1
|
Carrabba M, Dellepiane RM, Cortesi M, Baselli LA, Soresina A, Cirillo E, Giardino G, Conti F, Dotta L, Finocchi A, Cancrini C, Milito C, Pacillo L, Cinicola BL, Cossu F, Consolini R, Montin D, Quinti I, Pession A, Fabio G, Pignata C, Pietrogrande MC, Badolato R. Long term longitudinal follow-up of an AD-HIES cohort: the impact of early diagnosis and enrollment to IPINet centers on the natural history of Job's syndrome. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:32. [PMID: 37081481 PMCID: PMC10115605 DOI: 10.1186/s13223-023-00776-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 04/22/2023]
Abstract
Job's syndrome, or autosomal dominant hyperimmunoglobulin E syndrome (AD-HIES, STAT3-Dominant Negative), is a rare inborn error of immunity (IEI) with multi-organ involvement and long-life post-infective damage. Longitudinal registries are of primary importance in improving our knowledge of the natural history and management of these rare disorders. This study aimed to describe the natural history of 30 Italian patients with AD-HIES recorded in the Italian network for primary immunodeficiency (IPINet) registry. This study shows the incidence of manifestations present at the time of diagnosis versus those that arose during follow up at a referral center for IEI. The mean time of diagnostic delay was 13.7 years, while the age of disease onset was < 12 months in 66.7% of patients. Respiratory complications, namely bronchiectasis and pneumatoceles, were present at diagnosis in 46.7% and 43.3% of patients, respectively. Antimicrobial prophylaxis resulted in a decrease in the incidence of pneumonia from 76.7% to 46.7%. At the time of diagnosis, skin involvement was present in 93.3% of the patients, including eczema (80.8%) and abscesses (66.7%). At the time of follow-up, under therapy, the prevalence of complications decreased: eczema and skin abscesses reduced to 63.3% and 56.7%, respectively. Antifungal prophylaxis decreased the incidence of mucocutaneous candidiasis from 70% to 56.7%. During the SARS-CoV-2 pandemic, seven patients developed COVID-19. Survival analyses showed that 27 out of 30 patients survived, while three patients died at ages of 28, 39, and 46 years as a consequence of lung bleeding, lymphoma, and sepsis, respectively. Analysis of a cumulative follow-up period of 278.7 patient-years showed that early diagnosis, adequate management at expertise centers for IEI, prophylactic antibiotics, and antifungal therapy improve outcomes and can positively influence the life expectancy of patients.
Collapse
Affiliation(s)
- Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Rosa Maria Dellepiane
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Lucia Augusta Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annarosa Soresina
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Emilia Cirillo
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Dotta
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ''Tor Vergata'', Rome, Italy
| | - Bianca Laura Cinicola
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Fausto Cossu
- Pediatric Clinic, Antonio Cao Hospital, Cagliari, Italy
| | - Rita Consolini
- Section of Pediatrics Immunology and Rheumatology, Department of Pediatrics, University of Pisa, Pisa, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, "Regina Margherita" Children Hospital, University of Turin, Turin, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Maria Cristina Pietrogrande
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Università Degli Studi of Milan, Milan, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
2
|
Xie Y, Shao F, Lei J, Huang N, Fan Z, Yu H. Case report: A STAT1 gain-of-function mutation causes a syndrome of combined immunodeficiency, autoimmunity and pure red cell aplasia. Front Immunol 2022; 13:928213. [PMID: 36105803 PMCID: PMC9464931 DOI: 10.3389/fimmu.2022.928213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited autosomal dominant gain-of-function (GOF) mutations of signal transducer and activator of transcription 1 (STAT1) cause a wide range of symptoms affecting multiple systems, including chronic mucocutaneous candidiasis (CMC), infections, and autoimmune disorders. We describe a rare case of STAT1 mutation with recurrent CMC, lung infections, and anemia. According to the whole-exome sequencing (WES), the patient was genetically mutated in STAT1 GOF (c.854A>G, p.Q285R), and bone marrow biopsy suggested pure red cell aplasia (PRCA). As a functional verification, STAT1 levels and phosphorylation (p-STAT1) of peripheral blood mononuclear cells (PBMCs) following IFN-γ stimulation in STAT1 GOF patient was higher than in the healthy control. Combination therapy of blood transfusion, antimicrobials, intravenous immunoglobulin, methylprednisolone, and the Janus Kinase (JAK) specific inhibitor ruxolitinib was used during treatment of patients. The patient also received a hematopoietic stem cell transplant (HSCT) to help with infections and anemia. This is the first reported case of STAT1 GOF disease complicated with PRCA. This complication might be attributed to immune disorders caused by STAT1 GOF. Furthermore, ruxolitinib may be a viable therapeutic option before HSCT to improve disease management.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Huang
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Haiguo Yu, ; Zhidan Fan,
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Haiguo Yu, ; Zhidan Fan,
| |
Collapse
|
3
|
M M, F C, M G, S F, A B. How to: diagnose inborn errors of intrinsic and innate immunity to viral, bacterial, mycobacterial and fungal infections. Clin Microbiol Infect 2022; 28:1441-1448. [PMID: 35934195 DOI: 10.1016/j.cmi.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
|
4
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
5
|
Alidrisi D, Maksood L, Alqahtani W, Minshawi F, Aburziza A, Janem WF, Almatrafi MA. A child with bronchiectasis, chronic mucocutaneous candidiasis, and hypothyroidism secondary to STAT1 gain‐of‐function mutation: A case report and review of the literature. Clin Case Rep 2022; 10:e05791. [PMID: 35498362 PMCID: PMC9040560 DOI: 10.1002/ccr3.5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
STAT 1 GOF mutations are a rare cause of childhood primary immunodeficiency. Recurrent mucocutaneous candidiasis, chest infections, and autoimmune disease are all classic phenotype presentations. Rapid identification and diagnosis of this debilitating disease using whole exon sequencing may improve outcomes and minimize long‐term sequelae. STAT 1 gain‐of‐function mutation is a rare cause of immunodeficiency in children. A high index of clinical suspicion is crucial for early diagnosis and to minimize long‐term complications.
