1
|
Alqarni SA, Ahmad SF, Alqahtani F, Al-Harbi NO, Alshehri S, Ibrahim KE, Alfardan AS, Attia SM, Nadeem A. Inhibition of non-receptor tyrosine kinase LCK partially mitigates mixed granulocytic airway inflammation in a murine model of asthma. Int Immunopharmacol 2023; 119:110225. [PMID: 37119678 DOI: 10.1016/j.intimp.2023.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Asthma affects millions of people worldwide and is one of the most common inflammatory airway diseases. Asthma phenotypes are quite complex and categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Mixed granulocytic asthma requires large doses of inhaled corticosteroids, which are often insufficient in controlling airway inflammation. Therefore, there is a medical need to test newer therapies to control granulocytic inflammation. Lymphocyte specific protein tyrosine kinase (LCK) signaling has gained momentum in recent years as a molecular target in inflammatory diseases such as asthma. LCK is expressed in lymphocytes and is required for inflammatory intracellular signaling in response to antigenic stimulation. Therefore, efficacy of LCK inhibitor, A770041 was tested in cockroach (CE)-induced corticosteroid insensitive murine model of asthma. The effect of LCK inhibitor was investigated on granulocytic airway inflammation, mucus production, p-LCK and downstream signaling molecules such as p-PLCγ, GATA3, p-STAT3 in CD4+ T cells. Moreover, its effects were also studied on Th2/Th17 related cytokines and oxidative stress parameters (iNOS/nitrotyrosine) in neutrophils/macrophages. Our study shows that CE-induced p-LCK levels are concomitant with increased neutrophilic/eosinophilic inflammation and mucus hypersecretion which are significantly mitigated by A770041 treatment. A770041 also caused marked attenuation of CE-induced pulmonary levels of IL-17A levels but not completely. However, A770041 in combination with dexamethasone caused complete downregulation of mixed granulocytic airway inflammation as well as Th2/Th17 related immune responses. These results suggest that combination of LCK inhibition along with corticosteroids may be pursued as an alternative strategy to completely treat mixed granulocytic asthma.
Collapse
Affiliation(s)
- Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Hirano T, Matsunaga K, Oishi K, Doi K, Harada M, Suizu J, Murakawa K, Chikumoto A, Ohteru Y, Matsuda K, Uehara S, Hamada K, Ohata S, Murata Y, Yamaji Y, Asami-Noyama M, Edakuni N. Abundant TNF-LIGHT expression in the airways of patients with asthma with persistent airflow limitation: Association with nitrative and inflammatory profiles. Respir Investig 2021; 59:651-660. [PMID: 34244107 DOI: 10.1016/j.resinv.2021.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND The role of the inflammatory secretory protein TNF-LIGHT (LIGHT) in the molecular mechanisms underlying persistent airflow limitation (PAL) in asthma remains unclear. We hypothesized that high airway LIGHT expression may be a feature of asthma with PAL associated with specific expression patterns of inflammatory molecules. METHODS This hypothesis was tested in 16 patients with asthma on inhaled corticosteroid treatment. Induced sputum was collected, the expression of LIGHT and 3-nitrotyrosine (NT), which reflects the footprint of reactive nitrogen species content, was measured using immunohistochemical staining, and the inflammatory molecules in the sputum supernatant were analyzed using a magnetic bead array. RESULTS LIGHT staining in the cells had a significantly higher intensity in participants with PAL than in participants without PAL (47.9 × 104/ml vs. 5.4 × 104/ml; p < 0.05). The array analysis indicated that IL-8, IL-19, matrix metalloproteinase 2, and osteopontin, were associated with high LIGHT immunoreactivity. The fractionation of 3-NT-positive cells was positively correlated with that of LIGHT-positive cells (r = 0.57, p < 0.05) and the TGF-β1 level (r = 0.61, p < 0.05). LIGHT- and 3-NT-positive cells showed significant positive correlation with the differential cell counts of neutrophils, macrophages, and eosinophils in the induced sputum. Intense immunoreactivities of LIGHT (r = -0.54, p < 0.05) and 3-NT (r = -0.42, p = 0.1) were negatively associated with decreased forced expiratory volume in 1/forced vital capacity ratio. CONCLUSIONS The findings suggest that LIGHT is a key component in the association between airway inflammation and airflow limitation in patients with asthma, and its expression may be persistently correlated with the abundance of inflammatory cells and inflammatory and profibrogenic radical/molecules.
Collapse
Affiliation(s)
- Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan.
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Keiji Oishi
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Keiko Doi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Misa Harada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Junki Suizu
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Keita Murakawa
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Ayumi Chikumoto
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Yuichi Ohteru
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Kazuki Matsuda
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Sho Uehara
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Shuichiro Ohata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Yoriyuki Murata
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Yoshikazu Yamaji
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Maki Asami-Noyama
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Nobutaka Edakuni
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| |
Collapse
|
3
|
Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6692110. [PMID: 33763174 PMCID: PMC7952158 DOI: 10.1155/2021/6692110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways related to epithelial damage, bronchial hyperresponsiveness to contractile agents, tissue remodeling, and luminal narrowing. Currently, there are many data about the pathophysiology of asthma; however, a new aspect has emerged related to the influence of reactive oxygen and nitrogen species (ROS and RNS) on the origin of this disease. Several studies have shown that an imbalance between the production of ROS and RNS and the antioxidant enzymatic and nonenzymatic systems plays an important role in the pathogenesis of this disease. Considering this aspect, this study is aimed at gathering data from the scientific literature on the role of oxidative distress in the development of inflammatory airway and lung diseases, especially bronchial asthma. For that, articles related to these themes were selected from scientific databases, including human and animal studies. The main findings of this work showed that the respiratory system works as a highly propitious place for the formation of ROS and RNS, especially superoxide anion, hydrogen peroxide, and peroxynitrite, and the epithelial damage is reflected in an important loss of antioxidant defenses that, in turn, culminates in an imbalance and formation of inflammatory and contractile mediators, such as isoprostanes, changes in the activity of protein kinases, and activation of cell proliferation signalling pathways, such as the MAP kinase pathway. Thus, the oxidative imbalance appears as a promising path for future investigations as a therapeutic target for the treatment of asthmatic patients, especially those resistant to currently available therapies.
Collapse
|
4
|
Matsunaga K, Kuwahira I, Hanaoka M, Saito J, Tsuburai T, Fukunaga K, Matsumoto H, Sugiura H, Ichinose M. An official JRS statement: The principles of fractional exhaled nitric oxide (FeNO) measurement and interpretation of the results in clinical practice. Respir Investig 2020; 59:34-52. [PMID: 32773326 DOI: 10.1016/j.resinv.2020.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) is produced in the body and has been shown to have diverse actions in the abundance of research that has been performed on it since the 1970s, leading to Furchgott, Murad, and Ignarro receiving the Nobel Prize in Physiology or Medicine in 1998. NO is produced by nitric oxide synthase (NOS). NOS is broadly distributed, being found in the nerves, blood vessels, airway epithelium, and inflammatory cells. In asthma, inflammatory cytokines induce NOS activity in the airway epithelium and inflammatory cells, producing large amounts of NO. Measurement of fractional exhaled nitric oxide (FeNO) is a simple, safe, and quantitative method of assessing airway inflammation. The FeNO measurement method has been standardized and, in recent years, this noninvasive test has been broadly used to support the diagnosis of asthma, monitor airway inflammation, and detect asthma overlap in chronic obstructive pulmonary disease (COPD) patients. Since the normal upper limit of FeNO for healthy Japanese adults is 37 ppb, values of 35 ppb or more are likely to be interpreted as a signature of inflammatory condition presenting features with asthma, and this value is used in clinical practice. Research is also underway for clinical application of these measurements in other respiratory diseases such as COPD and interstitial lung disease. Currently, there remains some confusion regarding the significance of these measurements and the interpretation of the results. This statement is designed to provide a simple explanation including the principles of FeNO measurements, the measurement methods, and the interpretation of the measurement results.
Collapse
Affiliation(s)
- Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Yamaguchi University, Ube, Japan.
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University, Matsumoto, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takahiro Tsuburai
- Division of Respiratory Diseases, Saint Marianna University Yokohama City Seibu Hospital, Yokohama, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, Tokyo, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University, Sendai, Japan
| | | |
Collapse
|
5
|
Kyogoku Y, Sugiura H, Ichikawa T, Numakura T, Koarai A, Yamada M, Fujino N, Tojo Y, Onodera K, Tanaka R, Sato K, Sano H, Yamanaka S, Itakura K, Mitsune A, Tamada T, Akaike T, Ichinose M. Nitrosative stress in patients with asthma-chronic obstructive pulmonary disease overlap. J Allergy Clin Immunol 2019; 144:972-983.e14. [PMID: 31077687 DOI: 10.1016/j.jaci.2019.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disease overlap (ACO) has frequent exacerbations and a poor quality of life and prognosis compared with those of chronic obstructive pulmonary disease alone. However, the pathogenesis of ACO has not been fully elucidated yet. OBJECTIVES The aim of this study was to investigate nitrosative stress, which causes a redox imbalance and tissue inflammation in the airways of patients with ACO, and to evaluate the relationship between nitrosative stress and the clinical course in study subjects. METHODS Thirty healthy subjects and 56 asthmatic patients participated in this study. The asthmatic patients were divided into 33 asthmatic patients and 23 patients with ACO. The study subjects had been followed prospectively for 2 years to evaluate the clinical course. Nitrosative stress was evaluated based on the production of 3-nitrotyrosine (3-NT) in sputum cells. RESULTS Production of 3-NT was significantly enhanced in patients with ACO compared with that in asthmatic patients. Amounts of reactive persulfides and polysulfides, newly identified powerful antioxidants, were significantly decreased in the ACO group. Baseline levels of 3-NT were significantly correlated with the frequency of exacerbations and decrease in FEV1 adjusted by age, smoking history, and blood eosinophil count. The 3-NT-positive cells were also significantly correlated with amounts of proinflammatory chemokines and cytokines. CONCLUSIONS These findings suggested that greater nitrosative stress occurred in the airways of patients with ACO, and the degree of nitrosative stress was correlated with an impairment in the clinical course. Nitrosative stress might be related to the pathogenesis of ACO.
Collapse
Affiliation(s)
- Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Tojo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Sato
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Mitsune
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Yen E, Weinberger BI, Laumbach RJ, Ohman-Strickland PA, Vetrano AM, Gow AM, Ramagopal M. Exhaled breath condensate nitrite in premature infants with bronchopulmonary dysplasia. J Neonatal Perinatal Med 2019; 11:399-407. [PMID: 30040745 DOI: 10.3233/npm-17106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tracheal aspirate is the conventional method to measure biomarkers of inflammation and oxidation from premature infants on mechanical ventilation at risk for bronchopulmonary dysplasia (BPD), but this method is invasive. Exhaled breath condensate (EBC) is a novel, non-invasive method that has been used in older populations. Nitrite, a stable metabolite of nitric oxide (NO), is elevated in inflammatory conditions. We aim to investigate the feasibility of EBC nitrite collection from ventilated premature infants and to quantify EBC nitrite in infants with and without BPD. We hypothesize that EBC nitrite correlates with TA nitrite, and that EBC nitrite in the first week of life is higher in infants who will develop BPD than those without BPD. METHODS In a pilot prospective cohort study, TA and EBC were collected in the first week of life from mechanically ventilated premature infants. Nitrite levels were measured using chemiluminescence. RESULTS EBC nitrite significantly correlated with TA nitrite (r = 0.45, p = 0.025). Of 40 infants, 33 (82.5%) developed BPD. EBC and TA nitrite levels collected in the first week of life had a higher trend in infants with BPD than those without BPD (p = 0.23 and 0.38 respectively). CONCLUSIONS Higher trend of EBC nitrite in the first week of life was associated with the development of BPD. Correlation of nitrite level in EBC with that in TA (conventional method) highlights the utility of EBC as an alternative, non-invasive method to measure inflammation. Further refinement of conditions and timing may optimize the predictive value of EBC nitrite.
Collapse
Affiliation(s)
- E Yen
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School (RWJMS), New Brunswick, NJ, USA
| | - B I Weinberger
- Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - R J Laumbach
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - P A Ohman-Strickland
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - A M Vetrano
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School (RWJMS), New Brunswick, NJ, USA
| | - A M Gow
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - M Ramagopal
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School (RWJMS), New Brunswick, NJ, USA
| |
Collapse
|
7
|
King GG, James A, Harkness L, Wark PAB. Pathophysiology of severe asthma: We've only just started. Respirology 2018; 23:262-271. [PMID: 29316003 DOI: 10.1111/resp.13251] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Severe asthma is defined by the high treatment requirements to partly or fully control the clinical manifestations of disease. It remains a problem worldwide with a large burden for individuals and health services. The key to improving targeted treatments, reducing disease burden and improving patient outcomes is a better understanding of the pathophysiology and mechanisms of severe disease. The heterogeneity, complexity and difficulties in undertaking clinical studies in severe asthma remain challenges to achieving better understanding and better outcomes. In this review, we focus on the structural, mechanical and inflammatory abnormalities that are relevant in severe asthma.
Collapse
Affiliation(s)
- Gregory G King
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Alan James
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Louise Harkness
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Peter A B Wark
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
8
|
Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR. Selective Affinity Enrichment of Nitrotyrosine-Containing Peptides for Quantitative Analysis in Complex Samples. J Proteome Res 2017; 16:2983-2992. [PMID: 28714690 DOI: 10.1021/acs.jproteome.7b00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available. Here we report an immunoaffinity enrichment of NT-peptides for proteomics analysis. The effectiveness of this approach was evaluated using nitrated protein standards and whole-cell lysates in vitro. A total of 1881 NT sites were identified from a nitrated whole-cell extract, indicating that this immunoaffinity-MS method is a valid approach for the enrichment of NT-peptides, and provides a significant advance for characterizing the nitrotyrosine proteome. We noted that this method had higher affinity to peptides with N-terminal nitrotyrosine relative to peptides with other nitrotyrosine locations, which raises the need for future study to develop a pan-specific nitrotyrosine antibody for unbiased, proteome-wide analysis of tyrosine nitration. We applied this method to quantify the changes in protein tyrosine nitration in mouse lungs after intranasal poly(I:C) treatment and quantified 237 NT sites. This result indicates that the immunoaffinity-MS method can be used for quantitative analysis of protein nitrotyrosines in complex samples.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Rosario Maroto
- Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| |
Collapse
|
9
|
Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity. Mediators Inflamm 2016; 2016:1984703. [PMID: 27524861 PMCID: PMC4971330 DOI: 10.1155/2016/1984703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 12/20/2022] Open
Abstract
Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma.
Collapse
|
10
|
Matsunaga K, Hirano T, Oka A, Ito K, Edakuni N. Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergol Int 2016; 65:266-71. [PMID: 26822895 DOI: 10.1016/j.alit.2015.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDS It remains unclear whether a persistently high exhaled nitric oxide fraction (FeNO) in patients with controlled asthma is associated with the progressive loss of lung function. METHODS This was a 3-year prospective study. We examined the changes in pre- and post-bronchodilator forced expiratory volume in 1 s (FEV1) and FeNO in 140 patients with controlled asthma. We initially determined the FeNO cut-off point for identifying patients with a rapid decline in FEV1 (>40 mL/yr). Next, a total of 122 patients who maintained high or non-high FeNO were selected, and the associations between the FeNO trend and changes in FEV1 and bronchodilator response (BDR) were investigated. RESULTS A FeNO level >40.3 ppb yielded 43% sensitivity and 86% specificity for identifying patients with a rapid decline in FEV1. Patients with persistently high FeNO had higher rates of decline in FEV1 (42.7 ± 37.5 mL/yr) than patients with non-high FeNO (16.7 ± 31.5 mL/yr) (p < 0.0005). The changes in BDR from baseline to the end of the study, in patients who had high or non-high levels of FeNO were -0.8% and 0.1%, respectively (p < 0.01). In a multivariate analysis adjusted by age, body mass index, asthma control, blood eosinophil numbers, and FEV1% of predicted, a FeNO level of ≥40 ppb was independently associated with an accelerated decline in FEV1 (p < 0.05). CONCLUSIONS This study suggests that FeNO is potentially valuable tool for identifying individuals who are at risk of a progressive loss of lung function among patients with controlled asthma.
Collapse
|
11
|
Oxidative Stress Markers in Sputum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2930434. [PMID: 26885248 PMCID: PMC4738959 DOI: 10.1155/2016/2930434] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Although oxidative stress is thought to play a pivotal role in the pathogenesis of inflammatory airway diseases, its assessment in clinical practice remains elusive. In recent years, it has been conceptualized that oxidative stress markers in sputum should be employed to monitor oxidative processes in patients with asthma, chronic obstructive pulmonary disease (COPD), or cystic fibrosis (CF). In this review, the use of sputum-based oxidative markers was explored and potential clinical applications were considered. Among lipid peroxidation-derived products, 8-isoprostane and malondialdehyde have been the most frequently investigated, while nitrosothiols and nitrotyrosine may serve as markers of nitrosative stress. Several studies have showed higher levels of these products in patients with asthma, COPD, or CF compared to healthy subjects. Marker concentrations could be further increased during exacerbations and decreased along with recovery of these diseases. Measurement of oxidized guanine species and antioxidant enzymes in the sputum could be other approaches for assessing oxidative stress in pulmonary patients. Collectively, even though there are promising findings in this field, further clinical studies using more established detection techniques are needed to clearly show the benefit of these measurements in the follow-up of patients with inflammatory airway diseases.
Collapse
|
12
|
Corradi M, Goldoni M, Mutti A. A review on airway biomarkers: exposure, effect and susceptibility. Expert Rev Respir Med 2015; 9:205-20. [PMID: 25561087 DOI: 10.1586/17476348.2015.1001373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current research in pulmonology requires the use of biomarkers to investigate airway exposure and diseases, for both diagnostic and prognostic purposes. The traditional approach based on invasive approaches (lung lavages and biopsies) can now be replaced, at least in part, through the use of non invasively collected specimens (sputum and breath), in which biomarkers of exposure, effect and susceptibility can be searched. The discovery of specific lung-related proteins, which can spill over in blood or excreted in urine, further enhanced the spectrum of airway specific biomarkers to be studied. The recent introduction of high-performance 'omic' technologies - genomics, proteomics and metabolomics, and the rate at which biomarker candidates are being discovered, will permit the use of a combination of biomarkers for a more precise selection of patient with different outcomes and responses to therapies. The aim of this review is to critically evaluate the use of airway biomarkers in the context of research and clinical practice.
Collapse
Affiliation(s)
- Massimo Corradi
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43123 Parma, Italy
| | | | | |
Collapse
|
13
|
Voraphani N, Gladwin MT, Contreras AU, Kaminski N, Tedrow JR, Milosevic J, Bleecker ER, Meyers DA, Ray A, Ray P, Erzurum SC, Busse WW, Zhao J, Trudeau JB, Wenzel SE. An airway epithelial iNOS-DUOX2-thyroid peroxidase metabolome drives Th1/Th2 nitrative stress in human severe asthma. Mucosal Immunol 2014; 7:1175-85. [PMID: 24518246 PMCID: PMC4130801 DOI: 10.1038/mi.2014.6] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/08/2014] [Indexed: 02/04/2023]
Abstract
Severe refractory asthma is associated with enhanced nitrative stress. To determine the mechanisms for high nitrative stress in human severe asthma (SA), 3-nitrotyrosine (3NT) was compared with Th1 and Th2 cytokine expression. In SA, high 3NT levels were associated with high interferon (IFN)-γ and low interleukin (IL)-13 expression, both of which have been reported to increase inducible nitric oxide synthase (iNOS) in human airway epithelial cells (HAECs). We found that IL-13 and IFN-γ synergistically enhanced iNOS, nitrite, and 3NT, corresponding with increased H(2)O(2). Catalase inhibited whereas superoxide dismutase enhanced 3NT formation, supporting a critical role for H(2)O(2), but not peroxynitrite, in 3NT generation. Dual oxidase-2 (DUOX2), central to H(2)O(2) formation, was also synergistically induced by IL-13 and IFN-γ. The catalysis of nitrite and H(2)O(2) to nitrogen dioxide radical (NO(2)(•)) requires an endogenous peroxidase in this epithelial cell system. Thyroid peroxidase (TPO) was identified by microarray analysis ex vivo as a gene distinguishing HAEC of SA from controls. IFN-γ induced TPO in HAEC and small interfering RNA knockdown decreased nitrated tyrosine residues. Ex vivo, DUOX2, TPO, and iNOS were higher in SA and correlated with 3NT. Thus, a novel iNOS-DUOX2-TPO-NO(2)(•) metabolome drives nitrative stress in HAEC and likely in SA.
Collapse
Affiliation(s)
- N Voraphani
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - MT Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - AU Contreras
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - N Kaminski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JR Tedrow
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Milosevic
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - ER Bleecker
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - DA Meyers
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - A Ray
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Ray
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - SC Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - WW Busse
- Division of Allergy and Clinical Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Zhao
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JB Trudeau
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - SE Wenzel
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Abstract
Asthma is a common medical condition affecting 300 million people worldwide. Airway inflammation, smooth muscle bronchoconstriction leading to airflow obstruction, and mucous hypersecretion are clinical hallmarks of asthma. The NHLBI Expert Panel Report 3 recommends inhaled corticosteroids (ICS) for patients with moderate to severe persistent asthma. Inhaled corticosteroids (ICS) target gene transcription through their interactions with the glucocorticoid (GC) receptor (GR) at the glucocorticoid response element (GRE). The GC/GR complex enhances anti-inflammatory but inhibits pro-inflammatory mediator production. Classically, asthma has been described as a Th2-associated eosinophil-predominant disease, but recently alternative models have been described including a Th17-mediated neutrophil-predominant phenotype resulting in patients with more severe disease who may be less responsive to steroids. Additional mechanisms of steroid resistance include increased activity of GR phosphorylating kinases which modify the interactions of GR with transcription factors to inhibit the ability of GR to bind with GRE, leading to an increase in pro-inflammatory gene transcription. Oxidative stress also affects the balance between pro-inflammatory and anti-inflammatory gene transcription through the modification of transcription factors and cofactors (such as PI3K) leading to the inhibition of histone deacetylase 2. Continued investigations into the mechanisms behind glucocorticoid resistance will lead to novel treatments that improve control of severe refractory asthma.
Collapse
Affiliation(s)
- J. L. Trevor
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| | - J. S. Deshane
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
15
|
Ichikawa T, Sugiura H, Koarai A, Minakata Y, Kikuchi T, Morishita Y, Oka A, Kanai K, Kawabata H, Hiramatsu M, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Yamamoto N, Ichinose M. TLR3 activation augments matrix metalloproteinase production through reactive nitrogen species generation in human lung fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 192:4977-88. [PMID: 24760149 DOI: 10.4049/jimmunol.1302919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viral infection often triggers asthma exacerbation and contributes to airway remodeling. Cell signaling in viral infection is mainly mediated through TLR3. Many mediators are involved in airway remodeling, but matrix metalloproteinases (MMPs) are key players in this process in asthma. However, the role of TLR3 activation in production of MMPs is unknown. In this study, we examined the effects of polyinosinic-polycytidylic acid [poly(I:C)], a ligand for TLR3, on production of MMPs in human lung fibroblasts, with a focus on nitrosative stress in TLR3 modulation of MMP production. After lung fibroblasts were treated with poly(I:C), production of MMP-1, -2, and -9 and inducible NO synthase (iNOS) was assessed. The roles of NF-κB and IFN regulatory factor-3 (IRF-3) in the poly(I:C)-mediated production of MMPs and the responsiveness to poly(I:C) of normal lung fibroblasts and asthmatic lung fibroblasts were also investigated. Poly(I:C) augmented production of MMPs and iNOS in fibroblasts, and an iNOS inhibitor diminished this production of MMPs. Poly(I:C) stimulated translocation of NF-κB and IRF-3 into the nucleus in fibroblasts and inhibition of NF-κB or IRF-3 abrogated the poly(I:C)-induced increase in both iNOS expression and release of MMPs. Poly(I:C)-induced production of iNOS and MMPs was greater in asthmatic fibroblasts than in normal fibroblasts. We conclude that viral infection may induce nitrosative stress and subsequent MMP production via NF-κB- and IRF-3-dependent pathways, thus potentiating viral-induced airway remodeling in asthmatic airways.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yoshiaki Minakata
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Takashi Kikuchi
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Yukiko Morishita
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Asako Oka
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Hiroki Kawabata
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masataka Hiramatsu
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Tsunahiko Hirano
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
16
|
Hirano T, Matsunaga K, Sugiura H, Minakata Y, Koarai A, Akamatsu K, Ichikawa T, Furukawa K, Ichinose M. Relationship between alveolar nitric oxide concentration in exhaled air and small airway function in COPD. J Breath Res 2013; 7:046002. [DOI: 10.1088/1752-7155/7/4/046002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Matsunaga K, Hirano T, Akamatsu K, Minakata Y. Predictors for identifying the efficacy of systemic steroids on sustained exhaled nitric oxide elevation in severe asthma. Allergol Int 2013; 62:359-65. [PMID: 23880612 DOI: 10.2332/allergolint.12-oa-0530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/30/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Some patients with asthma have high levels of exhaled nitric oxide fraction (FENO) despite inhaled corticosteroids (ICS) therapy. Early studies suggested that this might be explained by the presence of heterogeneous airway inflammation. We aimed to assess the predictors for identifying the efficacy of systemic corticosteroids on residual FENO elevations in severe asthma. METHODS Twenty severe asthmatics with persistent FENO elevation (≥40ppb) despite maintenance therapy including high-daily-dose ICS were enrolled. Asthma Control Questionnaire (ACQ), lung function, blood eosinophils, and FENO were assessed before and after 14 days treatment with 0.5mg/kg oral prednisolone/day. RESULTS ACQ, blood eosinophils, FENO level, FVC, FEV1, FEV1/FVC ratio and the slope of the single nitrogen washout curve (ΔN2) were significantly improved by treatment with prednisolone. 70% of the subjects showed ≥20% reductions in the FENO levels. The reduction in FENO levels was significantly correlated with the improvements in ACQ (p < 0.0001), FVC (p < 0.01), FEV1 (p < 0.0001), and ΔN2 (p < 0.05). Among the measurements at baseline, the FENO levels and blood eosinophil numbers were identified as significant predictors of ≥20% reductions in the FENO levels by systemic steroid therapy. CONCLUSIONS Systemic corticosteroids could suppress the residual FENO elevations in more than half of the patients with severe asthma and the reduction in FENO levels was associated with improvements in asthma control and airflow limitation. The FENO levels and blood eosinophil numbers were the predictors of improved residual airway inflammation by systemic steroid therapy in severe asthma.
Collapse
Affiliation(s)
- Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan. kazmatsu@wakayama−med.ac.jp
| | | | | | | |
Collapse
|
18
|
Ng JY, Boelen L, Wong JWH. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol 2013; 3:120148. [PMID: 23389939 PMCID: PMC3603447 DOI: 10.1098/rsob.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
19
|
Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1320-6. [PMID: 22591701 PMCID: PMC3440108 DOI: 10.1289/ehp.1104439] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 05/16/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollutants have been associated with childhood asthma and wheeze. Epigenetic regulation of nitric oxide synthase--the gene responsible for nitric oxide production--may be affected by air pollutants and contribute to the pathogenesis of asthma and wheeze. OBJECTIVE Our goal was to investigate the association between air pollutants, DNA methylation, and respiratory outcomes in children. METHODS Given residential address and buccal sample collection date, we estimated 7-day, 1-month, 6-month, and 1-year cumulative average PM₂.₅ and PM₁₀ (particulate matter ≤ 2.5 and ≤ 10 µm aerodynamic diameter, respectively) exposures for 940 participants in the Children's Health Study. Methylation of 12 CpG sites in three NOS (nitric oxide synthase) genes was measured using a bisulfite-polymerase chain reaction Pyrosequencing assay. Beta regression models were used to estimate associations between air pollutants, percent DNA methylation, and respiratory outcomes. RESULTS A 5-µg/m³ increase in PM₂.₅ was associated with a 0.20% [95% confidence interval (CI): -0.32, -0.07] to 1.0% (95% CI: -1.61, -0.56) lower DNA methylation at NOS2A position 1, 0.06% (95% CI: -0.18, 0.06) to 0.58% (95% CI: -1.13, -0.02) lower methylation at position 2, and 0.34% (95% CI: -0.57, -0.11) to 0.89% (95% CI: -1.57, -0.21) lower methylation at position 3, depending on the length of exposure and CpG locus. One-year PM2.5 exposure was associated with 0.33% (95% CI: 0.01, 0.65) higher in average DNA methylation of 4 loci in the NOS2A CpG island. A 5-µg/m³ increase in 7-day and 1-year PM₂.₅ was associated with 0.6% (95% CI: 0.13, 0.99) and 2.8% (95% CI: 1.77, 3.75) higher NOS3 DNA methylation. No associations were observed for NOS1. PM₁₀ showed similar but weaker associations with DNA methylation in these genes. CONCLUSIONS PM₂.₅ exposure was associated with percent DNA methylation of several CpG loci in NOS genes, suggesting an epigenetic mechanism through which these pollutants may alter production of nitric oxide.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Souza FCR, Gobbato NB, Maciel RG, Prado CM, Martins MA, Leick EA, Tibério IFLC. Effects of corticosteroid, montelukast and iNOS inhibition on distal lung with chronic inflammation. Respir Physiol Neurobiol 2012; 185:435-45. [PMID: 23009745 DOI: 10.1016/j.resp.2012.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED We evaluated the effects of anti-iNOS (1400W - W) associated with leukotriene antagonist (montelukast - M) or corticosteroid (dexamethasone - D) on distal lung of guinea pigs (GP) with chronic pulmonary inflammation. METHODS GP were inhaled with ovalbumin (OVA-2×/week/4 weeks), treated with M (OVAM), D (OVAD) and/or W (OVAW, OVADW, OVAMW) and distal lungs were evaluated by morphometry. RESULTS Isolated treatments were not sufficient to reduce all parameters. In OVADW, all parameters were reduced with greater reduction in elastic fibers, TIMP-1, IL-4, IL-5, IFN-gamma and PGF2-alpha compared with OVAD (p<0.05). OVAMW potentiated the reduction of actin, elastic fibers, TIMP-1, IL-4, IL-5, TGF-beta, IFN-gamma, iNOS, and PGF2-alpha to a greater extent than OVAM (p<0.05). A reduction of TIMP-1, IL-4, IL-5, TGF-beta, IFN-gamma and iNOS was observed in OVADW compared with OVAMW (p<0.05). CONCLUSIONS Although anti-iNOS paired with montelukast or dexamethasone yields better results than isolated treatments, the most effective pairing for controlling inflammation, oxidative stress and remodeling in this asthma model was found to be corticosteroids and anti-iNOS.
Collapse
|
21
|
Matsunaga K, Yanagisawa S, Hirano T, Ichikawa T, Koarai A, Akamatsu K, Sugiura H, Minakata Y, Matsunaga K, Kawayama T, Ichinose M. Associated demographics of persistent exhaled nitric oxide elevation in treated asthmatics. Clin Exp Allergy 2012; 42:775-81. [PMID: 22515393 DOI: 10.1111/j.1365-2222.2011.03945.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The fraction of exhaled nitric oxide (FENO) is reduced by anti-inflammatory treatment in asthma. However, the FENO level is also regulated by individual demographics and there is considerable variation among clinically stable patients. OBJECTIVE We hypothesized that some demographics may be responsible for persistent FENO elevation despite inhaled corticosteroids (ICS) therapy in asthma. METHODS This was a prospective observational study. We initially screened 250 stable asthmatics and determined the FENO cut-off point for identifying poorly controlled asthma defined by one of the following criteria: Asthma control test <20, or forced expiratory volume in one-second % of predicted <80%, or peak expiratory flow variability <80% (Study 1). After 12-weeks, 229 patients who maintained high or low FENO were selected and the independent factors which might contribute to a high FENO were examined (Study 2). RESULTS A FENO level >39.5 p.p.b. yielded 67% sensitivity and 76% specificity for identifying the patients with poorly controlled asthma. The persistent high FENO group (≥ 40 p.p.b.) was more likely to be ex-smokers, to show evidence of atopy (positive specific IgE, higher serum IgE and blood eosinophils), and to have allergic comorbidities. Especially, past smoking history, blood eosinophils, and chronic rhinosinusitis were identified to be independent predictors of high FENO. Neither the dose of ICS nor other medication use showed any difference between the groups. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that past smoking history, blood eosinophilia, and chronic rhinosinusitis are involved in the persistent airway inflammation detected by FENO. Although their relative contributions on FENO values should be further quantified, clarification of the features of the subjects with high FENO might provide clues for adjustment of the treatment approach in asthma.
Collapse
Affiliation(s)
- K Matsunaga
- Third Department of Internal Medicine, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stefanska J, Sarniak A, Wlodarczyk A, Sokolowska M, Pniewska E, Doniec Z, Nowak D, Pawliczak R. Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Exp Lung Res 2012; 38:90-9. [PMID: 22296407 DOI: 10.3109/01902148.2011.649823] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asthma is an inflammatory airway disease, and oxidative stress was proven to be involved in its pathogenesis. Apocynin effectively inhibits the main source of reactive oxygen species (ROS)-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-by blocking its activation. The aim of this study was to investigate the effect of inhaled apocynin on ROS and RNS (reactive nitrogen species) concentration in 14 nonsmoking mild asthmatics. Effects of nebulized apocynin (0.5 mg/mL) were assessed in exhaled breath condensate (EBC) after 30, 60, and 120 minutes, and safety parameters have been analyzed. Apocynin significantly decreased H2O2 concentration in EBC in comparison with placebo after 60 and 120 minutes. Moreover, apocynin significantly reduced NO(-2) concentration 30 and 60 minutes after nebulization and caused a significant decrease of NO(-3) concentration in EBC 60 and 120 minutes after administration, comparing with placebo. No adverse events have been observed throughout the study. This research confirmed anti-inflammatory properties of nebulized apocynin, which might be an effective and safe drug in bronchial asthma.
Collapse
Affiliation(s)
- J Stefanska
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sugiura H, Kawabata H, Ichikawa T, Koarai A, Yanagisawa S, Kikuchi T, Minakata Y, Matsunaga K, Nakanishi M, Hirano T, Akamatsu K, Furukawa K, Ichinose M. Inhibitory effects of theophylline on the peroxynitrite-augmented release of matrix metalloproteinases by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2012; 302:L764-74. [DOI: 10.1152/ajplung.00342.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti-inflammatory effects of theophylline have been reported to include inhibition of the release of proinflammatory mediators from macrophages and neutrophils. Overproduction of reactive nitrogen species (RNS) has been reported in the airways of patients with chronic obstructive pulmonary disease (COPD), and this causes tissue inflammation and injury. We investigated whether peroxynitrite stimulated the release of matrix metalloproteinases 2 and 9 (MMP-2 and -9; gelatinases) from human fetal lung fibroblasts (HFL-1 cell line) and whether theophylline inhibited the peroxynitrite-augmented release of MMPs. HFL-1 cells and primary lung fibroblasts were treated with peroxynitrite (an RNS), and gelatinases levels were evaluated by gelatin zymography. The inhibitory effect of theophylline on the peroxynitrite-augmented release of MMP-2 and MMP-9 was also investigated. To explore the cell signaling pathways involved in the peroxynitrite-induced gelatinases release and the inhibitory effect of theophylline, transforming growth factor-β1 (TGF-β1), nuclear factor-κB (NF-κB), and histone deacetylase (HDAC) were measured. Peroxynitrite significantly augmented the release of MMP-2 and MMP-9 by fibroblasts ( P < 0.01), as well as TGF-β1 release ( P < 0.01), NF-κB activation ( P < 0.01), and HDAC2 inactivation ( P < 0.01). An NF-κB inhibitor diminished the RNS-augmented release of MMPs and TGF-β1 ( P < 0.01), and a neutralizing TGF-β antibody also diminished MMP release ( P < 0.01). Theophylline significantly inhibited the peroxynitrite-augmented release of MMP-2 and MMP-9 in HFL-1 cells and normal adult lung fibroblasts, and it also inhibited the peroxynitrite-mediated HDAC2 inactivation, NF-κB activation, and TGF-β1 release in HFL-1 cells (all P < 0.01). These results suggest that peroxynitrite can influence tissue remodeling by promoting gelatinases release, while theophylline suppresses peroxynitrite-induced tissue remodeling via pathways involving NF-κB/TGF-β1 and/or HDAC in the HFL-1 cell line.
Collapse
Affiliation(s)
- Hisatoshi Sugiura
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Hiroki Kawabata
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Akira Koarai
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Satoru Yanagisawa
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Takashi Kikuchi
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Yoshiaki Minakata
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Tsunahiko Hirano
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Kanako Furukawa
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| | - Masakazu Ichinose
- Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Kimiidera, Wakayama, Japan
| |
Collapse
|
24
|
Yamamoto M, Tochino Y, Chibana K, Trudeau JB, Holguin F, Wenzel SE. Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clin Exp Allergy 2011; 42:760-8. [PMID: 22092728 DOI: 10.1111/j.1365-2222.2011.03860.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/04/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exhaled nitric oxide (FeNO) associates with asthma and eosinophilic inflammation. However, relationships between nitric oxide synthases, arginase, FeNO, asthma severity and inflammation remain poorly understood. OBJECTIVES To determine the relationships of iNOS expression/activation and arginase 2 expression with asthma severity, FeNO, nitrotyrosine (NT) and eosinophilic inflammation. METHODS Bronchial brushings and sputum were obtained from 25 normal controls, eight mild/no inhaled corticosteroids (ICS), 16 mild-moderate/with ICS and 35 severe asthmatics. The FeNO was measured the same day by ATS/ERS standards. The iNOS, arginase2 mRNA/protein and NT protein were measured in lysates from bronchial brushings by quantitative real-time PCR and Western blot. Induced sputum differentials were obtained. RESULTS Severe asthma was associated with the highest levels of iNOS protein and mRNA, although the index of iNOS mRNA to arginase2 mRNA most strongly differentiated severe from milder asthma. When evaluating NO-related enzyme functionality, iNOS mRNA/protein expression both strongly predicted FeNO (r = 0.61, P < 0.0001 for both). Only iNOS protein predicted NT levels (r = 0.48, P = 0.003) with the strongest relationship in severe asthma (r = 0.61, P = 0.009). The iNOS protein, FeNO and NT, all correlated with sputum eosinophils, but the relationships were again strongest in severe asthma. Controlling for arginase 2 mRNA/protein did not impact any functional outcome. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that while iNOS expression from epithelial brushings is highest in severe asthma, factors controlling arginase2 mRNA expression significantly improve differentiation of severity. In contrast, functionality of the NO pathway as measured by FeNO, NT and eosinophilic inflammation, is strongly associated with iNOS expression alone, particularly in severe asthma.
Collapse
Affiliation(s)
- M Yamamoto
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh Asthma Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nitrative stress in inflammatory lung diseases. Nitric Oxide 2011; 25:138-44. [PMID: 21440655 DOI: 10.1016/j.niox.2011.03.079] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 12/14/2022]
Abstract
Since the discovery of nitric oxide (NO), an intracellular signal transmitter, the role of NO has been investigated in various organs. In the respiratory system, NO derived from the constitutive type of NO synthase (cNOS, NOS1, NOS3) induces bronchodilation and pulmonary vasodilatation to maintain homeostasis. In contrast, the roles of excessive NO derived from the inducible type of NOS (iNOS, NOS2) in airway and lung inflammation in inflammatory lung diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD) are controversial. In these inflammatory lung diseases, excessive nitrosative stress has also been observed. In asthma, some reports have shown that nitrosative stress causes airway inflammation, airway hyperresponsiveness, and airway remodeling, which are the features of asthma, whereas others have demonstrated the anti-inflammatory role of NO derived from NOS2. In the case of refractory asthma, more nitrosative stress has been reported to be observed in such airways compared with that in well-controlled asthmatics. In COPD, reactive nitrogen species (RNS), which are NO and NO-related molecules including nitrogen dioxide and peroxynitrite, cause lung inflammation, oxidative stress, activation of matrix metalloproteinase, and inactivation of antiprotease, which are involved in the pathophysiology of the disease. In the present paper, we review the physiological and pathophysiological effects of NO and NO-related molecules in the respiratory system and in inflammatory lung diseases.
Collapse
|
26
|
Cook SL, Jackson GP. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:221-232. [PMID: 21472582 DOI: 10.1007/s13361-010-0041-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/13/2010] [Accepted: 11/14/2010] [Indexed: 05/30/2023]
Abstract
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2-, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile -NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.
Collapse
Affiliation(s)
- Shannon L Cook
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
27
|
Dweik RA, Sorkness RL, Wenzel S, Hammel J, Curran-Everett D, Comhair SAA, Bleecker E, Busse W, Calhoun WJ, Castro M, Chung KF, Israel E, Jarjour N, Moore W, Peters S, Teague G, Gaston B, Erzurum SC. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am J Respir Crit Care Med 2010; 181:1033-41. [PMID: 20133930 DOI: 10.1164/rccm.200905-0695oc] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Exhaled nitric oxide (Fe(NO)) is a biomarker of airway inflammation in mild to moderate asthma. However, whether Fe(NO) levels are informative regarding airway inflammation in patients with severe asthma, who are refractory to conventional treatment, is unknown. Here, we hypothesized that classification of severe asthma based on airway inflammation as defined by Fe(NO) levels would identify a more reactive, at-risk asthma phenotype. METHODS Fe(NO) and major features of asthma, including airway inflammation, airflow limitation, hyperinflation, hyperresponsiveness, and atopy, were determined in 446 individuals with various degrees of asthma severity (175 severe, 271 non-severe) and 49 healthy subjects enrolled in the Severe Asthma Research Program. MEASUREMENTS AND MAIN RESULTS Fe(NO) levels were similar among patients with severe and non-severe asthma. The proportion of individuals with high Fe(NO) levels (>35 ppb) was the same (40%) among groups despite greater corticosteroid therapy in severe asthma. All patients with asthma and high Fe(NO) had more airway reactivity (maximal reversal in response to bronchodilator administration and by methacholine challenge), more evidence of allergic airway inflammation (sputum eosinophils), more evidence of atopy (positive skin tests, higher serum IgE and blood eosinophils), and more hyperinflation, but decreased awareness of their symptoms. High Fe(NO) identified those patients with severe asthma characterized by the greatest airflow obstruction and hyperinflation and most frequent use of emergency care. CONCLUSIONS Grouping of asthma by Fe(NO) provides an independent classification of asthma severity, and among patients with severe asthma identifies the most reactive and worrisome asthma phenotype.
Collapse
Affiliation(s)
- Raed A Dweik
- Department of Pulmonary, Allergy, and Critical Care Medicine/Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abello N, Kerstjens HAM, Postma DS, Bischoff R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 2009; 8:3222-38. [PMID: 19415921 DOI: 10.1021/pr900039c] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO2). In the present article, we review the main nitration reactions and elucidate why nitration is not a random chemical process. The particular physical and chemical properties of 3-nitrotyrosine (e.g., pKa, spectrophotometric properties, reduction to aminotyrosine) will be discussed, and the biological consequences of PTN (e.g., modification of enzymatic activity, sensitivity to proteolytic degradation, impact on protein phosphorylation, immunogenicity and implication in disease) will be reviewed. Recent data indicate the possibility of an in vivo denitration process, which will be discussed with respect to the different reaction mechanisms that have been proposed. The second part of this review article focuses on analytical methods to determine this post-translational modification in complex proteomes, which remains a major challenge.
Collapse
Affiliation(s)
- Nicolas Abello
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Abstract
Bronchial asthma and chronic obstructive pulmonary disease (COPD) are increasing common diseases. The major pathogenesis of both illnesses is chronic inflammation. However, the inflammatory pattern is distinct in each disease. In asthmatic airways, activated mast cells/eosinophils and T helper 2 lymphocytes (Th2) are predominant. In contrast, macrophages and neutrophils are important in COPD airways/lung. Although nitric oxide (NO) hyperproduction due to inducible NO synthase (iNOS) is observed in asthma and COPD, nitrotyrosine formation via the reaction between NO and O(2)- in addition to the myeloperoxidase-mediated pathway. These distinct inflammatory patterns in both diseases seem to cause pathological differences in asthma and COPD.
Collapse
Affiliation(s)
- Masakazu Ichinose
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
30
|
Abstract
Asthma is a chronic inflammatory disease that affects about 300 million people worldwide, a total that is expected to rise to about 400 million over the next 15-20 years. Most asthmatic individuals respond well to the currently available treatments of inhaled corticosteroids and beta-adrenergic agonists; however, 5-10% have severe disease that responds poorly. Improved knowledge of asthma mechanisms has led to the recognition of different asthma phenotypes that might reflect distinct types of inflammation, explaining the effectiveness of anti-leucotrienes and the anti-IgE monoclonal antibody omalizumab in some patients. However, more knowledge of the inflammatory mechanisms within the airways is required. Improvements in available therapies-such as the development of fast-onset, once-a-day combination drugs with better safety profiles-will occur. Other drugs, such as inhaled p38 MAPK inhibitors and anti-oxidants, that target specific pathways or mediators could prove useful as monotherapies, but could also, in combination with corticosteroids, reduce the corticosteroid insensitivity often seen in severe asthma. Biological agents directed against the interleukin-13 pathway and new immunoregulatory agents that modulate functions of T-regulatory and T-helper-17 cells are likely to be successful. Patient-specific treatments will depend on the development of discriminatory handprints of distinct asthma subtypes and are probably over the horizon. Although a cure is unlikely to be developed in the near future, a greater understanding of disease mechanisms could bring such a situation nearer to reality.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
31
|
Ichikawa T, Sugiura H, Koarai A, Yanagisawa S, Kanda M, Hayata A, Furukawa K, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. Peroxynitrite augments fibroblast-mediated tissue remodeling via myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2008; 295:L800-8. [PMID: 18790992 DOI: 10.1152/ajplung.90264.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irreversible airflow limitation in asthma is associated with airway remodeling in which the differentiation of fibroblasts to myofibroblasts plays a pivotal role. In asthmatic airways, excessive production of reactive nitrogen species (RNS) has been observed. The aim of this study is to evaluate whether peroxynitrite, one of the RNS, can affect the differentiation of fibroblasts to myofibroblasts. Human fetal lung fibroblasts were treated with various concentrations of authentic peroxynitrite or a peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1), and the expressions of alpha-smooth muscle actin (alpha-SMA) and desmin, markers of myofibroblast differentiation, were evaluated. The releases of transforming growth factor-beta(1) (TGF-beta(1)) and ECM proteins including fibronectin and collagen I were assessed. To clarify the mechanism in this differentiation, the effect of anti-TGF-beta antibody or NF-kappaB inhibitors on the alpha-SMA expression and ECM production was assessed. Peroxynitrite and SIN-1 significantly augmented the alpha-SMA expression compared with control in a concentration-dependent manner (P < 0.01 and P < 0.05, respectively). Peroxynitrite significantly increased desmin and TGF-beta(1) production (P < 0.01). Peroxynitrite enhanced the translocation of NF-kappaB into the nucleus confirmed by immunocytostaining and immunoblotting. Peroxynitrite-augmented alpha-SMA expression was blocked by NF-kappaB inhibitors, MG132 and caffeic acid phenethyl ester (CAPE), and anti-TGF-beta antibody. CAPE completely inhibited the peroxynitrite-augmented TGF-beta(1) release. The production of fibronectin and collagen I was significantly increased by peroxynitrite (P < 0.01) and inhibited by anti-TGF-beta antibody. These results suggest that RNS can affect the differentiation to myofibroblasts and excessive ECM production via a NF-kappaB-TGF-beta(1)-dependent pathway.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaminsky DA, van der Vliet A, Janssen-Heininger Y. Reactive nitrogen species in refractory asthma: markers or players? J Allergy Clin Immunol 2008; 121:338-40. [PMID: 18269925 DOI: 10.1016/j.jaci.2007.12.1169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
|