1
|
Grimaldi S, Migliorini P, Puxeddu I, Rossini R, De Caterina R. Aspirin hypersensitivity: a practical guide for cardiologists. Eur Heart J 2024; 45:1716-1726. [PMID: 38666370 DOI: 10.1093/eurheartj/ehae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
Aspirin has been known for a long time and currently stays as a cornerstone of antithrombotic therapy in cardiovascular disease. In patients with either acute or chronic coronary syndromes undergoing percutaneous coronary intervention aspirin is mandatory in a dual antiplatelet therapy regimen for prevention of stent thrombosis and/or new ischaemic events. Aspirin is also currently a first-option antithrombotic therapy after an aortic prosthetic valve replacement and is occasionally required in addition to oral anticoagulants after implantation of a mechanical valve. Presumed or demonstrated aspirin hypersensitivity is a main clinical problem, limiting the use of a life-saving medication. In the general population, aspirin hypersensitivity has a prevalence of 0.6%-2.5% and has a plethora of clinical presentations, ranging from aspirin-exacerbated respiratory disease to anaphylaxis. Although infrequent, when encountered in clinical practice aspirin hypersensitivity poses for cardiologists a clinical dilemma, which should never be trivialized, avoiding-as much as possible-omission of the drug. We here review the epidemiology of aspirin hypersensitivity, provide an outline of pathophysiological mechanisms and clinical presentations, and review management options, starting from a characterization of true aspirin allergy-in contrast to intolerance-to suggestion of desensitization protocols.
Collapse
Affiliation(s)
- Silvia Grimaldi
- Postgraduate School of Cardiology, University of Pisa and Cardiovascular Division, Pisa University Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Paola Migliorini
- Postgraduate School of Clinical Immunology, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Postgraduate School of Clinical Immunology, University of Pisa, Pisa, Italy
| | - Roberta Rossini
- Cardiology Division, S. Croce e Carle Hospital, Cuneo, Italy
| | - Raffaele De Caterina
- Postgraduate School of Cardiology, University of Pisa and Cardiovascular Division, Pisa University Hospital, Via Paradisa 2, 56124 Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013 Città S. Angelo, Pescara, Italy
| |
Collapse
|
2
|
Kleniewska P, Kopa-Stojak PN, Hoffmann A, Pawliczak R. The potential immunomodulatory role of the gut microbiota in the pathogenesis of asthma: an in vitro study. Sci Rep 2023; 13:19721. [PMID: 37957277 PMCID: PMC10643691 DOI: 10.1038/s41598-023-47003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to investigate the influence of Bacteroides vulgatus (BV), Clostridium perfringens (CP), Parabacteroides distasonis (PD) and Ruminococcus albus (RA) lysates on secretion of selected cytokines by PBMC, MDM and HT-29 cells, as well as to determine the potential mechanisms of their action in the development of asthma. Enzyme-linked immunosorbent assays were used to analyze the effect of BV, CP, PD and RA lysates on the secretion of IL-1β, IL-6, IL-10 and TNF-α by human PBMC, MDM and HT-29 cells. BV and CP lysates significantly lowered IL-1β secretion by MDM vs. control (p < 0.05 and p < 0.001 respectively) but only at a dose of 400 µg lysate. The secretions of IL-6 by PBMC and MDM were elevated significantly above control values (p < 0.05) after administration of CP and PD lysates. BV, CP and PD lysates (100 µg) significantly increased IL-10 secretion by PBMC vs. control (p < 0.05). CP, PD and RA lysates (400 µg) significantly increased IL-10 secretion by MDM vs. control (p < 0.001). BV lysate (400 µg) also significantly increased IL-10 secretion by MDM as compared to control (p < 0.05). In PBMC and MDM, the production levels of the anti-inflammatory cytokine were increased by all the bacterial lysates used in a dose-dependent manner.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Arkadiusz Hoffmann
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, bldg 2, Rm 177, 90-752, Lodz, Poland.
| |
Collapse
|
3
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
4
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
5
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Theofani E, Semitekolou M, Samitas K, Mais A, Galani IE, Triantafyllia V, Lama J, Morianos I, Stavropoulos A, Jeong S, Andreakos E, Razani B, Rovina N, Xanthou G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022; 77:2131-2146. [PMID: 35038351 DOI: 10.1111/all.15221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND NLRP3-driven inflammatory responses by circulating and lung-resident monocytes are critical drivers of asthma pathogenesis. Autophagy restrains NLRP3-induced monocyte activation in asthma models. Yet, the effects of autophagy and its master regulator, transcription factor EB (TFEB), on monocyte responses in human asthma remain unexplored. Here, we investigated whether activation of autophagy and TFEB signaling suppress inflammatory monocyte responses in asthmatic individuals. METHODS Peripheral blood CD14+ monocytes from asthmatic patients (n = 83) and healthy controls (n = 46) were stimulated with LPS/ATP to induce NLRP3 activation with or without the autophagy inducer, rapamycin. ASC specks, caspase-1 activation, IL-1β and IL-18 levels, mitochondrial function, ROS release, and mTORC1 signaling were examined. Autophagy was evaluated by LC3 puncta formation, p62/SQSTM1 degradation and TFEB activation. In a severe asthma (SA) model, we investigated the role of NLRP3 signaling using Nlrp3-/- mice and/or MCC950 administration, and the effects of TFEB activation using myeloid-specific TFEB-overexpressing mice or administration of the TFEB activator, trehalose. RESULTS We observed increased NLRP3 inflammasome activation, concomitant with impaired autophagy in circulating monocytes that correlated with asthma severity. SA patients also exhibited mitochondrial dysfunction and ROS accumulation. Autophagy failed to inhibit NLRP3-driven monocyte responses, due to defective TFEB activation and excessive mTORC1 signaling. NLRP3 blockade restrained inflammatory cytokine release and linked airway disease. TFEB activation restored impaired autophagy, attenuated NLRP3-driven pulmonary inflammation, and ameliorated SA phenotype. CONCLUSIONS Our studies uncover a crucial role for TFEB-mediated reprogramming of monocyte inflammatory responses, raising the prospect that this pathway can be therapeutically harnessed for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 7th Respiratory Clinic and Asthma Center of the ‘Sotiria’ Athens Chest Hospital Athens Greece
| | - Annie Mais
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioanna E. Galani
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Joanna Lama
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Athanasios Stavropoulos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Se‐Jin Jeong
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Babak Razani
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
- John Cochran VA Medical Center St. Louis Missouri USA
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| |
Collapse
|
7
|
Shen X, Zhang H, Xie H, Chen L, Li S, Zheng J, Chai R, Wang Z, Zang Y, He S. Reduced CCR6 +IL-17A +Treg Cells in Blood and CCR6-Dependent Accumulation of IL-17A +Treg Cells in Lungs of Patients With Allergic Asthma. Front Immunol 2021; 12:710750. [PMID: 34497608 PMCID: PMC8419235 DOI: 10.3389/fimmu.2021.710750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human regulatory T (Treg) cells play a central role in controlling allergic inflammation in the airways. A reduced number of peripheral Treg cells and decreased suppressive function have been previously reported in the pathogenesis of allergic asthma. However, the characteristic role of specific Treg cell subsets and their mechanisms in the pathogenesis of allergic asthma remain unclear. In this study, we examined the proportion of different Treg cell subsets in both healthy subjects and patients with allergic asthma using flow cytometry and single-cell RNA sequencing. The migration function of the cells was compared using cell sorting and Transwell experiments. Furthermore, two allergen-challenged mouse models and a cell transfer experiment were used to examine the role of these Treg subsets. We found that the proportion of CD25+Foxp3+CD127- Treg cells in the peripheral blood of patients with allergic asthma was lower than in those of healthy subjects. Furthermore, the circulating Treg cells expressed lower levels of CCR6 and IL-17 compared with healthy subjects. The chemokine from the airway mucosa, CCL20, was abundantly expressed, and Transwell experiments further proved that this chemokine promoted CCR6+ Treg cell migration in vitro. A mouse model induced by house dust mite (HDM) revealed that the number of CCR6+ Treg cells in the lung tissue increased remarkably. The incidence of allergic asthma may be related to an increase in Treg cells secreting IL-17 in the lung tissue. Recruited CCR6+ Treg cells are likely to differentiate into Th17-like cells under the Th17 environment present in the lungs. IL-17 derived from Th17-like cells could be associated with the pathology of allergic asthma by promoting Th17 responses, thereby favoring HDM-induced asthma exacerbations.
Collapse
Affiliation(s)
- Xiaokun Shen
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huiyun Zhang
- Institute of Translation Medicine, Shenyang Medical College, Shenyang, China
| | - Hua Xie
- People's Liberation Army (PLA) Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Liping Chen
- Respiratory Medicine Department, Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Shinan Li
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junjuan Zheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ruonan Chai
- People's Liberation Army (PLA) Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Zhao Wang
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanyan Zang
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shaoheng He
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Institute of Translation Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
8
|
Zhou Y, Xue Y, Bao A, Han L, Bao W, Xia C, Tian X, Zhang M. Effect of Vitamin D Deficiency and Supplementation in Lactation and Early Life on Allergic Airway Inflammation and the Expression of Autophagy-Related Genes in an Ovalbumin Mouse Model. J Inflamm Res 2021; 14:4125-4141. [PMID: 34466017 PMCID: PMC8403027 DOI: 10.2147/jir.s321642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Objective Vitamin D is involved in various physiological and pathological processes, including inflammation and autophagy. We aimed to investigate the effects of dietary vitamin D deficiency or supplementation initiated in lactation and early life on inflammation and autophagy in an ovalbumin (OVA) mouse model. Methods Female BALB/c were fed with vitamin D-deficient, sufficient or supplemented diets throughout lactation and their offspring followed the same diet after weaning. Offspring were then sensitized and challenged with OVA, airway resistance (RL) was measured, and their serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. Alveolar macrophages (AMs) were isolated from lung tissue and cultured with different concentrations of 1,25(OH)2D3. The expressions of autophagy-related (ATG) proteins including light-chain 3 (LC3), Beclin-1, and ATG5, and NF-κB p65 in lung tissue and AMs were measured. Results OVA sensitization and challenge induced dramatic allergic airway inflammation and higher RL in the vitamin D-deficient group compared with vitamin D-sufficient or the supplemented group. The expression of ATGs including LC3, Beclin-1, and ATG5, and NF-κB p65 in lung tissue in the vitamin D-deficient OVA-mediated group was increased compared with vitamin D-supplemented OVA-mediated group. There was correlation between the expression of LC3 mRNA and inflammatory cell numbers and cytokines in BALF. In vitro, 1,25(OH)2D3 also regulated the expression of LC3, Beclin-1, ATG5, and NF-κB p65 mRNA in AMs in a time- and dose-dependent manner. Conclusion Deficiency of vitamin D in early life may aggravate allergic airway inflammation, and maintaining sufficient vitamin D during early life is necessary for lung health. Vitamin D may modulate autophagy in lungs of OVA sensitized/challenged mice, thus playing a protective role in OVA-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Chao Xia
- Department of Gerontology, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| |
Collapse
|
9
|
Theofani E, Xanthou G. Autophagy: A Friend or Foe in Allergic Asthma? Int J Mol Sci 2021; 22:ijms22126314. [PMID: 34204710 PMCID: PMC8231495 DOI: 10.3390/ijms22126314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a major self-degradative process through which cytoplasmic material, including damaged organelles and proteins, are delivered and degraded in the lysosome. Autophagy represents a dynamic recycling system that produces new building blocks and energy, essential for cellular renovation, physiology, and homeostasis. Principal autophagy triggers include starvation, pathogens, and stress. Autophagy plays also a pivotal role in immune response regulation, including immune cell differentiation, antigen presentation and the generation of T effector responses, the development of protective immunity against pathogens, and the coordination of immunometabolic signals. A plethora of studies propose that both impaired and overactive autophagic processes contribute to the pathogenesis of human disorders, including infections, cancer, atherosclerosis, autoimmune and neurodegenerative diseases. Autophagy has been also implicated in the development and progression of allergen-driven airway inflammation and remodeling. Here, we provide an overview of recent studies pertinent to the biology of autophagy and molecular pathways controlling its activation, we discuss autophagy-mediated beneficial and detrimental effects in animal models of allergic diseases and illuminate new advances on the role of autophagy in the pathogenesis of human asthma. We conclude contemplating the potential of targeting autophagy as a novel therapeutic approach for the management of allergic responses and linked asthmatic disease.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- 1st Department of Respiratory Medicine, “Sotiria” Regional Chest Diseases Hospital, Medical School, National Kapodistrian University of Athens, 11547 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- Correspondence: ; Tel.: +30-210-65-97-336
| |
Collapse
|
10
|
Morianos I, Semitekolou M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21217930. [PMID: 33114551 PMCID: PMC7663753 DOI: 10.3390/ijms21217930] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by airway hyperresponsiveness (AHR), chronic airway inflammation, and excessive T helper (Th) type 2 immune responses against harmless airborne allergens. Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system that act as a bridge between innate and adaptive immunity. Pertinent to allergic asthma, distinct DC subsets are known to play a central role in initiating and maintaining allergen driven Th2 immune responses in the airways. Nevertheless, seminal studies have demonstrated that DCs can also restrain excessive asthmatic responses and thus contribute to the resolution of allergic airway inflammation and the maintenance of pulmonary tolerance. Notably, the transfer of tolerogenic DCs in vivo suppresses Th2 allergic responses and protects or even reverses established allergic airway inflammation. Thus, the identification of novel DC subsets that possess immunoregulatory properties and can efficiently control aberrant asthmatic responses is critical for the re-establishment of tolerance and the amelioration of the asthmatic disease phenotype.
Collapse
|
11
|
Kim SR, Park KH, Son NH, Moon J, Park HJ, Kim K, Park JW, Lee JH. Application of Impulse Oscillometry in Adult Asthmatic Patients With Preserved Lung Function. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:832-843. [PMID: 32638563 PMCID: PMC7346993 DOI: 10.4168/aair.2020.12.5.832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/04/2020] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE It is difficult to assess airway obstruction using spirometry in adult asthmatic patients with preserved lung function. Impulse oscillometry (IOS) can detect not only airway resistance but also reactance. Therefore, IOS may be useful in assessing pulmonary function in such patients. We investigated the applicability of IOS for asthma patients with preserved lung function. METHODS Between 2015 and 2018, 1,248 adult asthmatic patients suspected of having asthma who visited the Allergy and Asthma Center of Severance Hospital underwent both spirometry and IOS. Consequently, 784 patients had asthma, 111 had chronic obstructive lung disease (COPD) or asthma-COPD overlap, and 7 had parenchymal lung disease. The remaining 346 patients had chronic cough without underlying lung or airway disease. Among the 784 asthmatic patients, 191 with decreased lung function (predicted forced expiratory volume in 1 second [FEV1] < 80%) were excluded. Propensity score matching was performed to adjust baseline characteristics between 346 non-asthmatic and 593 asthmatic patients with preserved lung function. Subsequently, we compared the spirometry and IOS parameters between the 329 asthmatic and 329 non-asthmatic patients. RESULTS Multiple logistic regression analysis showed that the area of reactance (AX) was associated with asthma with preserved lung function. In receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of AX (AUC = 0.6823) for asthma was not significantly different from that of FEV1 (AUC = 0.6758). However, the AUC of a combination of AX and FEV1 (AUC = 0.7437) for asthma was significantly higher than that of FEV1 alone. The cutoff value of AX was 0.51 kPa/L in univariate ROC analysis. CONCLUSIONS AX is associated with adult asthma with preserved lung function. Performing spirometry together with IOS is more beneficial than performing spirometry alone for diagnosing asthma in adult patients with preserved lung function.
Collapse
Affiliation(s)
- Sung Ryeol Kim
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Nak Hoon Son
- Data Science Team(Biostatistician), Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Jinyeong Moon
- FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungchul Kim
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
FEV 1 decline in relation to blood eosinophils and neutrophils in a population-based asthma cohort. World Allergy Organ J 2020; 13:100110. [PMID: 32206161 PMCID: PMC7082214 DOI: 10.1016/j.waojou.2020.100110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The relationship between lung function decline and eosinophils and neutrophils has important therapeutic implications among asthmatics, but it has rarely been studied in large cohort studies. Objective The aim is to study the relationship between blood eosinophils and neutrophils and FEV1 decline in a long-term follow-up of a population-based adult asthma cohort. Methods In 2012–2014, an adult asthma cohort was invited to a follow-up including spirometry, blood sampling, and structured interviews, and n = 892 participated (55% women, mean age 59 y, 32–92 y). Blood eosinophils, neutrophils and FEV 1 decline were analyzed both as continuous variables and divided into categories with different cut-offs. Regression models adjusted for smoking, exposure to vapors, gas, dust, or fumes (VGDF), use of inhaled and oral corticosteroids, and other possible confounders were utilized to analyze the relationship between eosinophils and neutrophils at follow-up and FEV1 decline. Results The mean follow-up time was 18 years, and the mean FEV 1 decline was 27 ml/year. The annual FEV1 decline was related to higher levels of both blood eosinophils and neutrophils at follow-up, but only the association with eosinophils remained when adjusted for confounders. Further, the association between FEV1 decline and eosinophils was stronger among those using ICS. With EOS <0.3 × 109/L as reference, a more rapid decline in FEV1 was independently related to EOS ≥0.4 × 109/L in adjusted analyses. Conclusions and clinical relevance Besides emphasizing the importance of smoking cessation and reduction of other harmful exposures, our real-world results indicate that there is an independent relationship between blood eosinophils and FEV1 decline among adults with asthma.
Collapse
Key Words
- ANOVA, Analysis of variance
- ATS, American Thoracic Society
- Asthma
- BMI, Body mass index
- Cohort
- ECRHS, European Community Respiratory Health Survey
- EOS, Eosinophils
- ERS, European Respiratory Society
- Eosinophils
- FEV1
- FEV1, Forced Expiratory Volume in 1 s
- FEV1pp, FEV1 percent of predicted
- FVC, Forced Expiratory Volume
- GLI, Global Lung function Initiative
- ICS, Inhaled corticosteroids
- IgE, Immunoglobulin E
- L, Liters
- Ml, Milliliters
- N, Number
- NEU, Neutrophils
- Neutrophils
- OCS, Oral corticosteroids
- OLIN, Obstructive Lung Disease in Northern Sweden
- OLS, Ordinary Least Squares
- VGDF, Vapors, gas, dust or fumes
Collapse
|
13
|
Xiong Y, Li B, Zhang Y, Shi F, Qiu C, Wang L, Wang J, Le Y, Du Y, Yao C, Li S, Liu W, Chen D, Feng M. Expression of herpesvirus entry mediator gene as a potential biomarker for disease severity in patients with persistent asthma. J Asthma 2020; 58:717-724. [PMID: 32045312 DOI: 10.1080/02770903.2020.1729382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Herpes virus entry mediator (HVEM) is a costimulatory molecule, and has been proved to play an important role in airway inflammatory and remodeling processes of asthma. We aimed to investigate the expression of HVEM gene in patients with asthma as a means of assessing disease severity.Methods: This study was carried out on 59 subjects, 16 patients with mild persistent asthma, 11 patients with moderate persistent asthma, 13 patients with severe persistent asthma, and 19 age and gender matched healthy controls. The HVEM mRNA expressions of all subjects were determined by real time PCR. Correlations between HVEM mRNA expression and fractional exhaled nitric oxide (FeNO), pulmonary function test values, total blood white cell count and differential, total immunoglobulin E (IgE) level, and Asthma Control Test (ACT) score were analyzed, respectively. The discrimination abilities of HVEM mRNA between different groups were tested using receiver operating characteristics (ROC) curve analyses.Results: This study showed the expressions of HVEM mRNA were significantly higher in the patients with severe and moderate persistent asthma than in patients with mild persistent asthma and healthy subjects (2.97 ± 1.23 vs. 1.17 ± 0.42 vs. 0.62 ± 0.38 vs. 0.46 ± 0.18/NAPDH, p < 0.001), but there was no significant difference between patients with mild persistent asthma and health controls (0.62 ± 0.38 vs. 0.46 ± 0.18/NAPDH, p = 0.557). HVEM mRNA expression at cut off point [1.01/NAPDH, area under the ROC curve (AUC) = 0.99] is sufficient to discriminate severe patients from mild-to-moderate patients, and at cut off point (0.93/NAPDH, AUC = 0.91) for discrimination of moderate-to-severe patients from mild ones, while at cut off point (0.76/NAPDH, AUC = 0.75) for discrimination of asthmatic patients from controls. Furthermore, HVEM mRNA expression was positively correlated with FeNO level (r = 0.524, p = 0.015), and total lymphocyte count (r = 0.426, p = 0.017) in patients with persistent asthma.Conclusions: HVEM gene expressions can be used as a potential biomarker for evaluating the severity of patients with persistent asthma.
Collapse
Affiliation(s)
- Yi Xiong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Binbin Li
- Emergency Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Yidan Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fei Shi
- Emergency Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Chen Qiu
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Lingwei Wang
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Jin Wang
- Emergency Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Ying Le
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Yujie Du
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Can Yao
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Sinian Li
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Wenwen Liu
- Emergency Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Dandan Chen
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| | - Mengjie Feng
- Respiratory Department, Shenzhen Institute of Respiratory Diseases, Jinan University, The Second Clinical College, Shenzhen, China
| |
Collapse
|
14
|
Theofani E, Semitekolou M, Morianos I, Samitas K, Xanthou G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med 2019; 8:jcm8101615. [PMID: 31590215 PMCID: PMC6833007 DOI: 10.3390/jcm8101615] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Severe asthma (SA) is a chronic lung disease characterized by recurring symptoms of reversible airflow obstruction, airway hyper-responsiveness (AHR), and inflammation that is resistant to currently employed treatments. The nucleotide-binding oligomerization domain-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome is an intracellular sensor that detects microbial motifs and endogenous danger signals and represents a key component of innate immune responses in the airways. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18 as well as pyroptosis. Accumulating evidence proposes that NLRP3 activation is critically involved in asthma pathogenesis. In fact, although NLRP3 facilitates the clearance of pathogens in the airways, persistent NLRP3 activation by inhaled irritants and/or innocuous environmental allergens can lead to overt pulmonary inflammation and exacerbation of asthma manifestations. Notably, administration of NLRP3 inhibitors in asthma models restrains AHR and pulmonary inflammation. Here, we provide an overview of the pathophysiology of SA, present molecular mechanisms underlying aberrant inflammatory responses in the airways, summarize recent studies pertinent to the biology and functions of NLRP3, and discuss the role of NLRP3 in the pathogenesis of asthma. Finally, we contemplate the potential of targeting NLRP3 as a novel therapeutic approach for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Konstantinos Samitas
- 7th Respiratory Clinic and Asthma Center, 'Sotiria' Athens Chest Hospital, 11527 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
15
|
Ge Y, Cheng R, Sun S, Zhang S, Li L, Jiang J, Yang C, Xuan X, Chen J. Fangxiao Formula alleviates airway inflammation and remodeling in rats with asthma via suppression of transforming growth factor-β/Smad3 signaling pathway. Biomed Pharmacother 2019; 119:109429. [PMID: 31505422 DOI: 10.1016/j.biopha.2019.109429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a common obstructive airway disease characterized by inflammation and remodeling with a progressive decline in lung function. Fangxiao Formula (FXF) is an herbal medicine that has achieved significant clinical benefits toward asthma patients, but the relevant mechanism has not yet been clarified. The aim of this study was to determine the inhibitory effects of FXF on airway inflammation and remodeling, and investigate the activities of TGF‑β/Smads signaling pathway in the rat asthma model. Rats were sensitized by ovalbumin (OVA) for six weeks to establish the asthma experimental model. OVA-challenged animals were randomly divided into 5 groups and received different concentrations of FXF or dexamethasone. The animals in blank control group received saline only. Lung tissues were collected and analyzed for determining the inflammatory cells infiltration, HE and PAS staining, airway wall thickness and collagen deposition. The productions of inflammatory cytokine productions were analyzed by ELISA in the bronchoalveolar lavage (BAL) fluid. Immunohistochemical analysis was performed to measure the expression of α-SMA and PCNA in lung tissue after the treatment of FXF. The levels of TGF-β were assessed by both immunohistology and western blotting, and the expression of p-Smad2/3 proteins were determined by western blotting analysis. Our results indicated that FXF attenuated the infiltration of inflammatory cells, decreased the production of Th2 cytokines and simultaneously increased the levels of Th1 cytokine in the asthma rat model. In addition, FXF reduced allergen-induced increased airway wall thickness, goblet cell hyperplasia and collagen deposition. Furthermore, the expression levels of TGF-β and p-Smad3 were obviously reduced after the treatment of FXF. These results indicate that FXF alleviates airway inflammation and remodeling by restoring the balance of Th1/Th2 cytokines and the TGF-β/Smad-3 pathway, therefor providing potential therapeutic approach for asthmatic patients.
Collapse
Affiliation(s)
- Yuqing Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rubin Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siya Sun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Saijun Zhang
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lan Li
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianping Jiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxi Yang
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobo Xuan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jian Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
16
|
Zainab R, Akram M, Daniyal M, Riaz M. Awareness and Current Therapeutics of Asthma. Dose Response 2019; 17:1559325819870900. [PMID: 31523203 PMCID: PMC6728691 DOI: 10.1177/1559325819870900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction: Asthma is a serious allergic disorder of the respiratory system. It affects
about 300 million people worldwide. This has a great burden on medical
treatment. Several medicines are available, but they have many serious side
effects. Therefore, there is a need to search for a new therapeutic agent
with no or minimal side effects while most economical for patients. In folk
medicine, antiasthmatics herbal medicine has been used and showed potential
therapeutic antiasthmatic efficacy due to the presence of potential
bioactive compounds. Methods: Different databases were searched (ie, Embase, PubMed, CBM, AMED, and
CINAHL). We have reviewed the published data of the last 20 years. We used
MeSH terms “asthma” herbal treatment of asthma, allopathic treatment of
asthma, and treatment strategies for asthma. The traditional medicine was
compared with modern medicine and the same pharmacotherapies alone or with
placebo. The methodology was evaluated by using the GRADE summary of Finding
tables and Cochrane Risk of Bias Tool. Results: There have been some clear-cut indications toward the recognition of further
molecular and cellular mechanisms of asthma. Most of them recommend a
further target for treatment. The novel procedures, biologics, and
pharmaceuticals are evaluated. Both allopathic and herbal treatments of
asthma are effective. Due to none or lesser side effects, herbal medicines
are safer than conventional medicine. Conclusion: The preliminary documentation of the plants discussed in the review show the
presence of several secondary metabolites that are responsible for the
management of asthma and its relevant complications. Further research
studies are needed to identify the bioactive compounds from these plants
that have potential efficacy to cure asthma, and clinically based studies
are needed to search for a complete cure for this disease.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
17
|
Samuel CS, Royce SG, Hewitson TD, Denton KM, Cooney TE, Bennett RG. Anti-fibrotic actions of relaxin. Br J Pharmacol 2017; 174:962-976. [PMID: 27250825 PMCID: PMC5406285 DOI: 10.1111/bph.13529] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Fibrosis refers to the hardening or scarring of tissues that usually results from aberrant wound healing in response to organ injury, and its manifestations in various organs have collectively been estimated to contribute to around 45-50% of deaths in the Western world. Despite this, there is currently no effective cure for the tissue structural and functional damage induced by fibrosis-related disorders. Relaxin meets several criteria of an effective anti-fibrotic based on its specific ability to inhibit pro-fibrotic cytokine and/or growth factor-mediated, but not normal/unstimulated, fibroblast proliferation, differentiation and matrix production. Furthermore, relaxin augments matrix degradation through its ability to up-regulate the release and activation of various matrix-degrading matrix metalloproteinases and/or being able to down-regulate tissue inhibitor of metalloproteinase activity. Relaxin can also indirectly suppress fibrosis through its other well-known (anti-inflammatory, antioxidant, anti-hypertrophic, anti-apoptotic, angiogenic, wound healing and vasodilator) properties. This review will outline the organ-specific and general anti-fibrotic significance of exogenously administered relaxin and its mechanisms of action that have been documented in various non-reproductive organs such as the cardiovascular system, kidney, lung, liver, skin and tendons. In addition, it will outline the influence of sex on relaxin's anti-fibrotic actions, highlighting its potential as an emerging anti-fibrotic therapeutic. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - S G Royce
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - T D Hewitson
- Department of NephrologyRoyal Melbourne HospitalMelbourneVic.Australia
| | - K M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVic.Australia
| | - T E Cooney
- University of Pittsburgh Medical Centre (UPMC) HamotEriePAUSA
| | - R G Bennett
- Research Service 151VA Nebraska‐Western Iowa Health Care SystemOmahaNEUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
18
|
Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, Mogas A, Harris JM, Arron JR, Laprise C, Hamid Q. Increased Autophagy-Related 5 Gene Expression Is Associated with Collagen Expression in the Airways of Refractory Asthmatics. Front Immunol 2017; 8:355. [PMID: 28424691 PMCID: PMC5372794 DOI: 10.3389/fimmu.2017.00355] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis, particularly excessive collagen deposition, presents a challenge for treating asthmatic individuals. At present, no drugs can remove or reduce excessive collagen in asthmatic airways. Hence, the identification of pathways involved in collagen deposition would help to generate therapeutic targets to interfere with the airway remodeling process. Autophagy, a cellular degradation process, has been shown to be dysregulated in various fibrotic diseases, and genetic association studies in independent human populations have identified autophagy-related 5 (ATG5) to be associated with asthma pathogenesis. Hence, the dysregulation of autophagy may contribute to fibrosis in asthmatic airways. OBJECTIVE This study aimed to determine if (1) collagen deposition in asthmatic airways is associated with ATG5 expression and (2) ATG5 protein expression is associated with asthma per se and severity. METHODS Gene expression of transforming growth factor beta 1, various asthma-related collagen types [collagen, type I, alpha 1; collagen, type II, alpha 1; collagen, type III, alpha 1; collagen, type V, alpha 1 (COL5A1) and collagen, type V, alpha 2], and ATG5 were measured using mRNA isolated from bronchial biopsies of refractory asthmatic subjects and assessed for pairwise associations. Protein expression of ATG5 in the airways was measured and associations were assessed for asthma per se, severity, and lung function. MAIN RESULTS In refractory asthmatic individuals, gene expression of ATG5 was positively associated with COL5A1 in the airways. No association was detected between ATG5 protein expression and asthma per se, severity, and lung function. CONCLUSION AND CLINICAL RELEVANCE Positive correlation between the gene expression patterns of ATG5 and COL5A1 suggests that dysregulated autophagy may contribute to subepithelial fibrosis in the airways of refractory asthmatic individuals. This finding highlights the therapeutic potential of ATG5 in ameliorating airway remodeling in the difficult-to-treat refractory asthmatic individuals.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - David F Choy
- Biomarker Discovery - OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Fazila Chouiali
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Severine Audusseau
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Andrea Mogas
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jeffrey M Harris
- OMNI Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Laprise
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Bae JS, Kim JH, Kim EH, Mo JH. The Role of IL-17 in a Lipopolysaccharide-Induced Rhinitis Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:169-176. [PMID: 28102062 PMCID: PMC5266111 DOI: 10.4168/aair.2017.9.2.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/30/2022]
Abstract
Purpose Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria and important for pro-inflammatory mediators. This study aimed to establish a rhinitis model using ovalbumin (OVA) and LPS in order to evaluate the role of interleukin (IL)-17 in the pathogenesis of an LPS-induced non-eosionophilic rhinitis model. Methods Mice were divided into 4 groups and each group consisted of 10 mice (negative control group, allergic rhinitis model group, 1-µg LPS treatment group, and 10-µg LPS treatment group). BALB/c mice were sensitized with OVA and 1 or 10 µg of LPS, and challenged intranasally with OVA. Multiple parameters of rhinitis were also evaluated to establish the LPS-induced rhinitis model. IL-17 knockout mice were used to check if the LPS-induced rhinitis model were dependent on IL-17. Eosinophil and neutrophil infiltration, and mRNA and protein expression profiles of cytokine in nasal mucosa or spleen cell culture were evaluated using molecular, biochemical, histopathological, and immunohistological methods. Results In the LPS-induced rhinitis model, neutrophil infiltration increased in the nasal mucosa, and systemic and nasal IL-17 and interferon-gamma (IFN-γ) levels also increased as compared with the OVA-induced allergic rhinitis model. These findings were LPS-dose-dependent. In IL-17 knockout mice, those phenotypes (neutrophil infiltration, IL-17, and IFN-γ) were reversed, showing IL-17 dependency of LPS-induced rhinitis. The expression of vascular endothelial growth factor (VEGF), an important mediator for inflammation and angiogenesis, decreased in IL-17 knockout mice, showing the relationship between IL-17 and VEGF. Conclusions This study established an LPS-induced rhinitis model dependent on IL-17, characterized by neutrophil infiltration and increased expression of IL-17.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Department of Premedical Course, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.
| |
Collapse
|
20
|
Matsuda A. A novel function of IL-33: suppression of innate antiviral immunity. J Thorac Dis 2016; 8:E1364-E1366. [PMID: 27867629 DOI: 10.21037/jtd.2016.09.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
21
|
Diao X, Wang J, Zhu H, He B. Overexpression of programmed cell death 5 in a mouse model of ovalbumin-induced allergic asthma. BMC Pulm Med 2016; 16:149. [PMID: 27846830 PMCID: PMC5109699 DOI: 10.1186/s12890-016-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Programmed cell death 5 (PDCD5) was first identified as an apoptosis-promoting protein and involved in some autoimmune diseases and inflammatory processes. Our previous study demonstrated greater expression of serum PDCD5 in asthmatic patients than controls. This study aimed to further explore the significance of PDCD5 in mice with induced allergic asthma. Methods We divided 16 female mice into 2 groups: control (n = 8) and allergen (ovalbumin, OVA)-challenged mice (n = 8). The modified ovalbumin inhalation method was used to generate the allergic asthma mouse model, and the impact of OVA was assessed by histology of lung tissue and morphometry. The number of cells in bronchoalveolar lavage fluid (BALF) was detected. Pulmonary function was measured by pressure sensors. PDCD5 and active caspase-3 levels were detected. Results The expression of PDCD5 was higher with OVA challenge than for controls (p < 0.05). PDCD5 level was correlated with number of inflammatory cells in BALF and lung function. Moreover, active caspase-3 level was increased in the OVA-challenged mice (p < 0.001) and correlated with PDCD5 level (p = 0.000). Conclusions These data demonstrate an association between level of PDCD5 and asthma severity and indicate that PDCD5 may play a role in allergic asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0317-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolin Diao
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Juan Wang
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Hong Zhu
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
22
|
O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, Larsson B, Cullberg M, Nair P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. THE LANCET RESPIRATORY MEDICINE 2016; 4:797-806. [PMID: 27574788 DOI: 10.1016/s2213-2600(16)30227-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Airway neutrophilic inflammation is a pathological feature in some patients with severe asthma. Stimulation of the chemokine receptor CXCR2 mediates neutrophil migration into the airways. We investigated the safety and efficacy of AZD5069, a CXCR2 antagonist, as an add-on therapy in patients with uncontrolled severe asthma. METHODS In this multicentre, randomised, double-blind, placebo-controlled, dose-finding trial, we enrolled patients aged 18 years or older with uncontrolled asthma despite combination therapy with long-acting β2 agonists and medium-dose or high-dose inhaled corticosteroids. Patients were randomised in a 1:1:1:1 ratio via an interactive voice-response or web-response system to receive 5, 15, or 45 mg oral AZD5069 twice daily or matched placebo. The primary endpoint was the number of severe asthma exacerbations in 6 months. Safety was assessed in the 6-month treatment period and an optional 6-month safety extension. This trial is registered with ClinicalTrials.gov, number NCT01704495. FINDINGS 640 patients with a mean age of 52 (SD 11·8) years were randomised, 478 to receive AZD5069 (5 mg n=160, 15 mg n=156, and 45 mg n=162) and 162 placebo. No dose of AZD5069 reduced the rate of severe exacerbations compared with placebo (rate ratio for 5 mg 1·29, 90% CI 0·79-2·11; for 15 mg 1·53, 0·95-2·46; and for 45 mg 1·56, 0·98-2·49). Treatment with AZD5069 was generally well tolerated. The most commonly reported adverse event overall was nasopharyngitis, seen in 18 (11·5%) receiving 5 mg, 13 (8·5%) receiving 15 mg, and 18 (11·2%) receiving 45 mg AZD5069, and 31 (19·5%) of those receiving placebo. INTERPRETATION Treatment with this selective CXCR2 antagonist did not reduce the frequency of severe exacerbations in patients with uncontrolled severe asthma. These findings bring into question the role of CXCR2-mediated neutrophil recruitment in the pathobiology of exacerbations in severe refractory asthma. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Schuliga M, Royce SG, Langenbach S, Berhan A, Harris T, Keenan CR, Stewart AG. The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2-Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation. Am J Respir Cell Mol Biol 2016; 54:200-9. [PMID: 26120939 DOI: 10.1165/rcmb.2014-0419oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During asthma exacerbation, plasma circulating coagulant factor X (FX) enters the inflamed airways and is activated (FXa). FXa may have an important role in asthma, being involved in thrombin activation and an agonist of protease-activated receptor-1 (PAR-1). Extracellular annexin A2 and integrins are also implicated in PAR-1 signaling. In this study, the potential role of PAR-1 in mediating the effects of FXa on human airway smooth muscle (ASM) cell cytokine production and proliferation was investigated. FXa (5-50 nM), but not FX, stimulated increases in ASM IL-6 production and cell number after 24- and 48-hour incubation, respectively (P < 0.05; n = 5). FXa (15 nM) also stimulated increases in the levels of mRNA for cytokines (IL-6), cell cycle-related protein (cyclin D1), and proremodeling proteins (FGF-2, PDGF-B, CTGF, SM22, and PAI-1) after 3-hour incubation (P < 0.05; n = 4). The actions of FXa were insensitive to inhibition by hirudin (1 U/ml), a selective thrombin inhibitor, but were attenuated by SCH79797 (100 nM), a PAR-1 antagonist, or Cpd 22 (1 μM), an inhibitor of integrin-linked kinase. The selective targeting of PAR-1, annexin A2, or β1-integrin by small interfering RNA and/or by functional blocking antibodies also attenuated FXa-evoked responses. In contrast, the targeting of annexin A2 did not inhibit thrombin-stimulated ASM function. In airway biopsies of patients with asthma, FXa and annexin A2 were detected in the ASM bundle by immunohistochemistry. These findings establish FXa as a potentially important asthma mediator, stimulating ASM function through actions requiring PAR-1 and annexin A2 and involving integrin coactivation.
Collapse
Affiliation(s)
- Michael Schuliga
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Simon G Royce
- 2 Department Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Shenna Langenbach
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Asres Berhan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Trudi Harris
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Christine R Keenan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Alastair G Stewart
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
24
|
Suurmond J, Habets KLL, Tatum Z, Schonkeren JJ, Hoen PAC', Huizinga TWJ, Laros JFJ, Toes REM, Kurreeman F. Repeated FcεRI triggering reveals modified mast cell function related to chronic allergic responses in tissue. J Allergy Clin Immunol 2016; 138:869-880. [PMID: 27033170 DOI: 10.1016/j.jaci.2016.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activation of mast cells through FcεRI plays an important role in acute allergic reactions. However, little is known about the function of mast cells in patients with chronic allergic inflammation or the effect of repeated FcεRI triggering occurring in such responses. OBJECTIVE We aimed to identify changes in mast cell function after repeated FcεRI triggering and to correlate these changes to chronic allergic responses in tissue. METHODS Human cord blood-derived mast cells were treated for 2 weeks with anti-IgE. The function of naive or treated mast cells was analyzed by means of RNA sequencing, quantitative RT-PCR, flow cytometry, and functional assays. Protein secretion was measured with ELISAs and multiplex assays. RESULTS We observed several changes in mast cell function after repeated anti-IgE triggering. Although the acute response was dampened, we identified 289 genes significantly upregulated after repeated anti-IgE. Most of these genes (84%) were not upregulated after a single anti-IgE stimulus, indicating a significantly different response mode characterized by increased antigen presentation, response to bacteria, and chemotaxis. Changes in mast cell function were related to changes in expression of the transcription factors RXRA and BATF and others. Importantly, we found a substantial overlap between genes upregulated after repeated anti-IgE triggering and genes upregulated in tissue from patients with chronic allergy, in particular those of patients with chronic rhinosinusitis. CONCLUSION Our study provides evidence for intrinsic modulation of mast cell function on repeated FcεRI-mediated activation. The overlap with gene expression in tissues is suggestive of a direct link between repeated IgE-mediated activation of mast cells and chronic allergy.
Collapse
Affiliation(s)
- Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim L L Habets
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zuotian Tatum
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris J Schonkeren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fina Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
25
|
Bao HR, Liu XJ, Li YL, Men X, Zeng XL. Sinomenine attenuates airway inflammation and remodeling in a mouse model of asthma. Mol Med Rep 2016; 13:2415-22. [PMID: 26820806 PMCID: PMC4768961 DOI: 10.3892/mmr.2016.4816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023] Open
Abstract
Asthma is an inflammatory disease that involves airway inflammation and remodeling. Sinomenine (SIN) has been demonstrated to have immunosuppressive and anti-inflammatory properties. The aim of the present study was to investigate the inhibitory effects of SIN on airway inflammation and remodeling in an asthma mouse model and observe the effects of SIN on the transforming growth factor-β1 (TGF-β1)/connective tissue growth factor (CTGF) pathway and oxidative stress. Female BALB/c mice were sensitized by repetitive ovalbumin (OVA) challenge for 6 weeks in order to develop a mouse model of asthma. OVA-sensitized animals received SIN (25, 50 and 75 mg/kg) or dexamethasone (2 mg/kg). A blank control group received saline only. The area of smooth muscle and collagen, levels of mucus secretion and inflammatory cell infiltration were evaluated 24 h subsequent to the final OVA challenge. mRNA and protein levels of TGF-β1 and CTGF were determined by reverse transcription-quantitative polymerase chain reaction and immunohistology, respectively. The indicators of oxidative stress were detected by spectrophotometry. SIN significantly reduced allergen-induced increases in smooth muscle thickness, mucous gland hypertrophy, goblet cell hyperplasia, collagen deposition and eosinophilic inflammation. The levels of TGF-β1 and CTGF mRNA and protein were significantly reduced in the lungs of mice treated with SIN. Additionally, the total antioxidant capacity was increased in lungs following treatment with SIN. The malondialdehyde content and myeloperoxidase activities in the lungs from OVA-sensitized mice were significantly inhibited by SIN. In conclusion, SIN may inhibit airway inflammation and remodeling in asthma mouse models, and may have therapeutic efficacy in the treatment of asthma.
Collapse
Affiliation(s)
- Hai-Rong Bao
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Ju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yun-Lin Li
- Department of Rheumatoid Bone, Chinese Medicine Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Xiang Men
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Li Zeng
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
26
|
High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 2016; 6:18815. [PMID: 26739898 PMCID: PMC4703978 DOI: 10.1038/srep18815] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway.
Collapse
|
27
|
Shoda T, Futamura K, Orihara K, Emi-Sugie M, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation. Allergol Int 2016; 65:21-9. [PMID: 26666487 DOI: 10.1016/j.alit.2015.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Kyoko Futamura
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kanami Orihara
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maiko Emi-Sugie
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
28
|
Progression of Irreversible Airflow Limitation in Asthma: Correlation with Severe Exacerbations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 3:759-64.e1. [PMID: 26054551 DOI: 10.1016/j.jaip.2015.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Severe exacerbations of asthma are periods of excess functional and pathological changes in the airways that have been proposed to induce airway remodeling. OBJECTIVE The objective of this study was to explore whether severe exacerbations are correlated with the decline in post-bronchodilator forced expiratory volume in 1 second (FEV1) and loss of bronchodilator reversibility (BDR). METHODS We examined the changes in FEV1 and BDR in 140 nonsmoking patients with well-controlled asthma at baseline and correlated these changes with the frequency of severe asthma exacerbations. RESULTS A 3-year follow-up assessment was completed in 128 patients. A total of 28 (21.9%) patients experienced at least 1 severe exacerbation with a mean rate of 0.16 year(-1). The exacerbation rate was significantly correlated with an annual rate of decline in FEV1 (ρ = 0.49, P < .0001). Both patients with 1 exacerbation and those with 2 or more exacerbations had greater declines in FEV1 than patients with no exacerbations (no exacerbation, 13.6 mL/year; 1 exacerbation, 41.3 mL/year; 2 or more exacerbations, 58.3 mL/year; P < .01 and P < .0001, respectively). The changes in BDR from baseline to the end of the study in patients who did or did not experience an exacerbation were -1.2% and 0.1%, respectively (P < .0005). The changes in BDR were significantly correlated with the annual rates of change in FEV1 (r = 0.40, P < .0001). CONCLUSION The occurrence of severe exacerbations of asthma is correlated with the progression of irreversible airflow limitation over time. This suggests that asthma exacerbations could have the long-term adverse consequences of structural and functional changes in the airways.
Collapse
|
29
|
Rynko AE, Fryer AD, Jacoby DB. Interleukin-1β mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol 2014; 51:494-501. [PMID: 24735073 DOI: 10.1165/rcmb.2014-0009oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory viral infections are associated with the majority of asthma attacks. Inhibitory M2 receptors on parasympathetic nerves, which normally limit acetylcholine (ACh) release, are dysfunctional after respiratory viral infection. Because IL-1β is up-regulated during respiratory viral infections, we investigated whether IL-1β mediates M2 receptor dysfunction during parainfluenza virus infection. Virus-infected guinea pigs were pretreated with the IL-1β antagonist anakinra. In the absence of anakinra, viral infection increased bronchoconstriction in response to vagal stimulation but not to intravenous ACh, and neuronal M2 muscarinic receptors were dysfunctional. Pretreatment with anakinra prevented virus-induced increased bronchoconstriction and M2 receptor dysfunction. Anakinra did not change smooth muscle M3 muscarinic receptor response to ACh, lung viral loads, or blood and bronchoalveolar lavage leukocyte populations. Respiratory virus infection decreased M2 receptor mRNA expression in parasympathetic ganglia extracted from infected animals, and this was prevented by blocking IL-1β or TNF-α. Treatment of SK-N-SH neuroblastoma cells or primary cultures of guinea pig parasympathetic neurons with IL-1β directly decreased M2 receptor mRNA, and this was not synergistic with TNF-α treatment. Treating guinea pig trachea segment with TNF-α or IL-1β in vitro increased tracheal contractions in response to activation of airway nerves by electrical field stimulation. Blocking IL-1β during TNF-α treatment prevented this hyperresponsiveness. These data show that virus-induced hyperreactivity and M2 dysfunction involves IL-1β and TNF-α, likely in sequence with TNF-α causing production of IL-1β.
Collapse
Affiliation(s)
- Abby E Rynko
- 1 Department of Molecular Microbiology and Immunology, and
| | | | | |
Collapse
|
30
|
Stewart AG, Xia YC, Harris T, Royce S, Hamilton JA, Schuliga M. Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling. Br J Pharmacol 2014; 170:1421-35. [PMID: 24111848 DOI: 10.1111/bph.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/04/2013] [Accepted: 08/27/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH Human ASM cells were incubated with plasminogen (0.5-50 μg·mL(-1) ) or plasmin (0.5-50 mU·mL(-1) ) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [(3) H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS Plasminogen (5 μg·mL(-1) )-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL(-1) ) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma.
Collapse
Affiliation(s)
- A G Stewart
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia; Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Changes in forced expiratory volume in 1 second over time in patients with controlled asthma at baseline. Respir Med 2014; 108:976-82. [PMID: 24856920 DOI: 10.1016/j.rmed.2014.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND A predominant feature of asthma is an accelerated rate of decline in forced expiratory volume in 1 s (FEV1), but data on the variability and factors associated with this change in patients with controlled asthma are largely unknown. METHODS 140 patients with controlled asthma were enrolled based on the Global Initiative for Asthma guidelines. We examined the data of a prospective analysis of the association between asthma control and change in FEV1 over time. RESULTS A 3-year follow-up assessment was completed in 128 patients. The mean rate of change in FEV1 was a decline of 22.2 mL yr(-1), with significant variation in the levels of change. The between patient standard deviation for the rate of decline was 34.1 mL yr(-1). We next classified the subjects of less than the 25th percentile as rapid decliners, and greater than the 25th percentile as non-rapid decliners. The decrease in the Asthma Control Test score over a 3-year period was higher for rapid decliners than that for non-rapid decliners (p < 0.001). The rapid decliner was more likely to be older, to have higher levels of FeNO, and to have had severe exacerbations during the study. Patients with severe exacerbations had a greater annual decline in FEV1 compared to patients with no exacerbations (-13.6 vs. -53.2 mL yr(-1), p < 0.0001). CONCLUSIONS Among patients with controlled asthma at baseline, the rate of change in FEV1 is highly variable. Severe exacerbations are strongly associated with a rapid loss of lung function.
Collapse
|
32
|
Robitaille C, Boulet LP. [Asthma in the elderly]. Rev Mal Respir 2014; 31:478-87. [PMID: 25012034 DOI: 10.1016/j.rmr.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/16/2014] [Indexed: 01/09/2023]
Abstract
Asthma is a common condition in the elderly although often confounded with chronic obstructive pulmonary disease (COPD) in this population. Asthma in the elderly seems to represent a specific phenotype characterized by more severe, but often less perceived, airway obstruction, a neutrophilic or mixed-type of airway inflammation and frequent comorbidities. Patients aged 65 years and over have an increased asthma-related morbidity and mortality compared to younger patients, probably due to difficulties in regard to diagnosis, assessment of the disease severity and treatment. Research is urgently needed to determine the optimal treatment of the aged patient. In this document we will review the state of knowledge on this topic and discuss the challenges of multidisciplinary asthma management in the elderly.
Collapse
Affiliation(s)
- C Robitaille
- Institut universitaire de cardiologie et de pneumologie de Québec, université Laval, 2725, chemin Sainte-Foy, G1V 4G5 Québec, QC, Canada
| | - L-P Boulet
- Institut universitaire de cardiologie et de pneumologie de Québec, université Laval, 2725, chemin Sainte-Foy, G1V 4G5 Québec, QC, Canada.
| |
Collapse
|
33
|
|
34
|
Schuliga M, Langenbach S, Xia YC, Qin C, Mok JSL, Harris T, Mackay GA, Medcalf RL, Stewart AG. Plasminogen-stimulated inflammatory cytokine production by airway smooth muscle cells is regulated by annexin A2. Am J Respir Cell Mol Biol 2013; 49:751-8. [PMID: 23721211 DOI: 10.1165/rcmb.2012-0404oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 μg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 μg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.
Collapse
Affiliation(s)
- Michael Schuliga
- 1 Department Pharmacol, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cimrin AH, Akpinar B, Tertemiz KC, Omeroglu G, Alpaydin AO, Ellidokuz H, Ozkaya AB, Kocturk S. Phenotype properties and status of corticosteroid resistance among patients with uncontrolled asthma. Allergol Immunopathol (Madr) 2013; 41:304-9. [PMID: 23026292 DOI: 10.1016/j.aller.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/06/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Control cannot be achieved in some asthmatics although optimal monitoring and treatment is administered. Glucocorticoid (GC) resistance is one of the reasons of poor asthma control. We aimed to investigate GC resistance by lymphocyte proliferation suppression test (LPST) in uncontrolled asthmatics. METHODS After assessing asthma control level of 77 asthmatics their treatment was adjusted upon GINA guidelines. They were followed-up for three to six months and the patients who remained uncontrolled were accepted as uncontrolled patients. Steroid resistance test (SRT) was applied to them (7-14 days oral prednisolone) and the patients who were still uncontrolled and/or had a FEV1 increase <15% after SRT were assessed as the "case group" while the remaining composed the "control group". Optimal treatment was adjusted and at the end of a follow-up period LPST was performed to both groups. RESULTS Fourteen of the case (n=22) and four (n=8) of the control groups could be evaluated by LPST. Proliferated lymphocytes were observed to be significantly suppressed in all dexamethasone concentrations in the control group (p=0.001). However, in the case group LPST was positive only at 10(-6) and 10(-4) concentrations although statistically not significant (p=0.147). There was no significant relationship between clinically GC resistance and LPST positivity (p=0.405). CONCLUSION We determined that in vitro responses to the GCs were significantly declined in the uncontrolled asthma cases. An SRT alone does not seem to be very sensitive for evaluating GC sensitivity, LPST may be performed for demonstrating GC responsiveness in asthmatic patients in addition to SRT.
Collapse
Affiliation(s)
- A H Cimrin
- Dokuz Eylul University Medical Faculty, Department of Pulmonary Diseases, Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee CC, Lai YT, Chang HT, Liao JW, Shyu WC, Li CY, Wang CN. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochem Pharmacol 2013; 86:940-9. [PMID: 23948063 DOI: 10.1016/j.bcp.2013.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023]
Abstract
The role of high-mobility group box 1 (HMGB1) in chronic allergic asthma is currently unclear. Both airway neutrophilia and eosinophilia and increase in HMGB1 expression in the lungs in our murine model of chronic asthma. Inhibition of HMGB1 expression in lung in ovalbumin (OVA)-immunized mice decreased induced airway inflammation, mucus formation, and collagen deposition in lung tissues. Analysis of the numbers of CD4(+) T helper (Th) cells in the mediastinal lymph nodes and lungs revealed that Th17 showed greater increases than Th2 cells and Th1 cells in OVA-immunized mice; further, the numbers of Th1, Th2, and Th17 cells decreased in anti-HMGB1 antibody (Ab)-treated mice. In OVA-immunized mice, TLR-2 and TLR-4 expression, but not RAGE expression, was activated in the lungs and attenuated after anti-HMGB1 Ab treatment. The results showed that increase in HMGB1 release and expression in the lungs could be an important pathological mechanism underlying chronic allergic asthma and HMGB1 might a potential therapeutic target for chronic allergic asthma.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan; Graduate Institute of Immunology, College of Medicine, China Medicine University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, College of Medicine, China Medicine University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pennino D, Bhavsar PK, Effner R, Avitabile S, Venn P, Quaranta M, Marzaioli V, Cifuentes L, Durham SR, Cavani A, Eyerich K, Chung KF, Schmidt-Weber CB, Eyerich S. IL-22 suppresses IFN-γ-mediated lung inflammation in asthmatic patients. J Allergy Clin Immunol 2013; 131:562-70. [PMID: 23174657 DOI: 10.1016/j.jaci.2012.09.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/16/2012] [Accepted: 09/27/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND IL-22 controls tissue homeostasis by both proinflammatory and anti-inflammatory effects. However, the anti-inflammatory mechanisms of IL-22 remain poorly investigated. OBJECTIVE We sought to investigate the anti-inflammatory role for IL-22 in human asthma. METHODS T-cell lines derived from lung biopsy specimens of asthmatic patients were characterized by means of flow cytometry. Human bronchial epithelial cells from healthy and asthmatic subjects were stimulated with IL-22, IFN-γ, or the combination of both cytokines. Effects of cytokine stimulation were investigated by using whole-genome analysis, ELISA, and flow cytometry. The functional consequence of cytokine stimulation was evaluated in an in vitro wound repair model and T cell-mediated cytotoxicity experiments. In vivo cytokine expression was measured by using immunohistochemistry and Luminex assays in bronchoalveolar lavage fluid of healthy and asthmatic patients. RESULTS The current study identifies a tissue-restricted antagonistic interplay of IL-22 and the proinflammatory cytokine IFN-γ. On the one hand, IFN-γ antagonized IL-22-mediated induction of the antimicrobial peptide S100A7 and epithelial cell migration in bronchial epithelial cells. On the other hand, IL-22 decreased epithelial susceptibility to T cell-mediated cytotoxicity by inhibiting the IFN-γ-induced expression of MHC-I, MHC-II, and CD54/intercellular adhesion molecule 1 molecules. Likewise, IL-22 inhibited IFN-γ-induced secretion of the proinflammatory chemokines CCL5/RANTES and CXCL10/interferon-inducible protein 10 in vitro. Consistently, the IL-22 expression in bronchoalveolar lavage fluid of asthmatic patients inversely correlated with the expression of CCL5/RANTES and CXCL10/interferon-inducible protein 10 in vivo. CONCLUSIONS IL-22 might control the extent of IFN-γ-mediated lung inflammation and therefore play a tissue-restricted regulatory role.
Collapse
Affiliation(s)
- Davide Pennino
- ZAUM-Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cayetano KS, Chan AL, Albertson TE, Yoneda KY. Bronchial thermoplasty: a new treatment paradigm for severe persistent asthma. Clin Rev Allergy Immunol 2013; 43:184-93. [PMID: 22105704 DOI: 10.1007/s12016-011-8295-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Patients with severe asthma represent only a minority of the total asthma population; however, they account for the majority of the mortality, morbidity, and health care-related cost of this chronic illness. Bronchial thermoplasty is a novel treatment modality that employs radiofrequency energy to alter the smooth muscles of the airways. This therapy represents a radical change in our treatment paradigm from daily repetitive dosing of medications to a truly long-term and potentially permanent attenuation of perhaps the most feared component of asthma--smooth muscle-induced bronchospasm. A large, multicentered, double-blinded, randomized controlled trial employed the unprecedented (but now industry standard for bronchoscopic studies) approach of using sham bronchoscopy as a control. It demonstrated that bronchial thermoplasty is safe, improved quality of life, and decreased frequency of severe exacerbations in the treatment group compared to the control group. Although the mechanism of action of bronchial thermoplasty is not currently completely understood, it should be considered as a valid and potentially valuable option for patients who have severe persistent asthma and who remain symptomatic despite inhaled corticosteroids and long-acting beta-2 agonists. Such patients should however be carefully evaluated at centers with expertise in managing severe asthma patients and with physicians who have experience with this promising new treatment modality.
Collapse
Affiliation(s)
- Katherine S Cayetano
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, 4150 V Street, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
39
|
Wan L, Liu L, Zhang Z, Zhou Y, Xiong Y, Li D, Zhou L. Low-Dose Azithromycin Attenuates OVA-Induced Airway Remodeling and Inflammation via Down-Regulating TGF-βl Expression in RAT. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Asthma is characteristic with chronic airway inflammation and remodeling. Azithromycin (AZM), the 15-member macrolide, is known to present an anti-inflammatory effect and is increasingly being used in the treatment of chronic inflammatory pulmonary diseases. We hypothesize that low-dose azithromycin can inhibit allergen-induced airway remodeling except allergic airway inflammation in rat model. Male SD rats underwent intraperitoneal ovalbumin sensitization on days 1 and 6 followed by an intranasal challenge on day 7–13. On day 14, airway inflammation and remodeling were assessed by quantifying leukocytes in the airway, expression of multiple inflammatory mediators in BALF, histological examination in lung and TGF-β1 mRNA and protein levels by qRT-PCR, immunohistochemistry and Western blotting. Treatment with low-dose azithromycin at the dose of 25 mg/kg significantly reduced ovalbumin-dependent airway inflammation, including accumulation of neutrophils, lymphocytes and eosinophils, secretion of IL-2, IL-4, IL-13 and TNF-α. Moreover, airway remodeling was significantly abrogated by azithromycin in this model. The mucus cell hyperplasia, thickening of the peribronchial smooth muscle layer, secretion of ET-1, IL-2, IL-4, IL-13 and TNF-α, and increasing mRNA and protein expressions of TGF-β1 in lung tissue were all significantly decreased in azithromycin-treated rats. These findings demonstrate the protective effect of low-dose azithromycin on allergic airway remodeling in rat and suggest low-dose azithromycin may have beneficial effects in treating allergic airway inflammation.
Collapse
Affiliation(s)
- L. Wan
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - L. Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Z. Zhang
- Jinan Hongjitang Pharmaceutical Co., Ltd., Jinan, PR China
| | - Y. Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Y. Xiong
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - D. Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - L. Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| |
Collapse
|
40
|
Robinson CB, Leonard J, Panettieri RA. Drug development for severe asthma: what are the metrics? Pharmacol Ther 2012; 135:176-81. [PMID: 22627271 DOI: 10.1016/j.pharmthera.2012.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022]
Abstract
Although reversible airway obstruction in part defines asthma, lung function as measured by spirometry alone inadequately predicts the value of new therapeutic agents in the treatment of severe asthma. Our objectives are 1) to review whether pulmonary function and bronchodilator reversibility are endpoints for drug discovery and 2) to identify parameters that predict efficacy in drug development in severe asthma. An English language literature search using MedLine and PubMed was conducted from 1997 to present concerning pathophysiology, diagnosis and therapy of severe asthma using the terms "severe asthma," "irreversible asthma," "difficult asthma," "airway remodeling," "fixed airway obstruction," "reversibility" and "bronchodilator reversibility" as index terms. Eight studies were characterized that encompass 1424 subjects with asthma. Our review identified the limitations of using bronchodilator reversibility as a predictor in drug development for severe asthma. Neither improvement in lung function nor bronchodilator reversibility characterized the benefit of new drugs in the treatment of severe asthma. Newly approved drugs in the treatment of severe asthma show decreased asthma exacerbations and improved quality of life associated with steroid-sparing benefits without altering bronchodilator responsiveness or improving lung function. Although changes in lung function predict asthma control in mild/moderate asthma, lung function alone is inadequate to assess improvement in asthma control in severe asthma manifested by fixed airway obstruction. Endpoints that focus on asthma control, as defined by the Expert Panel Report 3 and GINA guidelines, may predict the value of new therapeutics in the management of severe asthma.
Collapse
|
41
|
Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 2012; 55:3614-43. [PMID: 22257213 DOI: 10.1021/jm201271b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajinder Singh
- Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
42
|
Chaudhuri R, McSharry C, Brady J, Donnelly I, Grierson C, McGuinness S, Jolly L, Weir CJ, Messow CM, Spears M, Miele G, Nocka K, Crowther D, Thompson J, Brannigan M, Lafferty J, Sproule M, Macnee W, Connell M, Murchison JT, Shepherd MC, Feuerstein G, Miller DK, Thomson NC. Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: relationship to disease severity. J Allergy Clin Immunol 2012; 129:655-663.e8. [PMID: 22305682 DOI: 10.1016/j.jaci.2011.12.996] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/26/2011] [Accepted: 12/08/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Matrix metalloproteinase (MMP)-12 has been implicated in the pathogenesis of both chronic obstructive pulmonary disease (COPD) and asthma. The influence of disease severity on sputum MMP-12 concentrations and activity is not known. OBJECTIVES We sought to examine the relationship between disease severity assessed by means of lung function and computed tomography (CT) and induced sputum MMP-12 concentrations and activity in patients with asthma and COPD. METHODS In 208 subjects (109 asthmatic patients, smokers and never smokers, mild, moderate, and severe; 53 patients with COPD, smokers and exsmokers, mild, moderate, and severe; and 46 healthy control subjects, smokers and never smokers), we measured induced sputum MMP-12 concentrations (ELISA) and enzyme activity (fluorescence resonance energy transfer), sputum cell MMP12 mRNA expression (quantitative PCR [qPCR]), diffusing capacity for carbon monoxide (Dlco), and CT assessment of emphysema (percentage of low-attenuation areas at less -950 Hounsfield units). RESULTS Sputum MMP-12 concentrations are greater in patients with COPD and smokers with asthma than in healthy nonsmokers (P = .003 and P = .035, respectively) but similar to those seen in healthy smokers. In patients with COPD, disease severity, when measured by means of CT-assessed emphysema, but not by means of spirometry or Dlco values, is directly associated with sputum MMP-12 concentrations and activity. In the asthma groups there is no significant association between disease severity and sputum MMP-12 concentrations or activity. CONCLUSIONS Sputum MMP-12 concentrations and activity in patients with COPD are directly associated with the extent of emphysema measured by means of CT. This finding supports a role for MMP-12 in the pathogenesis of COPD and might suggest that blocking MMP-12 activity in patients with COPD could prevent the further development of emphysema.
Collapse
Affiliation(s)
- Rekha Chaudhuri
- Respiratory Medicine, Institute of Infection, Immunity & Inflammation, University of Glasgow and Gartnavel General Hospital, Glasgow, G12 OYN Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thomsen SF, van der Sluis S, Kyvik KO, Backer V. A study of asthma severity in adult twins. CLINICAL RESPIRATORY JOURNAL 2011; 6:228-37. [PMID: 22081985 DOI: 10.1111/j.1752-699x.2011.00273.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The tendency to develop asthma runs in families, but whether the severity of asthma symptoms is inherited is not known. OBJECTIVES The aim of this study was to examine whether genetic factors influence the variation in the severity of asthma. METHODS Of a sample of 21 133 adult twins from the Danish Twin Registry, a total of 575 subjects (256 intact pairs and 63 single twins) who themselves and/or their co-twins reported a history of asthma at a questionnaire survey were clinically examined. The severity of asthma symptoms was graded according to a clinical interview, and markers of airway impairment and allergy were measured. RESULTS After adjusting for confounders, genetic factors explained 24% (10%-37%), P = 0.0004, of the variation in overall asthma symptom severity, whereas non-shared environment accounted for the remaining 76% of the variation. A significant genetic component was also found for the severity of specific asthma symptoms; wheezing 12% (3%-22%), P = 0.007 and shortness of breath 17% (7%-27%), P = 0.0006, but not for chest tightness and cough. Asthma symptom severity correlated weakly with rhinitis severity as well as with objective markers of lung function, airway inflammation, airway responsiveness and allergic sensitization. CONCLUSION The individual variation in asthma symptom severity is to some degree influenced by genetic factors, but environmental factors explain the main part of the variation. The genetic architectures underlying the severity of asthma symptoms and objectively measured asthma-related traits, respectively, seem to differ.
Collapse
|
44
|
Busse WW. Asthma diagnosis and treatment: filling in the information gaps. J Allergy Clin Immunol 2011; 128:740-50. [PMID: 21875745 DOI: 10.1016/j.jaci.2011.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 01/18/2023]
Abstract
Current approaches to the diagnosis and management of asthma are based on guideline recommendations, which have provided a framework for the efforts. Asthma, however, is emerging as a heterogeneous disease, and these features need to be considered in both the diagnosis and management of this disease in individual patients. These diverse or phenotypic features add complexity to the diagnosis of asthma, as well as attempts to achieve control with treatment. Although the diagnosis of asthma is often based on clinical information, it is important to pursue objective criteria as well, including an evaluation for reversibility of airflow obstruction and bronchial hyperresponsiveness, an area with new diagnostic approaches. Furthermore, there exist a number of treatment gaps (ie, exacerbations, step-down care, use of antibiotics, and severe disease) in which new direction is needed to improve care. A major morbidity in asthmatic patients occurs with exacerbations and in patients with severe disease. Novel approaches to treatment for these conditions will be an important advance to reduce the morbidity associated with asthma.
Collapse
Affiliation(s)
- William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
45
|
Schaafsma D, McNeill KD, Mutawe MM, Ghavami S, Unruh H, Jacques E, Laviolette M, Chakir J, Halayko AJ. Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts. Respir Res 2011; 12:113. [PMID: 21864337 PMCID: PMC3173339 DOI: 10.1186/1465-9921-12-113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/24/2011] [Indexed: 01/11/2023] Open
Abstract
Background Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects. Methods We used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM). Results Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin. Conclusions We conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.
Collapse
Affiliation(s)
- Dedmer Schaafsma
- Department of Physiology, Section of Respiratory Disease, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sathish V, Abcejo AJ, VanOosten SK, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 in cytokine-induced enhancement of intracellular Ca(2+) in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301:L607-14. [PMID: 21803870 DOI: 10.1152/ajplung.00019.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)](i)) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca(2+)](i) signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca(2+)](i) regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca(2+)](i) in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca(2+)](i) in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca(2+)](i) responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR(1) receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca(2+)](i).
Collapse
|
47
|
Kämpe M, Stolt I, Lampinen M, Janson C, Stålenheim G, Carlson M. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clin Mol Allergy 2011; 9:3. [PMID: 21255397 PMCID: PMC3031270 DOI: 10.1186/1476-7961-9-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/21/2011] [Indexed: 01/21/2023] Open
Abstract
Background Patients with allergic rhinitis and allergic asthma demonstrate comparable local and systemic eosinophil inflammation, and yet they present with different clinical pictures. Less is even known about the contribution of neutrophil inflammation in allergic diseases. The aim of the study was to examine the propensity and selectivity of granule release from primed systemic eosinophils and neutrophils in allergic rhinitis and allergic asthma after seasonal and experimental allergen exposure. We hypothesize that the dissimilar clinical manifestations are due to diverse eosinophil and neutrophil degranulation. Methods Nine birch pollen allergic patients with rhinitis, eight with asthma and four controls were studied during pollen season and after nasal and bronchial allergen challenge. Eosinophils and neutrophils were incubated in vitro with assay buffer and opsonized Sephadex particles for spontaneous and C3b-induced granule protein release. The released amount of eosinophil cationic protein (ECP), eosinophil peroxidase (EPO) and myeloperoxidase (MPO) was measured by specific radioimmunoassay. Results C3b-induced degranulation resulted in increased release of ECP and MPO from primed blood eosinophils and neutrophils in both allergic rhinitis and allergic asthma during pollen season and after both nasal and bronchial challenge (p-values 0.008 to 0.043). After bronchial challenge, the ECP release was significantly higher in the rhinitic group compared to the asthmatic group [19.8 vs. 13.2%, (p = 0.010)]. The propensity for EPO release was weak in all challenge models but followed the same pattern in both allergic groups. Conclusions Systemically activated eosinophils and neutrophils have similar patterns of degranulation after allergen exposure in allergic rhinitis and allergic asthma. The released amount of ECP, EPO and MPO was similar in all allergen challenge models in both allergic groups. Our results indicate that other mechanisms than the magnitude of eosinophil and neutrophil inflammation or the degranulation pattern of the inflammatory cells determines whether or not an allergic patient develops asthma.
Collapse
Affiliation(s)
- Mary Kämpe
- Department of Medical Sciences, Respiratory Medicine and Allergology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Orihara K, Dil N, Anaparti V, Moqbel R. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 2011; 4:605-29. [PMID: 20923340 DOI: 10.1586/ers.10.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research on asthma pathophysiology over the past decade has expanded the complex repertoire involved in the pathophysiology of asthma to include inflammatory, immune and structural cells, as well as a wide range of mediators. Studies have identified a role for connective and other mesenchymal tissues involved in airway remodeling. Recent findings have implicated the innate immune response in asthma and have revealed interesting patterns of interaction between the innate and adaptive immune response and the associated complex chronic inflammatory reaction. New immune cell populations have also been added to this repertoire, including Tregs, natural killer T cells and Th17 cells. The role of the eosinophil, a prominent pathological feature in most asthma phenotypes, has also been expanding to include roles such as tissue modifiers and immune regulators via a number of fascinating and hitherto unexplored mechanistic pathways. In addition, new and significant roles have been proposed for airway smooth muscle cells, fibroblasts, epithelial and endothelial cells. Tissue remodeling is now considered an integral element of asthma pathophysiology. Finally, an intricate network of mediators, released from both immune and inflammatory cells, including thymus stromal lymphopoietin and matrix metalloproteinases, have added to the complex milieu of asthma immunity and inflammation. These findings have implications for therapy and the search for novel strategies towards better disease management. Sadly, and perhaps due to the complex nature of asthma, advances in therapeutic discoveries and developments have been limited. Thus, understanding the precise roles played by the numerous dramatis personae in this odyssey, both individually and collectively within the context of asthma pathophysiology, continues to pose new challenges. It is clear that the next stage in this saga is to embark on studies that transcend reductionist approaches to involve system analysis of the complex and multiple variables involved in asthma, including the need to narrow down the phenotypes of this condition based on careful analysis of the organs (lung and airways), cells, mediators and other factors involved in bronchial asthma.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
49
|
Jeong YJ, Kim JH, Kang JS, Lee WJ, Hwang YI. Mega-dose vitamin C attenuated lung inflammation in mouse asthma model. Anat Cell Biol 2010; 43:294-302. [PMID: 21267403 PMCID: PMC3026181 DOI: 10.5115/acb.2010.43.4.294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022] Open
Abstract
Asthma is a Th2-dependent disease mediated by IgE and Th2 cytokines, and asthmatic patients suffer from oxidative stresses from abnormal airway inflammation. Vitamin C is a micro-nutrient functioning as an antioxidant. When administered at a mega-dose, vitamin C has been reported to shift immune responses toward Th1. Thus, we tried to determine whether vitamin C exerted beneficial effects in asthma animal model. Asthma was induced in mice by sensitizing and challenging with ovalbumin. At the time of challenge, 3~5 mg of vitamin C was administered and the effects were evaluated. Vitamin C did not modulate Th1/Th2 balance in asthma model. However, it decreased airway hyperreactivity to methacholine, decreased inflammatory cell numbers in brochoalveolar lavage fluid, and moderate reduction of perivascular and peribronchiolar inflammatory cell infiltration. These results suggest that vitamin C administered at the time of antigen challenge exerted anti-inflammatory effects. Further studies based on chronic asthma model are needed to evaluate a long-term effect of vitamin C in asthma. In conclusion, even though vitamin C did not show any Th1/Th2 shifting effects in this experiment, it still exerted moderate anti-inflammatory effects. Considering other beneficial effects and inexpensiveness of vitamin C, mega-dose usage of vitamin C could be a potential supplementary modality for the management of asthma.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy and Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
50
|
Prado CM, da Rocha GZ, Leick-Maldonado EA, Starling CM, Capelozzi VL, Martins MA, Tibério IFLC. Inactivation of capsaicin-sensitive nerves reduces pulmonary remodeling in guinea pigs with chronic allergic pulmonary inflammation. Braz J Med Biol Res 2010; 44:130-9. [PMID: 21180881 DOI: 10.1590/s0100-879x2010007500151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/08/2010] [Indexed: 11/22/2022] Open
Abstract
Pulmonary remodeling is an important feature of asthma physiopathology that can contribute to irreversible changes in lung function. Although neurokinins influence lung inflammation, their exact role in the extracellular matrix (ECM) remodeling remains to be determined. Our objective was to investigate whether inactivation of capsaicin-sensitive nerves modulates pulmonary ECM remodeling in animals with chronic lung inflammation. After 14 days of capsaicin (50 mg/kg, sc) or vehicle administration, male Hartley guinea pigs weighing 250-300 g were submitted to seven inhalations of increasing doses of ovalbumin (1, 2.5, and 5 mg/mL) or saline for 4 weeks. Seventy-two hours after the seventh inhalation, animals were anesthetized and mechanically ventilated and the lung mechanics and collagen and elastic fiber content in the airways, vessels and lung parenchyma were evaluated. Ovalbumin-exposed animals presented increasing collagen and elastic fiber content, respectively, in the airways (9.2 ± 0.9; 13.8 ± 1.2), vessels (19.8 ± 0.8; 13.4 ± 0.5) and lung parenchyma (9.2 ± 0.9; 13.8 ± 1.2) compared to control (P < 0.05). Capsaicin treatment reduced collagen and elastic fibers, respectively, in airways (1.7 ± 1.1; 7.9 ± 1.5), vessels (2.8 ± 1.1; 4.4 ± 1.1) and lung tissue (2.8 ± 1.1; 4.4 ± 1.1) of ovalbumin-exposed animals (P < 0.05). These findings were positively correlated with lung mechanical responses to antigenic challenge (P < 0.05). In conclusion, inactivation of capsaicin-sensitive nerve fibers reduces pulmonary remodeling, particularly collagen and elastic fibers, which contributes to the attenuation of pulmonary functional parameters.
Collapse
Affiliation(s)
- C M Prado
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|