Collapse
Affiliation(s)
- Dhuha Alidrisi
- Department of Pediatrics Security Forces Hospital Makkah Saudi Arabia
| | - Lama Maksood
- Medical College of Umm Al‐Qura University Makkah Saudi Arabia
| | - Wed Alqahtani
- Medical College of Umm Al‐Qura University Makkah Saudi Arabia
| | - Faisal Minshawi
- Department of Laboratory Medicine Faculty of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | | | - Waleed F. Janem
- Department of Pediatrics Security Forces Hospital Makkah Saudi Arabia
| | | |
Collapse
|
6
|
Sokhi UK, Xia Y, Sosa B, Turajane K, Nishtala SN, Pannellini T, Bostrom MP, Carli AV, Yang X, Ivashkiv LB. Immune Response to Persistent Staphyloccocus Aureus Periprosthetic Joint Infection in a Mouse Tibial Implant Model. J Bone Miner Res 2022; 37:577-594. [PMID: 34897801 PMCID: PMC8940655 DOI: 10.1002/jbmr.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S. aureus PJI are incompletely understood. In this study, we used histology, multiparametric flow cytometry, and gene expression analysis to characterize the immune response in a clinically relevant orthopedic PJI model. We tested the hypothesis that persistent S. aureus infection induces feedback mechanisms that suppress immune cell activation, thereby affecting the course of infection. Surprisingly, persistent infection was characterized by strikingly high cytokine gene expression indicative of robust activation of multiple components of innate and adaptive immunity, along with ongoing severe neutrophil-dominated inflammation, in infected joint and bone tissues. Activation and expansion of draining lymph nodes and a bone marrow stress granulopoiesis reaction were also maintained during late phase infection. In parallel, feedback mechanisms involving T-cell inhibitory receptors and exhaustion markers, suppressive cytokines, and regulatory T cells were activated and associated with decreased T-cell proliferation and tissue infiltration during the persistent phase of infection. These results identify the cellular and molecular components of the mouse immune response to persistent S. aureus PJI and indicate that neutrophil infiltration, inflammatory cytokine responses, and ongoing lymph node and bone marrow reactions are insufficient to clear infection and that immune effector mechanisms are suppressed by feedback inhibitory pathways. These immune-suppressive mechanisms are associated with diminished T-cell proliferation and tissue infiltration and can be targeted as part of adjuvant immunotherapeutic strategies in combination with debridement of biofilm, antibiotics, and other therapeutic modalities to promote eradication of infection. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Upneet K Sokhi
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Branden Sosa
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Sita N Nishtala
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Department of Pathology, Hospital for Special Surgery, New York, NY, USA
| | - Mathias P Bostrom
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedics, Weill Cornell Medicine, New York, NY, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Volokha A, Bondarenko A, Chernyshova L, Hilfanova A, Stepanovskiy Y, Boyarchuk O, Kostyuchenko L. Impact of the J Project on progress of primary immunodeficiency care in Ukraine. Cent Eur J Immunol 2021; 46:250-257. [PMID: 34764795 PMCID: PMC8568034 DOI: 10.5114/ceji.2021.108183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
The J Project is a Central-Eastern European collaborative program in the field of physician education and clinical research aimed at improving the clinical care and diagnosis of primary immunodeficiency disorders (PIDs). Ukraine was one of the first to participate in the project, which allowed us to join the whole European PID community. Since 2004, the country has been holding annual J Project meetings with the involvement of new regions. The spread of the J Project impact has contributed to significantly improved early PID diagnosis in Ukraine. Progress has been made not only in identifying patients but also in arranging the treatment. The assistance in genetic diagnosis made it possible to detect PIDs, study their features, and improve approaches to the management. This also gave an impetus to the development of regional PID centers and participation in scientific research. Of utmost importance is the cooperation with colleagues from Poland, Hungary, and Belarus, who are active members of the J Project.
Collapse
Affiliation(s)
- Alla Volokha
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | | | | | - Anna Hilfanova
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Yuriy Stepanovskiy
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | | | - Larysa Kostyuchenko
- Danylo Halyckyy Lviv Medical University, Western Ukrainian Specialized Children’s Medical Center, Ukraine
| |
Collapse
|
8
|
Stepwise Reversal of Immune Dysregulation Due to STAT1 Gain-of-Function Mutation Following Ruxolitinib Bridge Therapy and Transplantation. J Clin Immunol 2021. [PMID: 33475942 DOI: 10.1007/s10875-020-00943-y/published] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Patients with heterozygous gain-of-function (GOF) mutations in STAT1 frequently exhibit chronic mucocutaneous candidiasis (CMC), immunodeficiency and autoimmune manifestations. Several treatment options including targeted therapies and hematopoietic stem cell transplantation (HSCT) are available for STAT1 GOF patients but modalities and outcomes are not well established. Herein, we aimed to unravel the effect of ruxolitinib as a bridge therapy in a patient with sporadic STAT1 T385M mutation to manage infections and other disease manifestations. METHODS Peripheral blood mononuclear cells were isolated from the patient prior to, during ruxolitinib treatment and 6 months after HSCT. IFN-β-induced STAT1 phosphorylation/dephosphorylation levels and PMA/ionomycin-stimulated intracellular IL-17A/IFN-γ production in CD4+ T cells were evaluated. Differentially expressed genes between healthy controls and the patient prior to, during ruxolitinib treatment and post-transplantation were investigated using Nanostring nCounter Profiling Panel. RESULTS Ruxolitinib provided favorable responses by controlling candidiasis and autoimmune hemolytic anemia in the patient. Dysregulation in STAT1 phosphorylation kinetics improved with ruxolitinib treatment and was completely normalized after transplantation. TH17 deficiency persisted after ruxolitinib treatment, but normalized following HSCT. Consistent with the impairment in JAK/STAT signaling, multiple immune related pathways were found to be dysregulated in the patient. At baseline, genes related to type I IFN-related pathways, antigen processing, T-cell and B-cell functions were upregulated, while NK-cell function and cytotoxicity related genes were downregulated. Dysregulated gene expression was partially improved with ruxolitinib treatment and normalized after transplantation. CONCLUSION Our findings suggest that improved disease management and immune dysregulatory profile can be achieved with ruxolitinib treatment before transplantation and this would be beneficial to reduce the risk of adverse outcome of HSCT.
Collapse
|
9
|
Sharma B, Nonzom S. Superficial mycoses, a matter of concern: Global and Indian scenario-an updated analysis. Mycoses 2021; 64:890-908. [PMID: 33665915 DOI: 10.1111/myc.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/19/2023]
Abstract
Superficial mycoses of skin, nails and hair are among the common fungal infections. They are caused by dermatophytes, non-dermatophyte moulds, yeasts and yeast-like fungi. Such fungal infections are widespread all over the world and are predominant in tropical as well as subtropical regions. Environmental factors, such as warm, humid and pitiable hygienic conditions, are conducive for their growth and proliferation. Although it does not cause mortality, it is known to be associated with excessive morbidity which may be psychological or physical. This affects the quality of life of the infected individuals which leads to a negative impact on their occupational, emotional and social status. Such infections are increasing on a global scale and, therefore, are of serious concern worldwide. This review article covers the global and Indian scenario of superficial mycoses taking into account the historical background, aetiological agents, prevalence, cultural and environmental factors, risk factors, pathogenesis and hygienic practices for the prevention of superficial mycoses.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Skarma Nonzom
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
10
|
Stepwise Reversal of Immune Dysregulation Due to STAT1 Gain-of-Function Mutation Following Ruxolitinib Bridge Therapy and Transplantation. J Clin Immunol 2021; 41:769-779. [PMID: 33475942 DOI: 10.1007/s10875-020-00943-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Patients with heterozygous gain-of-function (GOF) mutations in STAT1 frequently exhibit chronic mucocutaneous candidiasis (CMC), immunodeficiency and autoimmune manifestations. Several treatment options including targeted therapies and hematopoietic stem cell transplantation (HSCT) are available for STAT1 GOF patients but modalities and outcomes are not well established. Herein, we aimed to unravel the effect of ruxolitinib as a bridge therapy in a patient with sporadic STAT1 T385M mutation to manage infections and other disease manifestations. METHODS Peripheral blood mononuclear cells were isolated from the patient prior to, during ruxolitinib treatment and 6 months after HSCT. IFN-β-induced STAT1 phosphorylation/dephosphorylation levels and PMA/ionomycin-stimulated intracellular IL-17A/IFN-γ production in CD4+ T cells were evaluated. Differentially expressed genes between healthy controls and the patient prior to, during ruxolitinib treatment and post-transplantation were investigated using Nanostring nCounter Profiling Panel. RESULTS Ruxolitinib provided favorable responses by controlling candidiasis and autoimmune hemolytic anemia in the patient. Dysregulation in STAT1 phosphorylation kinetics improved with ruxolitinib treatment and was completely normalized after transplantation. TH17 deficiency persisted after ruxolitinib treatment, but normalized following HSCT. Consistent with the impairment in JAK/STAT signaling, multiple immune related pathways were found to be dysregulated in the patient. At baseline, genes related to type I IFN-related pathways, antigen processing, T-cell and B-cell functions were upregulated, while NK-cell function and cytotoxicity related genes were downregulated. Dysregulated gene expression was partially improved with ruxolitinib treatment and normalized after transplantation. CONCLUSION Our findings suggest that improved disease management and immune dysregulatory profile can be achieved with ruxolitinib treatment before transplantation and this would be beneficial to reduce the risk of adverse outcome of HSCT.
Collapse
|
11
|
Staab J, Schwämmle T, Meyer T. The pathogenic T387A missense mutation in the gene encoding signal transducer and activator of transcription 1 exhibits a differential gene expression profile. Mol Immunol 2020; 128:79-88. [PMID: 33096415 DOI: 10.1016/j.molimm.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in the interferon-driven transcription factor STAT1 (signal transducer and activator of transcription 1) cause chronic mucocutaneous candidiasis (CMC). In this study, we characterized the molecular basis of a CMC-associated missense mutation by introducing a threonine-to-alanine exchange in the STAT1 DNA-binding domain at position 387. This substitution had previously been described in a CMC patient with suppurative eyelid infection and cutaneous abscesses, which are both unusual symptoms in this immunodeficiency. The STAT1-T387A mutant generated was compared to the wild-type protein and, in addition, to the missense mutant in the neighbouring position 386. Our results showed that the T387A mutant displayed distinct properties different from the wild-type molecule, namely elevated levels of tyrosine phosphorylation in conjunction with increased DNA-binding activity, hyperactive transcriptional regulation, and prolonged nuclear accumulation. The elevated tyrosine phosphorylation of the T387A mutant did not result in an increased mRNA production above the level of the wild-type molecule for all transcripts tested, indicating that the transcriptional activity of this mutant is largely gene-dependent. Nonetheless, these data demonstrate that the pathogenic T387A mutation associated with an atypical CMC symptomatology is biochemically similar to other well-characterized GOF mutants, while the H386A mutant was indistinguishable from the wild-type molecule. Our findings are in line with the assumption that the phenotype of this dominant STAT1 GOF mutation probably results from a disturbed shift in the equilibrium between the parallel and antiparallel dimer conformation, which is required for physiological gene activation.
Collapse
Affiliation(s)
- Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Till Schwämmle
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| |
Collapse
|
12
|
Staphylococcal infections and infertility: mechanisms and management. Mol Cell Biochem 2020; 474:57-72. [PMID: 32691256 DOI: 10.1007/s11010-020-03833-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
Infertility is a subject of worldwide concern as it affects approximately 15% of couples. Among the prime contributors of infertility, urogenital bacterial infections have lately gained much clinical importance. Staphylococcal species are commensal bacteria and major human pathogens mediating an array of reproductive tract infections. Emerging evidences are 'bit by bit' revealing the mechanisms by which Staphylococci strategically disrupt normal reproductive functions. Staphylococcal species can directly or through hematogenous routes can invade the reproductive tissues. In the testicular cells, epididymis as well as in various compartments of female reproductive tracts, the pathogen recognition receptors, toll-like receptors (TLRs), can recognize the pathogen-associated molecular patterns on the Staphylococci and thereby activate inflammatory signalling pathways. These elicit pro-inflammatory mediators trigger other immune cells to infiltrate and release further inflammatory agents and reactive oxygen species (ROS). Adaptive immune responses may intensify the inflammation-induced reproductive tissue damage, particularly via activation of T-helper (Th) cells, Th1 and Th17 by the innate components or by staphylococcal exotoxins. Staphylococcal surface factors binding with sperm membrane proteins can directly impair sperm functions. Although Staphylococci, being one of the most virulent bacterial species, are major contributors in infection-induced infertility in both males and females, the mechanisms of their operations remain under-discussed. The present review aims to provide a comprehensive perception of the possible mechanisms of staphylococcal infection-induced male and female infertility and aid potential interventions to address the lack of competent therapeutic measures for staphylococcal infection-induced infertility.
Collapse
|
13
|
Erdős M, Jakobicz E, Soltész B, Tóth B, Bata-Csörgő Z, Maródi L. Recurrent, Severe Aphthous Stomatitis and Mucosal Ulcers as Primary Manifestations of a Novel STAT1 Gain-of-Function Mutation. Front Immunol 2020; 11:967. [PMID: 32547544 PMCID: PMC7270203 DOI: 10.3389/fimmu.2020.00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) characterized by persistent and recurrent Candida infection of the skin, nails, and the mucosa membranes has been proposed as the major infectious phenotype in patients with gain-of-function mutation of signal transducer and activator of transcription 1 (STAT1) 1. However, viral infections caused mostly by herpesviruses, and a broad range of autoimmune disorders may also be part of the clinical phenotype. We report here on a 31 years old female patient suffering from severe mucosal aphthous mucositis and ulcers and recurrent herpes simplex for decades. We found a previously unknown heterozygous sequence variant in STAT1 (c.1219C>G; L407V) affecting the DNA-binding domain of the protein in the patient and her 4 years old daughter. We found this mutation gain-of-function (GOF) by using immunoblot and luciferase assays. We detected low proportion of IL-17A-producing CD4+ T cell lymphocytes by using intracellular staining and flow cytometry. Candida-induced secretion of IL-17A and IL-22 by mononuclear cells from the patient was markedly decreased compared to controls. These data suggest that the novel mutant allele may result in impaired differentiation of CD4+ T cells to CD4+/IL-17+ cells. The clinical phenotype of the disease in this patient was unique as it was dominated primarily by severe aphthous stomatitis and ulcerative esophagitis and only partly by typical CMC resulting in diagnostic delay. We suggest that patients with severe recurrent aphthous stomatitis and esophagitis should be evaluated for STAT1 GOF mutation. Based on the broad clinical spectrum of the disease, we also suggest that CMC and CMC disease may not be an appropriate term to define clinically STAT1 GOF mutation.
Collapse
MESH Headings
- Adult
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Candidiasis, Chronic Mucocutaneous/diagnosis
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Candidiasis, Chronic Mucocutaneous/metabolism
- Cell Differentiation
- Cells, Cultured
- Child, Preschool
- Female
- Gain of Function Mutation
- Genetic Predisposition to Disease
- Heredity
- Humans
- Interleukin-17/metabolism
- Interleukins/metabolism
- Nuclear Family
- Phenotype
- Phosphorylation
- Recurrence
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Severity of Illness Index
- Stomatitis, Aphthous/diagnosis
- Stomatitis, Aphthous/genetics
- Stomatitis, Aphthous/immunology
- Stomatitis, Aphthous/metabolism
- Ulcer/diagnosis
- Ulcer/genetics
- Ulcer/immunology
- Ulcer/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Melinda Erdős
- Department of Infectious and Pediatric Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- PID Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Eszter Jakobicz
- Insitute of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Beáta Soltész
- Department of Infectious and Pediatric Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Tóth
- Department of Infectious and Pediatric Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - László Maródi
- Department of Infectious and Pediatric Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- PID Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| |
Collapse
|
14
|
Kiykim A, Charbonnier LM, Akcay A, Karakoc-Aydiner E, Ozen A, Ozturk G, Chatila TA, Baris S. Hematopoietic Stem Cell Transplantation in Patients with Heterozygous STAT1 Gain-of-Function Mutation. J Clin Immunol 2019; 39:37-44. [PMID: 30543054 PMCID: PMC6430975 DOI: 10.1007/s10875-018-0575-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Human signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations present with a broad range of manifestations ranging from chronic mucocutaneous candidiasis and autoimmunity to combined immunodeficiency (CID). So far, there is very limited experience with hematopoietic stem cell transplantation (HSCT) as a therapeutic modality in this disorder. Here, we describe two patients with heterozygous STAT1 GOF mutations mimicking CID who were treated with HSCT. METHODS Data on the HSC sources, conditioning regimen, graft-versus-host disease (GvHD) and antimicrobial prophylaxis, and the post-transplant course including engraftment, GvHD, transplant-related complications, infections, chimerism, and survival were evaluated. Pre- and post-transplant immunological studies included enumeration of circulating interferon gamma (IFN-γ)- and interleukin 17 (IL-17)-expressing CD4+ T cells and analysis of IFN-β-induced STAT1 phosphorylation in patient 1 (P1)'s T cells. RESULTS P1 was transplanted with cord blood from an HLA-identical sibling, and P2 with bone marrow from a fully matched unrelated donor using a reduced toxicity conditioning regimen. While P1 completely recovered from her disease, P2 suffered from systemic CMV disease and secondary graft failure and died due to severe pulmonary involvement and hemorrhage. The dysregulated IFN-γ production, suppressed IL-17 response, and enhanced STAT1 phosphorylation previously found in the CD4+ T cells of P1 were normalized following transplantation. CONCLUSION HSCT could be an alternative and curative therapeutic option for selected STAT1 GOF mutant patients with progressive life-threatening disease unresponsive to conventional therapy. Morbidity and mortality-causing complications included secondary graft failure, infections, and bleeding.
Collapse
Affiliation(s)
- Ayca Kiykim
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Louis Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Arzu Akcay
- Acıbadem Atakent Hospital, Pediatric Bone Marrow Transplantation Unit, Acibadem University, Istanbul, Turkey.
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Gulyuz Ozturk
- Acıbadem Atakent Hospital, Pediatric Bone Marrow Transplantation Unit, Acibadem University, Istanbul, Turkey
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Safa Baris
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
| |
Collapse
|
15
|
Abstract
Oral and maxillofacial fungal infections can appear in high-risk patients, including those immunocompromised. This article explores common oral manifestations of fungal infections in the oral cavity as primary lesions or as a result of disseminated disease. By far the most common oral fungal infection experienced in dentistry is oral candidiasis, which is reviewed in depth from simple oral infections to invasive candidiasis. The review aids the dental practitioner in understanding the full scope of Candida infections and other fungal infections. In addition to candidiasis, various other fungal infections are reviewed, including mucormycosis, aspergillosis, blastomycosis, histoplasmosis, cryptococcosis, and coccidioidomycosis.
Collapse
|
16
|
Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svatoň M, Froňková E, Fejtková M, Zachová R, Rataj M, Zentsová I, Milota T, Klocperk A, Kalina T, Šedivá A. Utility of Ruxolitinib in a Child with Chronic Mucocutaneous Candidiasis Caused by a Novel STAT1 Gain-of-Function Mutation. J Clin Immunol 2018; 38:589-601. [DOI: 10.1007/s10875-018-0519-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
|
17
|
de Albuquerque JAT, Banerjee PP, Castoldi A, Ma R, Zurro NB, Ynoue LH, Arslanian C, Barbosa-Carvalho MUW, Correia-Deur JEDM, Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M, Pedroza LA, Câmara NOS, Mace E, Orange JS, Condino-Neto A. The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages. Front Immunol 2018; 9:567. [PMID: 29666621 PMCID: PMC5875531 DOI: 10.3389/fimmu.2018.00567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.
Collapse
Affiliation(s)
| | - Pinaki Prosad Banerjee
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Royce Ma
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Hideki Ynoue
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Arslanian
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luis Alberto Pedroza
- Colegio de Ciencias de la Salud, Escuela de Medicina, Hospital de los Valles, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Emily Mace
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jordan Scott Orange
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Skin Immune Landscape: Inside and Outside the Organism. Mediators Inflamm 2017; 2017:5095293. [PMID: 29180836 PMCID: PMC5664322 DOI: 10.1155/2017/5095293] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
The skin is an essential organ to the human body protecting it from external aggressions and pathogens. Over the years, the skin was proven to have a crucial immunological role, not only being a passive protective barrier but a network of effector cells and molecular mediators that constitute a highly sophisticated compound known as the “skin immune system” (SIS). Studies of skin immune sentinels provided essential insights of a complex and dynamic immunity, which was achieved through interaction between the external and internal cutaneous compartments. In fact, the skin surface is cohabited by microorganisms recognized as skin microbiota that live in complete harmony with the immune sentinels and contribute to the epithelial barrier reinforcement. However, under stress, the symbiotic relationship changes into a dysbiotic one resulting in skin disorders. Hence, the skin microbiota may have either positive or negative influence on the immune system. This review aims at providing basic background information on the cutaneous immune system from major cellular and molecular players and the impact of its microbiota on the well-coordinated immune responses in host defense.
Collapse
|
19
|
Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol 2017; 48:122-133. [PMID: 28992464 PMCID: PMC5682227 DOI: 10.1016/j.coi.2017.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
Following infection with almost any given microorganism other than an emerging pathogen, only a minority of individuals develop life-threatening clinical disease, implying that these individuals have some form of immunodeficiency. A growing number of inherited and acquired immunodeficiencies have been deciphered over the last 50 years. HIV infection is probably the best-known acquired immunodeficiency. It emerged about 40 years ago and precipitates various severe infections, the occurrence of which is associated with a fall in circulating CD4+ T cells. However, despite the strength of this correlation, infection rates differ between patients with similar levels and durations of CD4+ T lymphopenia in the presence or absence of antiretroviral treatment. Moreover, a few infections seem to be less dependent on total CD4+ T-cell levels. The fine detail of the mechanisms underlying these infections is unknown. We discuss here how studies of the human genetics and immunology of some of these infections in patients with primary immunodeficiencies (PIDs) have provided unique insights into their molecular and cellular basis. Defects of specific CD4+ Th-cell subsets account for some of these infections, as best exemplified by Th1* for mycobacteriosis and Th17 for candidiasis. PIDs are individually rare, but collectively much more common than initially thought, with new disorders being discovered at an ever-increasing pace and a global prevalence worldwide approaching that of HIV infection. Studies of known and new PIDs should make it possible to dissect the pathogenesis of most human infections at an unprecedented level of molecular and cellular precision. The predictive, preventive, and therapeutic implications of studies of immunity to infection in PIDs may extend to HIV-infected patients and patients with infectious diseases in other settings.
Collapse
|
20
|
Kühbacher A, Henkel H, Stevens P, Grumaz C, Finkelmeier D, Burger-Kentischer A, Sohn K, Rupp S. Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans. J Infect Dis 2017; 215:1742-1752. [PMID: 28368492 DOI: 10.1093/infdis/jix153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases.
Collapse
Affiliation(s)
- Andreas Kühbacher
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology
| | - Helena Henkel
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology
| | - Philip Stevens
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Austria
| | - Christian Grumaz
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology
| | - Doris Finkelmeier
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology
| | - Anke Burger-Kentischer
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Germany
| | - Kai Sohn
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Germany
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Germany
| |
Collapse
|
21
|
EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. J Bacteriol 2016; 199:JB.00527-16. [PMID: 27795322 DOI: 10.1128/jb.00527-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus, an invasive pathogen of humans and animals, requires a specialized ESS pathway to secrete proteins (EsxA, EsxB, EsxC, and EsxD) during infection. Expression of ess genes is required for S. aureus establishment of persistent abscess lesions following bloodstream infection; however, the mechanisms whereby effectors of the ESS pathway implement their virulence strategies were heretofore not known. Here, we show that EssE forms a complex with other members of the ESS secretion pathway and its substrates, promoting the secretion of EsxA, EsxB, EsxC, EsxD, and EssD. During bloodstream infection of mice, the S. aureus essE mutant displays defects in host cytokine responses, specifically in the production of interleukin-12 (IL-12) (p40/p70) and the suppression of RANTES (CCL5), activators of TH1 T cell responses and immune cell chemotaxis, respectively. Thus, essE-mediated secretion of protein effectors via the ESS pathway may enable S. aureus to manipulate host immune responses by modifying the production of cytokines. IMPORTANCE Staphylococcus aureus and other firmicutes evolved a specialized ESS (EsxA/ESAT-6-like secretion system) pathway for the secretion of small subsets of proteins lacking canonical signal peptides. The molecular mechanisms for ESS-dependent secretion and their functional purpose are still unknown. We demonstrate here that S. aureus EssE functions as a membrane assembly platform for elements of the secretion machinery and their substrates. Furthermore, S. aureus EssE-mediated secretion contributes to the production or the suppression of specific cytokines during host infection, thereby modifying immune responses toward this pathogen.
Collapse
|
22
|
Moens L, Schaballie H, Bosch B, Voet A, Bossuyt X, Casanova JL, Boisson-Dupuis S, Tangye SG, Meyts I. AD Hyper-IgE Syndrome Due to a Novel Loss-of-Function Mutation in STAT3: a Diagnostic Pursuit Won by Clinical Acuity. J Clin Immunol 2016; 37:12-17. [PMID: 27844301 DOI: 10.1007/s10875-016-0351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Leen Moens
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Heidi Schaballie
- Department of Immunology and Microbiology, Childhood Immunology, University Hospitals Leuven and KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,St. Giles Laboratory of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Arnout Voet
- Department of Biochemistry, Laboratory of Biomolecular Modelling and Design, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,The Howard Hughes Medical Institute, New York, NY, USA.,The Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,The Imagine Institute, Paris Descartes University, Paris, France.,The Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Stephanie Boisson-Dupuis
- St. Giles Laboratory of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,The Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of NSW Australia, Darlinghurst, Australia
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, University Hospitals Leuven and KU Leuven, Leuven, Belgium. .,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Hau CS, Tada Y, Kanda N, Watanabe S. Immunoresponses in dermatomycoses. J Dermatol 2016; 42:236-44. [PMID: 25736316 DOI: 10.1111/1346-8138.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022]
Abstract
Contact with fungal pathogens initiates a series of host responses beginning with innate immunity, which leads to fungal recognition and microbial killing. The innate immune system also modulates the adaptive immune responses, leading to the establishment of immunological memory and protection against pathogens. In the case of dimorphic fungi such as Candida albicans and Malassezia, the immune system plays an important role in tolerance and resistance when managing the organisms either as commensal microbiota or invading pathogens, and disruption of this balance can result in pathological consequences for the host. In addition, Malassezia and dermatophytes have immunomodulatory capabilities that allow them to adapt to their environments and they may exert different effects in healthy and diseased skin. Here, we discuss the host immune responses to dermatomycoses caused by dimorphic fungi such as C. albicans and Malassezia as well as dermatophytes such as Trichophyton spp. and Arthroderma benhamiae to gain a better understanding of the mechanisms of the host-dermatomycosis interaction.
Collapse
Affiliation(s)
- Carren Sy Hau
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, Adcock IM. Cancers Related to Immunodeficiencies: Update and Perspectives. Front Immunol 2016; 7:365. [PMID: 27703456 PMCID: PMC5028721 DOI: 10.3389/fimmu.2016.00365] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
The life span of patients with primary and secondary immunodeficiency is increasing due to recent improvements in therapeutic strategies. While the incidence of primary immunodeficiencies (PIDs) is 1:10,000 births, that of secondary immunodeficiencies are more common and are associated with posttransplantation immune dysfunction, with immunosuppressive medication for human immunodeficiency virus or with human T-cell lymphotropic virus infection. After infection, malignancy is the most prevalent cause of death in both children and adults with (PIDs). PIDs more often associated with cancer include common variable immunodeficiency (CVID), Wiskott-Aldrich syndrome, ataxia-telangiectasia, and severe combined immunodeficiency. This suggests that a protective immune response against both infectious non-self-(pathogens) and malignant self-challenges (cancer) exists. The increased incidence of cancer has been attributed to defective elimination of altered or "transformed" cells and/or defective immunity towards cancer cells. The concept of aberrant immune surveillance occurring in PIDs is supported by evidence in mice and from patients undergoing immunosuppression after transplantation. Here, we discuss the importance of PID defects in the development of malignancies and the current limitations associated with molecular pathogenesis of these diseases and emphasize the need for further knowledge of how specific mutations can modulate the immune system to alter immunosurveillance and thereby play a key role in the etiology of malignancies in PID patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davod Mansouri
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adnan Khosravi
- Chronic Respiratory Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Aliakbar Velayati
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M. Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
25
|
Alegre ML, Chen L, David MZ, Bartman C, Boyle-Vavra S, Kumar N, Chong AS, Daum RS. Impact of Staphylococcus aureus USA300 Colonization and Skin Infections on Systemic Immune Responses in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 197:1118-26. [PMID: 27402695 DOI: 10.4049/jimmunol.1600549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is both a commensal and a pathogen, and USA300, a strain that is usually methicillin-resistant but can sometimes be methicillin-susceptible, has been causing skin and soft tissue infections (SSTIs) in epidemic proportions among otherwise healthy individuals. Although many people are colonized with S. aureus strains, including some with USA300, few of these colonized individuals develop SSTIs. This prompts the hypothesis that infections may develop in individuals with somewhat reduced innate and/or adaptive immune responses to S. aureus, either because prior S. aureus colonization has dampened such responses selectively, or because of more globally reduced immune reactivity. In this study, we analyzed the S. aureus colonization status and PBMC responses to innate and adaptive stimuli in 72 patients with SSTIs and 143 uninfected demographically matched controls. Contrary to the hypothesis formulated, PBMCs from infected patients obtained at the time of infection displayed enhanced innate cytokine production upon restimulation compared with PBMCs from controls, a difference that disappeared after infection resolution. Notably, PBMCs from patients infected with a documented USA300 SSTI displayed greater innate cytokine production than did those from patients infected with documented non-USA300 genotypes. Moreover, colonization with USA300 in infected patients, regardless of their infecting strain, correlated with increased production of IL-10, IL-17A, and IL-22 compared with patients colonized with non-USA300 subtypes. Thus, our results demonstrate that infected patients associated with USA300 either as an infecting strain, or as a colonizing strain, have systemic immune responses of greater magnitude than do those associated with other S. aureus subtypes.
Collapse
Affiliation(s)
| | - Luqiu Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michael Z David
- Department of Medicine, University of Chicago, Chicago, IL 60637; Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | | | | | - Neha Kumar
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Anita S Chong
- Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Robert S Daum
- Department of Pediatrics, University of Chicago, Chicago, IL 60637; Department of Surgery, University of Chicago, Chicago, IL 60637
| |
Collapse
|
26
|
Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, Charbonnier LM, Bakır M, Boztug K, Chatila TA, Barlan IB. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol 2016; 36:641-8. [PMID: 27379765 DOI: 10.1007/s10875-016-0312-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Loss and gain-of-function (GOF) mutations in human signal transducer and activator of transcription 1 (STAT1) lead to distinct phenotypes. Although recurrent infections are common to both types of STAT1 mutations, GOF mutations are distinguished by chronic mucocutaneous candidiasis and autoimmunity. However, the clinical spectra of STAT1 GOF mutations continue to expand. We here describe two patients with STAT1 GOF mutations presenting early in life with combined immunodeficiency (CID). METHODS Clinical data and laboratory findings including immunophenotyping, level of interferon (IFN)-γ/IL-17(+) T cells, interferon-induced STAT1 phosphorylation, and JAK inhibitor assays were evaluated. Sequencing of STAT1 gene was performed by Sanger sequencer. RESULTS Patient 1 (P1) had persistent oral candidiasis and cytomegalovirus (CMV) infection since 2 months of age and later developed cavitary lung lesions due to Mycobacterium tuberculosis. Patient 2 (P2) presented with oral candidiasis and recurrent pneumonia at 4 months of age and subsequently developed CMV pneumonitis. Both patients suffered heterozygous missense mutations in STAT1, leading to deleterious amino acid substitutions in the DNA binding domain (P1: c.1154C > T; p.T385M; P2. c.971G > T; p.C324F). Circulating CD4(+) T cells of both patients exhibited increased interferon-γ and decreased IL-17 expression as compared to controls. They also exhibited increased IFN-β and -γ-induced STAT1 phosphorylation that was reversed upon treatment with the JAK kinase inhibitor ruxolitinib. CONCLUSION STAT1 GOF mutations may present early in life with CID, consistent with the clinical heterogeneity of the disease. JAK kinase inhibitors may potentially be useful in some patients as adjunct therapy pending definitive treatment with bone marrow transplantation.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
| | - Fayhan Alroqi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ayca Kiykim
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ismail Ogulur
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mustafa Bakır
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isil B Barlan
- Division of Pediatric Allergy/Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
| |
Collapse
|
27
|
Soltész B, Tóth B, Sarkadi AK, Erdős M, Maródi L. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans. Int Rev Immunol 2016; 34:348-63. [PMID: 26154078 DOI: 10.3109/08830185.2015.1049345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Infectious Diseases and Pediatric Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | | | | | | | | |
Collapse
|
28
|
The effects of STAT1 dysfunction on the gut. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2016. [DOI: 10.14785/lpsn-2015-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Mutations in the signal transducer and activator of transcription1 (STAT1) have been associated with a variety of clinical patterns. Interestingly patients with heterozygous mutations in the DNA binding domain (DBD) of STAT1 suffer acute and chronic colitis. Methods: To further analyze the role of STAT1 deficiency in intestinal inflammation, we employed protein expression analysis of total and activated STAT1 in intestinal biopsy samples from 2 patients with heterozygous mutations in the DBD of the STAT1 gene. Results: Both patients showed clinical and histological features of colitis. Total and activated STAT1 were decreased in duodenal and colonic enterocytes, and total STAT1 was found to be mislocalized in aggregates subapically. In addition, intestinal biopsy samples showed decreased numbers of lymphocytes. Patient-derived lymphoblasts demonstrated lack of viability and high susceptibility for cell death. Conclusion: STAT1 expression and distribution in the gut of patients with mutations in the DBD are abnormal, suggesting a primary role of STAT1 dysfunction in enterocytes in addition to the secondary effect of aberrant inflammation. Statement of novelty: Colitis associated with STAT1 mutations appears to have unique features distinct from typical inflammatory bowel disease.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTI) in the United States and elsewhere. Recurrent infections occur frequently in patients with S. aureus SSTI, underscoring the need to better understand the nature of protective immunity against these infections. Here, we review recent findings concerning the host factors that predispose to S. aureus SSTI. RECENT FINDINGS Recurrent infections occur in nearly half of all patients with S. aureus SSTI. Epidemiologic and environmental factors, such as exposure to healthcare, age, and household contacts with S. aureus SSTI, and contaminated household fomites are associated with recurrence. The majority of the population has evidence of antistaphylococcal antibodies, but whether these are protective remains enigmatic. In contrast, recent clinical and experimental findings clearly highlight the critical roles of innate and T cell-mediated immunity in defense against these infections. S. aureus interferes with innate and adaptive immunity by a number of recently elucidated mechanisms. SUMMARY Recurrent S. aureus SSTIs are common, suggesting incomplete or absent protective immunity among these patients. Our understanding of protective immunity against recurrent infections is incomplete, and further basic and translational investigation is urgently needed to design strategies to prevent and treat these infections.
Collapse
|
30
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Li J, Yang J, Lu YW, Wu S, Wang MR, Zhu JM. Possible Role of Staphylococcal Enterotoxin B in the Pathogenesis of Autoimmune Diseases. Viral Immunol 2015; 28:354-9. [PMID: 26086678 DOI: 10.1089/vim.2015.0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
As a member of superantigens (SAgs) produced by Staphylococcus aureus, staphylococcal enterotoxin B (SEB) is a exotoxin superantigen that can regulate the activity of immunomodulatory and pro-inflammatory cell types. In addition, SEB plays a critical role in the pathogenesis of autoimmune disorders either by initiating the autoimmune process or by inducing a relapse in an individual in clinical remission from an autoimmune disorder. SEB can directly activate T lymphocytes, leading to the release of cytokines, superoxides, or other mediators of inflammation either directly or indirectly, because of its unique ability to cross-link human major histocompatibility complex (MHC) class II and T cell receptors (TCR), forming a trimolecular complex. This review discusses the potential effects of SEB in the pathogenesis of autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, and explores some updated therapeutic medications to neutralize SEB.
Collapse
Affiliation(s)
- Jing Li
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Jie Yang
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Yu-wei Lu
- 2 Department of Information, The Second Hospital of Anhui Medical University , Hefei, China
| | - Song Wu
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Ming-rui Wang
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| | - Ji-min Zhu
- 1 Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine , Hefei, China
| |
Collapse
|
32
|
Affiliation(s)
- John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
33
|
Monoallelic STAT1 mutations and disease patterns. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2014. [DOI: 10.14785/lpsn-2014-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoallelic mutations in STAT1 are associated with a myriad of clinical phenotypes. Some clinical patterns appear to be preferentially associated with mutations in various STAT1 domains. Included are trends of phenotype-genotype correlations in patients with mutations in STAT1.
Collapse
|
34
|
Clinical manifestations associated with novel mutations in the coiled-coil domain of STAT1. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2014. [DOI: 10.14785/lpsn-2014-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Monoallelic mutations in STAT1 are associated with a variety of clinical patterns. We studied patients with novel mutations in the coiled-coil domain of STAT1. We found that clinical manifestations can vary from mild Candida infections limited to the oropharyx to serious serial strokes and skin cancer. Autoimmune manifestations were found to be rare and limited to hypothyroidism. Immune evaluations were normal or near normal in all patients with the exception of anergy to Candida. Mutation in the coiled-coil domain results in susceptibility to mucus membrane candidiasis as well as brain vascular anomalies. Statement of novelty: We describe novel mutations in the coiled-coil domain of STAT1.
Collapse
|
35
|
Rizzetto L, De Filippo C, Cavalieri D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 2014; 44:3166-81. [DOI: 10.1002/eji.201344403] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Rizzetto
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| | - Carlotta De Filippo
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| | - Duccio Cavalieri
- Research and Innovation Centre; Fondazione Edmund Mach; San Michele all'Adige TN Italy
| |
Collapse
|
36
|
Ten Oever J, van de Veerdonk FL, Joosten LAB, Simon A, van Crevel R, Kullberg BJ, Gyssens IC, van der Meer JWM, van Deuren M, Netea MG. Cytokine production assays reveal discriminatory immune defects in adults with recurrent infections and noninfectious inflammation. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1061-9. [PMID: 24872512 PMCID: PMC4135925 DOI: 10.1128/cvi.00152-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022]
Abstract
Cytokine production assays have been primarily used in research settings studying novel immunodeficiencies. We sought to determine the diagnostic value of cytokine production assays in patients with recurrent and/or severe infectious diseases (IDs) without known immunodeficiencies and unclassified noninfectious inflammatory disorders (NIIDs). We retrospectively examined cytokine production in whole-blood and peripheral blood mononuclear cell samples from 157 adult patients. A cytokine production rate of <5% of that of healthy controls was considered defective. While monocyte-derived cytokine (tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) production was rarely affected, 30% of all included patients had deficient production of interferon gamma (IFN-γ), IL-17A, or IL-22. Twenty-five percent of the NIID patients displayed defective IFN-γ production, whereas IL-17A production was generally unaffected. In the group of ID patients, defective IFN-γ production was found in 19% and 14% of the patients with viral and bacterial infections, respectively, and in 38%, 24%, and 50% of patients with mycobacterial, mucocutaneous, and invasive fungal infections, respectively. Defective IL-17A and IL-22 production was mainly confined to ID patients with mucocutaneous fungal infections. In conclusion, cytokine production assays frequently detect defective Th1 responses in patients with mycobacterial or fungal infections, in contrast to patients with respiratory tract infections or isolated bacterial infections. Defective IL-17A and IL-22 production was primarily found in patients with fungal infections, while monocyte-derived cytokine production was unaffected. Thus, lymphocyte-derived cytokine production assays are helpful in the diagnostic workup of patients with recurrent infections and suspected immunodeficiencies and have the potential to reveal immune defects that might guide adjunctive immunomodulatory therapy.
Collapse
Affiliation(s)
- Jaap Ten Oever
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Simon
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands Hasselt University, Diepenbeek, Belgium
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Affiliation(s)
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Abstract
In this review, we examine the current status of Staphylococcus aureus vaccine development and the prospects for future vaccines. Examination of the clinical trials to date show that murine models have not predicted success in humans for active or passive immunization. A key factor in the failure to develop a vaccine to prevent S. aureus infections comes from our relatively limited knowledge of human protective immunity. More recent reports on the elements of the human immune response to staphylococci are analysed. In addition, there is some controversy concerning the role of antibodies for protecting humans, and these data are reviewed. From a review of the current state of understanding of staphylococcal immunity, a working model is proposed. Some new work has provided some initial candidate biomarker(s) to predict outcomes of invasive infections and to predict the efficacy of antibiotic therapy in humans. We conclude by looking to the future through the perspective of lessons gleaned from the clinical vaccine trials.
Collapse
Affiliation(s)
- Vance G. Fowler
- Division of Infectious Diseases Duke University Medical Center Durham, NC 27710
| | - Richard A. Proctor
- University of Wisconsin School of Medicine and Public Health Madison, WI
| |
Collapse
|
39
|
Sarkadi AK, Taskó S, Csorba G, Tóth B, Erdős M, Maródi L. Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J Clin Immunol 2014; 34:181-93. [PMID: 24493573 DOI: 10.1007/s10875-014-9987-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Abstract
The relative roles of various autoantibodies against IL-17-type cytokines in susceptibility to chronic mucocutaneous candidiasis (CMC) in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) remain poorly defined. The purpose of this longitudinal study was to analyze the relationship between the occurrence of mucocutaneous candidiasis and levels of anti-IL-17A, anti-IL-17F and anti-IL-22 autoantibodies. We studied six APECED patients from four families with various disease manifestations. Clinical data were collected during regular follow-up. Anti-endocrine organ antibody levels and clinical chemistry and immunology parameters were determined in routine laboratory assays on freshly isolated serum. Levels of autoantibodies against IL-17A, IL-17F, IL-22, IFN-α, IFN-ω and TNF-α, and cytokine release by Candida-exposed blood cells were determined by ELISA. Mutations were analyzed by sequencing genomic DNA. Four patients carried the germline c.769C > T homozygous nonsense mutation, which results in R257X truncation of the AIRE protein, and two patients from the same family were compound heterozygous for the c.769C > T/c.1344delC mutation. We found persistently high levels of antibodies against IL-17A in the serum samples of one patient presenting CMC since infancy and low or undetectable anti-IL-17A antibody levels in the sera of five patients with no candidiasis or without severe candidiasis. By contrast, levels of autoantibodies against IL-17F and IL-22 were higher in all patients than in healthy controls. Release of IL-17-type cytokines by Candida-exposed blood mononuclear cells was low or negligible in all patients tested. We suggest that anti-IL-17A antibodies may play an important role in the predisposition to candidiasis of APECED patients. However, the lack of severe CMC in APECED patients with high levels of IL-17F and anti-IL-22 autoantibodies clearly calls into question the role of these antibodies as the principal cause of cutaneous and mucosal candidiasis in at least some APECED patients. These data also suggest that the impaired release of IL-17-type cytokines by blood cells may be an element of the immunopathology of CMC in APECED patients.
Collapse
Affiliation(s)
- Adrien Katalin Sarkadi
- Department of Infectious and Pediatric Immunology, University of Debrecen, Medical and Health Science Center, Nagyerdei Krt. 98, 4032, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Mizoguchi Y, Tsumura M, Okada S, Hirata O, Minegishi S, Imai K, Hyakuna N, Muramatsu H, Kojima S, Ozaki Y, Imai T, Takeda S, Okazaki T, Ito T, Yasunaga S, Takihara Y, Bryant VL, Kong XF, Cypowyj S, Boisson-Dupuis S, Puel A, Casanova JL, Morio T, Kobayashi M. Simple diagnosis of STAT1 gain-of-function alleles in patients with chronic mucocutaneous candidiasis. J Leukoc Biol 2013; 95:667-76. [PMID: 24343863 DOI: 10.1189/jlb.0513250] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CMCD is a rare congenital disorder characterized by persistent or recurrent skin, nail, and mucosal membrane infections caused by Candida albicans. Heterozygous GOF STAT1 mutations have been shown to confer AD CMCD as a result of impaired dephosphorylation of STAT1. We aimed to identify and characterize STAT1 mutations in CMCD patients and to develop a simple diagnostic assay of CMCD. