minority of neurons at these sites. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-2 specific T cells persist at prior sites of genital tract reactivation and, in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. The fact that immune responses usually control viral replication in genital skin before lesions develop provides hope that enhancing such responses could lead to effective vaccines and immunotherapies.
Collapse
|
33
|
The immunologic basis for severe neonatal herpes disease and potential strategies for therapeutic intervention. Clin Dev Immunol 2013; 2013:369172. [PMID: 23606868 PMCID: PMC3626239 DOI: 10.1155/2013/369172] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world's population. Infection is life-long and can cause periodic mucocutaneous symptoms, but it only rarely causes life-threatening disease among immunocompetent children and adults. However, when HSV infection occurs during the neonatal period, viral replication is poorly controlled and a large proportion of infants die or develop disability even with optimal antiviral therapy. Increasingly, specific differences are being elucidated between the immune system of newborns and those of older children and adults, which predispose to severe infections and reflect the transition from fetal to postnatal life. Studies in healthy individuals of different ages, individuals with primary or acquired immunodeficiencies, and animal models have contributed to our understanding of the mechanisms that control HSV infection and how these may be impaired during the neonatal period. This paper outlines our current understanding of innate and adaptive immunity to HSV infection, immunologic differences in early infancy that may account for the manifestations of neonatal HSV infection, and the potential of interventions to augment neonatal immune protection against HSV disease.
Collapse
|
34
|
Abstract
Herpes simplex encephalitis (HSE) is a rare but severe complication of frequent and mostly benign infection with herpes simplex virus (HSV). Although rapid and sensitive diagnosis tools and active antiviral drugs are available, HSE morbidity/mortality levels remain unsatisfactory. Molecular and cellular determinants of HSE are incompletely understood. The rarity and severity of the disease have suggested an increased susceptibility of some subjects to HSV infection. Numerous experimental studies have investigated the respective role of host and viral factors in HSE. The results of these studies have illustrated the major role of the innate immune response, in particular interferons (IFNs), in limiting access of the virus into and/or virus replication in the central nervous system (CNS). In a few children with HSE, specific defects of the immune innate response have been identified, which impair the IFN-α/β and IFN-λ production of fibroblasts and/or neurons infected with HSV and render these cells more permissive to infection. The mutations affect proteins involved in the IFN pathway induced by stimulation of the TLR3 receptor. The patients' susceptibility to infection is restricted to HSV CNS invasion, underlining the major role of TLR3 in CNS protection against viral infection. The incomplete clinical penetrance of these molecular defects suggests that other factors (age, infectious dose) are involved in HSE. Whether pathogenesis of adult HSE is similar has not been investigated.
Collapse
Affiliation(s)
- F Rozenberg
- Service de virologie, pôle biologie pharmacie pathologie, hôpital Cochin, bâtiment Jean-Dausset, 27, rue du Faubourg-St-Jacques, 75679 Paris cedex 14, France.
| |
Collapse
|
35
|
Zhang SY, Herman M, Ciancanelli MJ, Pérez de Diego R, Sancho-Shimizu V, Abel L, Casanova JL. TLR3 immunity to infection in mice and humans. Curr Opin Immunol 2013; 25:19-33. [PMID: 23290562 DOI: 10.1016/j.coi.2012.11.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/02/2012] [Indexed: 02/06/2023]
Abstract
TLR3 is a receptor for dsRNA, which is generated during most viral infections. However, other cellular processes may also produce dsRNA and there are other receptors for dsRNA. The role of TLR3 in protective immunity to viruses has been investigated in mice and humans with genetically impaired TLR3 responses. TLR3-deficient mice responded to experimental challenge with 16 different viruses in various ways. They were susceptible to eight viruses, normally resistant to three other viruses, and their survival rates were higher than those of wild-type mice following infection with four other viruses. Conflicting results were obtained for the other virus tested. These data are difficult to understand in terms of a simple pattern based on virus structure or tissue tropism. Surprisingly, the known human patients with inborn errors of the TLR3 pathway have remained healthy or developed encephalitis in the course of natural primary infection with HSV-1. These patients display no clear susceptibility to other infections, including viral infections, such as other forms of viral encephalitis and other HSV-1 diseases in particular. This restricted susceptibility to viruses seems to result from impaired TLR3-dependent IFN-α/β production by central nervous system (CNS)-resident non-hematopoietic cells infected with HSV-1. These studies neatly illustrate the value of combining genetic studies of experimental infections in mice and natural infections in humans, to elucidate the biological function of host molecules in protective immunity.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang SY, Abel L, Casanova JL. Mendelian predisposition to herpes simplex encephalitis. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:1091-7. [PMID: 23622315 DOI: 10.1016/b978-0-444-52910-7.00027-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis in the Western world. The pathogenesis of HSE, which affects a small minority of HSV-1-infected individuals, has long remained elusive. Mendelian defects in the TLR3-interferon (IFN) and IFN-responsive pathways were recently shown to predispose to HSE, at least in some children. Autosomal recessive STAT-1 deficiency and X-linked NEMO deficiency were found in children with both mycobacterial disease and HSE. Autosomal recessive UNC-93B deficiency and autosomal dominant TLR3 deficiency were then described in children with isolated HSE. These discoveries provided proof-of-principle that HSE may result from a novel group of single-gene inborn errors of interferon (IFN)-mediated immunity. The TLR3-UNC-93B-dependent production of IFN-α/β and IFN-λ is essential to confer protective immunity to HSV-1 in the central nervous system during the course of primary infection in childhood.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France; Université Paris René Descartes, Necker Medical School, Paris, France
| | | | | |
Collapse
|
37
|
Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 2012; 1:487-96. [PMID: 22347990 DOI: 10.1016/j.coviro.2011.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three types of interferon (IFNs) are essential for immunity against at least some viruses in the mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-viral activity. Consistently, human genetic studies have shown that type II IFN is largely redundant for immunity against viruses in the course of natural infections. The precise contributions of human type I and III IFNs remain undefined. However, various inborn errors of anti-viral IFN immunity have been described, which can result in either broad or narrow immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2) or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy individuals. These recent discoveries highlight the importance of human type I and III IFNs in protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE.
Collapse
Affiliation(s)
- Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Necker Medical School, Paris 75015, France
| | | | | | | | | |
Collapse
|
38
|
Moraru M, Cisneros E, Gómez-Lozano N, de Pablo R, Portero F, Cañizares M, Vaquero M, Roustán G, Millán I, López-Botet M, Vilches C. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:4412-20. [PMID: 22490439 DOI: 10.4049/jimmunol.1103434] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HSV-1 establishes life-long latency that can result in clinical relapses or in asymptomatic virus shedding. Although virtually all adults have been exposed to HSV-1, the clinical course varies remarkably. Genetic host variability could be related to this clinical diversity. In this study, we analyzed the contribution of gene families in chromosomes 1, 6, 12, and 19, which encode key regulators of the innate and adaptive immunity, in a cohort of 302 individuals. Class I and class II alleles of the HLA system, the copy-number variation of NK cell receptor genes (KIR and NKG2C), the combinations of killer cell Ig-like receptor and their HLA ligands, and CD16A and CD32A allotypes of variable affinity for IgG subclasses were all studied. Although no major susceptibility locus for HSV-1 was identified, our results show that the risk of suffering clinical HSV-1 infection is modified by MHC class I allotypes (B*18, C*15, and the group of alleles encoding A19), the high-affinity receptor/ligand pair KIR2DL2/HLA-C1, and the CD16A-158V/F dimorphism. Conversely, HLA class II and CD32A polymorphisms and NKG2C deletion did not seem to influence the clinical course of herpetic infection. Collectively, these findings support an important role in host defense against herpetic infection for several polymorphic genes implicated in adaptive immunity and in surveillance of its subversion. They confirm the crucial role of cytotoxic cells (CTL and NK) and the contribution of genetic diversity to the clinical course of HSV-1 infection.
Collapse
Affiliation(s)
- Manuela Moraru
- Laboratorio de Inmunogenética-HLA, Hospital Universitario Puerta de Hierro, Majadahonda 28220, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee WI, Huang JL, Yeh KW, Jaing TH, Lin TY, Huang YC, Chiu CH. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc 2011; 110:750-8. [PMID: 22248828 DOI: 10.1016/j.jfma.2011.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 12/22/2022] Open
Abstract
Natural human immunity to the mycobacteria group, including Mycobacterium tuberculosis, Bacille Calmette-Guérin (BCG) or nontuberculous mycobacteria (NTM), and/or Salmonella species, relies on the functional IL-12/23-IFN-γ integrity of macrophages (monocyte/dendritic cell) connecting to T lymphocyte/NK cells. Patients with severe forms of primary immunodeficiency diseases (PIDs) have more profound immune defects involving this impaired circuit in patients with severe combined immunodeficiencies (SCID) including complete DiGeorge syndrome, X-linked hyper IgM syndrome (HIGM) (CD40L mutation), CD40 deficiency, immunodeficiency with or without anhidrotic ectodermal dysplasia (NEMO and IKBA mutations), chronic granulomatous disease (CGD) and hyper IgE recurrent infection syndromes (HIES). The patients with severe PIDs have broader diverse infections rather than mycobacterial infections. In contrast, patients with an isolated inborn error of the IL-12/23-IFN-γ pathway are exclusively prone to low-virulence mycobacterial infections and nontyphoid salmonella infections, known as Mendelian susceptibility to the mycobacterial disease (MSMD) phenotype. Restricted defective molecules in the circuit, including IFN-γR1, IFN-γR2, IL-12p40, IL-12R-β1, STAT-1, NEMO, IKBA and the recently discovered CYBB responsible for autophagocytic vacuole and proteolysis, and interferon regulatory factor 8 (IRF8) for dendritic cell immunodeficiency, have been identified in around 60% of patients with the MSMD phenotype. Among all of the patients with PIDs referred for investigation since 1985, we have identified four cases with the specific defect (IFNRG1 for three and IL12RB for one), presenting as both BCG-induced diseases and NTM infections, in addition to some patients with SCID, HIGM, CGD and HIES. Furthermore, manifestations in patients with autoantibodies to IFN-γ (autoAbs-IFN-γ), which is categorized as an anticytokine autoantibody syndrome, can resemble the relatively persistent MSMD phenotype lacking BCG-induced diseases.
Collapse
Affiliation(s)
- Wen-I Lee
- Primary Immunodeficiency Care And Research (PICAR) Institute, Chang Gung Medical Hospital and Children's Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev 2011; 24:490-7. [PMID: 21734245 DOI: 10.1128/cmr.00001-11] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive IRAK-4 and MyD88 deficiencies predispose affected patients to recurrent invasive pyogenic bacterial infection. Both defects result in the selective impairment of cellular responses to Toll-like receptors (TLRs) other than TLR3 and of cellular responses to most interleukin-1 receptors (IL-1Rs), including IL-1R, IL-18R, and IL-33R. Hypomorphic mutations in the X-linked NEMO gene and hypermorphic mutations in the autosomal IKBA gene cause X-linked recessive and autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) syndromes. Both of these defects impair NF-κB-mediated cellular responses to multiple receptors, including TLRs, IL-1Rs, and tumor necrosis factor receptors (TNF-Rs). They therefore confer a much broader predisposition to infections than that for IRAK-4 and MyD88 deficiencies. These disorders were initially thought to be rare but have now been diagnosed in over 170 patients worldwide. We review here the infectious diseases affecting patients with inborn errors of NF-κB-dependent TLR and IL-1R immunity.
Collapse
|
41
|
Keller MD, Petersen M, Ong P, Church J, Risma K, Burham J, Jain A, Stiehm ER, Hanson EP, Uzel G, Deardorff MA, Orange JS. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA mutations. Front Immunol 2011; 2:61. [PMID: 22566850 PMCID: PMC3341983 DOI: 10.3389/fimmu.2011.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/20/2011] [Indexed: 12/29/2022] Open
Abstract
Ectodermal dysplasias (ED) are uncommon genetic disorders resulting in abnormalities in ectodermally derived structures. Many ED-associated genes have been described, of which ectodysplasin-A (EDA) is one of the more common. The NF-κB essential modulator (NEMO encoded by the IKBKG gene) is unique in that mutations result in severe humoral and cellular immunologic defects in addition to ED. We describe three unrelated kindreds with defects in both EDA and IKBKG resulting from X-chromosome crossover. This demonstrates the importance of thorough immunologic consideration of patients with ED even when an EDA etiology is confirmed, and raises the possibility of a specific phenotype arising from coincident mutations in EDA and IKBKG.
Collapse
Affiliation(s)
- Michael D Keller
- Division of Immunology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Pérez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valérie Doireau, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. ACTA ACUST UNITED AC 2011; 208:2083-98. [PMID: 21911422 PMCID: PMC3182056 DOI: 10.1084/jem.20101568] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new autosomal recessive form of complete TLR3 deficiency reveals that human TLR3 is nonredundant in immunity against herpes simplex virus 1 in the central nervous system (CNS) but redundant in host defense against viruses outside the CNS. Autosomal dominant TLR3 deficiency has been identified as a genetic etiology of childhood herpes simplex virus 1 (HSV-1) encephalitis (HSE). This defect is partial, as it results in impaired, but not abolished induction of IFN-β and -λ in fibroblasts in response to TLR3 stimulation. The apparently normal resistance of these patients to other infections, viral illnesses in particular, may thus result from residual TLR3 responses. We report here an autosomal recessive form of complete TLR3 deficiency in a young man who developed HSE in childhood but remained normally resistant to other infections. This patient is compound heterozygous for two loss-of-function TLR3 alleles, resulting in an absence of response to TLR3 activation by polyinosinic-polycytidylic acid (poly(I:C)) and related agonists in his fibroblasts. Moreover, upon infection of the patient’s fibroblasts with HSV-1, the impairment of IFN-β and -λ production resulted in high levels of viral replication and cell death. In contrast, the patient’s peripheral blood mononuclear cells responded normally to poly(I:C) and to all viruses tested, including HSV-1. Consistently, various TLR3-deficient leukocytes from the patient, including CD14+ and/or CD16+ monocytes, plasmacytoid dendritic cells, and in vitro derived monocyte-derived macrophages, responded normally to both poly(I:C) and HSV-1, with the induction of antiviral IFN production. These findings identify a new genetic etiology for childhood HSE, indicating that TLR3-mediated immunity is essential for protective immunity to HSV-1 in the central nervous system (CNS) during primary infection in childhood, in at least some patients. They also indicate that human TLR3 is largely redundant for responses to double-stranded RNA and HSV-1 in various leukocytes, probably accounting for the redundancy of TLR3 for host defense against viruses, including HSV-1, outside the CNS.
Collapse
Affiliation(s)
- Yiqi Guo
- 1St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, National Institute of Health and Medical Research, Paris, France;Necker Medical School, Paris Descartes University, Paris 75015, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Audry M, Ciancanelli M, Yang K, Cobat A, Chang HH, Sancho-Shimizu V, Lorenzo L, Niehues T, Reichenbach J, Li XX, Israel A, Abel L, Casanova JL, Zhang SY, Jouanguy E, Puel A. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J Allergy Clin Immunol 2011; 128:610-7.e1-4. [PMID: 21722947 PMCID: PMC3164951 DOI: 10.1016/j.jaci.2011.04.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 04/24/2011] [Accepted: 05/19/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Children with germline mutations in Toll-like receptor 3 (TLR3), UNC93B1, TNF receptor-associated factor 3, and signal transducer and activator of transcription 1 are prone to herpes simplex virus-1 encephalitis, owing to impaired TLR3-triggered, UNC-93B-dependent, IFN-α/β, and/or IFN-λ-mediated signal transducer and activator of transcription 1-dependent immunity. OBJECTIVE We explore here the molecular basis of the pathogenesis of herpes simplex encephalitis in a child with a hypomorphic mutation in nuclear factor-κB (NF-κB) essential modulator, which encodes the regulatory subunit of the inhibitor of the Iκβ kinase complex. METHODS The TLR3 signaling pathway was investigated in the patient's fibroblasts by analyses of IFN-β, IFN-λ, and IL-6 mRNA and protein levels, by quantitative PCR and ELISA, respectively, upon TLR3 stimulation (TLR3 agonists or TLR3-dependent viruses). NF-κB activation was assessed by electrophoretic mobility shift assay and interferon regulatory factor 3 dimerization on native gels after stimulation with a TLR3 agonist. RESULTS The patient's fibroblasts displayed impaired responses to TLR3 stimulation in terms of IFN-β, IFN-λ, and IL-6 production, owing to impaired activation of both NF-κB and IRF-3. Moreover, vesicular stomatitis virus, a potent IFN-inducer in human fibroblasts, and herpes simplex virus-1, induced only low levels of IFN-β and IFN-λ in the patient's fibroblasts, resulting in enhanced viral replication and cell death, as reported for UNC-93B-deficient fibroblasts. CONCLUSION Herpes simplex encephalitis may occur in patients carrying NF-κB essential modulator mutations, due to the impairment of NF-κB- and interferon regulatory factor 3-dependent-TLR3-mediated antiviral IFN production.
Collapse
Affiliation(s)
- Magali Audry
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Michael Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
- French-Chinese Laboratory of Genomics and Life Sciences, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Huey-Hsuan Chang
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Vanessa Sancho-Shimizu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Lazaro Lorenzo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Tim Niehues
- Department of Pediatric Oncology, Hematology and Immunology, Pediatric Immunology and Rheumatology, Centre for Child Health, Heinrich-Heine-University, Dusseldorf D-40225, Germany, EU
| | - Janine Reichenbach
- Division of Immunology, Hematology, and Bone Marrow Transplantation, University Children's Hospital, Zurich, Switzerland
| | - Xiao-Xia Li
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Alain Israel
- Molecular Signaling and Cellular Activation Unit, URA 2582 CNRS Institut Pasteur, Paris 75015, France, EU
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
- French-Chinese Laboratory of Genomics and Life Sciences, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris 75015, France, EU
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
- French-Chinese Laboratory of Genomics and Life Sciences, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
- French-Chinese Laboratory of Genomics and Life Sciences, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U980, University Paris Descartes, Necker Medical School, Paris, 75015 France, EU
| |
Collapse
|
44
|
Disseminated BCG infection mimicking metastatic nasopharyngeal carcinoma in an immunodeficient child with a novel hypomorphic NEMO mutation. J Clin Immunol 2011; 31:802-10. [PMID: 21755389 DOI: 10.1007/s10875-011-9568-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nuclear factor-κB essential modulator (NEMO) deficiency is a developmental and immunological disorder. The genetic and phenotypic correlation has been described. METHODS We report a unique clinical presentation and the identification of a novel missense mutation in the NEMO gene in a 3-year-old boy with bacillus Calmette-Guerin (BCG) infection. RESULTS The patient presented with fever, cervical lymphadenopathy, and abnormal anti-Epstein-Barr virus (EBV) antibody titers, suggestive of EBV-related diseases including chronic active EBV infection, X-linked lymphoproliferative syndrome, or nasopharyngeal carcinoma. Although the biopsy specimen from a nasopharyngeal lesion was initially diagnosed as squamous cell carcinoma, this was changed to disseminated BCG infection involving the nasopharynx, multiple systemic lymph nodes, and brain. A novel mutation (designated D311E) in the NEMO gene, located in the NEMO ubiquitin-binding (NUB) domain, was identified as the underlying cause of the immunodeficiency. Impaired immune responses which are characteristic of patients with NEMO deficiency were demonstrated. The patient underwent successful unrelated bone marrow transplantation at 4.9 years of age. CONCLUSION This study suggests the importance of the NUB domain in host defense against mycobacteria. The unique presenting features in our patient indicate that a hypomorphic NEMO mutation can be associated with atypical pathological findings of the epithelial tissues in patients with BCG infection.
Collapse
|
45
|
Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 2011; 29:447-91. [PMID: 21219179 DOI: 10.1146/annurev-immunol-030409-101335] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) have TIR intracellular domains that engage two main signaling pathways, via the TIR-containing adaptors MyD88 (which is not used by TLR3) and TRIF (which is used only by TLR3 and TLR4). Extensive studies in inbred mice in various experimental settings have attributed key roles in immunity to TLR- and IL-1R-mediated responses, but what contribution do human TLRs and IL-1Rs actually make to host defense in the natural setting? Evolutionary genetic studies have shown that human intracellular TLRs have evolved under stronger purifying selection than surface-expressed TLRs, for which the frequency of missense and nonsense alleles is high in the general population. Epidemiological genetic studies have yet to provide convincing evidence of a major contribution of common variants of human TLRs, IL-1Rs, or their adaptors to host defense. Clinical genetic studies have revealed that rare mutations affecting the TLR3-TRIF pathway underlie herpes simplex virus encephalitis, whereas mutations in the TIR-MyD88 pathway underlie pyogenic bacterial diseases in childhood. A careful reconsideration of the contributions of TLRs and IL-1Rs to host defense in natura is required.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
46
|
New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein. Blood 2011; 118:926-35. [PMID: 21622647 DOI: 10.1182/blood-2010-10-315234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase complex, is a critical component of the NF-κB pathway. Hypomorphic mutations in the X-linked human NEMO gene cause various forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). All known X-linked EDA-ID-causing mutations impair NEMO protein expression, folding, or both. We describe here 2 EDA-ID-causing missense mutations that affect the same residue in the CC2-LZ domain (D311N and D311G) that do not impair NEMO production or folding. Structural studies based on pull-down experiments showed a defect in noncovalent interaction with K63-linked and linear polyubiquitin chains for these mutant proteins. Functional studies on the patients' cells showed an impairment of the classic NF-κB signaling pathways after activation of 2 NEMO ubiquitin-binding-dependent receptors, the TNF and IL-1β receptors, and in the CD40-dependent NF-κB pathway. We report the first human NEMO mutations responsible for X-linked EDA-ID found to affect the polyubiquitin binding of NEMO rather than its expression and folding. These experiments demonstrate that the binding of human NEMO to polyubiquitin is essential for NF-κB activation. They also demonstrate that the normal expression and folding of NEMO do not exclude a pathogenic role for NEMO mutations in patients with EDA-ID.
Collapse
|
47
|
Kersseboom R, Brooks A, Weemaes C. Educational paper: syndromic forms of primary immunodeficiency. Eur J Pediatr 2011; 170:295-308. [PMID: 21337117 PMCID: PMC3068525 DOI: 10.1007/s00431-011-1396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/11/2011] [Indexed: 02/06/2023]
Abstract
The syndromic primary immunodeficiencies are disorders in which not only the immune system but also other organ systems are affected. Other features most commonly involve the ectodermal, skeletal, nervous, and gastrointestinal systems. Key in identifying syndromic immunodeficiencies is the awareness that increased susceptibility to infections or immune dysregulation in a patient known to have other symptoms or special features may hint at an underlying genetic syndrome. Because the extraimmune clinical features can be highly variable, it is more difficult establishing the correct diagnosis. Nevertheless, correct diagnosis at an early age is important because of the possible treatment options. Therefore, diagnostic work-up is best performed in a center with extensive expertise in this field, having immunologists and clinical geneticists, as well as adequate support from a specialized laboratory at hand. This paper provides the general pediatrician with the main clinical features that are crucial for the recognition of these syndromes.
Collapse
Affiliation(s)
- Rogier Kersseboom
- Department of Clinical Genetics, Room Ee2014, Erasmus MC Rotterdam, P.O. Box 2040, NL-3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Abstract
Inhibitor of κB kinase (IKK) gamma (IKKγ), also known as nuclear factor κB (NF-κB) essential modulator (NEMO), is a component of the IKK complex that is essential for the activation of the NF-κB pathway. The NF-κB pathway plays a major role in the regulation of the expression of genes that are involved in immune response, inflammation, cell adhesion, cell survival and development. As part of the IKK complex, IKKγ plays a regulatory role by linking the complex to upstream signalling molecules. IKKγ contains two coiled-coil regions, a leucine zipper domain and a highly conserved zinc finger domain. Mutations affecting IKKγ have been associated with X-linked hypohidrotic ectodermal dysplasia with immune deficiency (HED-ID), with the majority of these mutations affecting the C-terminal region of the protein where the zinc finger is located. The zinc finger of IKKγ is needed for NF-κB activation in a cell- and stimulus-specific manner. The major mechanism by which the zinc finger plays this role appears to be the recognition of polyubiquitinated upstream signalling intermediates. This assertion reinforces the current notion that ubiquitination plays a major role in mediating protein–protein interactions in the NF-κB signalling pathway. Because the zinc finger domain of IKKγ is very likely involved in mediating interactions with ubiquitinated proteins, investigations that look for upstream activators or inhibitors of the IKK complex that bind to and interact with the zinc finger of IKKγ are required to gain a better insight into the exact roles of this domain and into the pathogenesis of HED-ID.
Collapse
Affiliation(s)
- Amde Selassie Shifera
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Mooster JL, Cancrini C, Simonetti A, Rossi P, Di Matteo G, Romiti ML, Di Cesare S, Notarangelo L, Geha RS, McDonald DR. Immune deficiency caused by impaired expression of nuclear factor-kappaB essential modifier (NEMO) because of a mutation in the 5' untranslated region of the NEMO gene. J Allergy Clin Immunol 2010; 126:127-32.e7. [PMID: 20542322 DOI: 10.1016/j.jaci.2010.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nuclear factor-kappaB (NF-kappaB) is a key transcription factor that regulates both innate and adaptive immunity as well as ectodermal development. Mutations in the coding region of the IkappaB kinase gamma/NF-kappaB essential modifier (NEMO) gene cause X-linked ectodermal dysplasia with immunodeficiency. OBJECTIVE To determine the genetic cause of recurrent sinopulmonary infections and dysgammaglobulinemia in a patient with a normal NEMO coding sequence and his affected brother. METHODS TNF-alpha and IFN-alpha production in response to Toll-like receptor (TLR) stimulation was analyzed by ELISA, NEMO mRNA levels were measured by quantitative PCR, and NEMO protein expression was measured by Western blotting. NF-kappaB activation was assessed by nuclear translocation of p65 and luciferase reporter gene assays. RESULTS TLR-induced TNF-alpha and IFN-alpha production by PBMCs was impaired in the patient and his brother. Sequencing of the patient's NEMO gene revealed a novel mutation in the 5' untranslated region, which was also present in the brother, resulting in abnormally spliced transcripts and a 4-fold reduction in mRNA levels. NEMO protein levels in EBV transformed B cells and fibroblasts from the index patient were 8-fold lower than normal controls. NF-kappaB p65 nuclear translocation in the patient's EBV B cells after TLR7 ligation was defective. NF-kappaB-dependent luciferase gene expression in IL-1-stimulated fibroblasts from the patient was impaired. CONCLUSION This is the first description of immune deficiency resulting from low expression of a normal NEMO protein.
Collapse
Affiliation(s)
- Jana L Mooster
- Division of Immunology, Children's Hospital Boston, Boston, Mass 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Muller WJ, Jones CA, Koelle DM. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn. ACTA ACUST UNITED AC 2010; 6:38-55. [PMID: 20467462 DOI: 10.2174/157339510790231833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunologic "immaturity" is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolated skin-eye-mucous membrane infection to severe disseminated multiorgan disease, often including encephalitis. In contrast to HSV, clinically severe CMV infections early in life are usually acquired during the intrauterine period. These infections can result in a range of clinical disease, including hearing loss and neurodevelopmental delay. However, term newborns infected with CMV after delivery are generally asymptomatic, and older children and adults often acquire infection with HSV or CMV with either no or mild clinical symptoms. The reasons for these widely variable clinical presentations are not completely understood, but likely relate to developmental differences in immune responses.This review summarizes recent human and animal studies of the immunologic response of the fetus and newborn to these two infections, in comparison to the responses of older children and adults. The immunologic defense of the newborn against each virus is considered under the broader categories of (i) the placental barrier to infection, (ii) skin and mucosal barriers (including antimicrobial peptides), (iii) innate responses, (iv) humoral responses, and (v) cellular responses. A specific focus is made on recent studies of innate and cellular immunity to HSV and CMV.
Collapse
Affiliation(s)
- William J Muller
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|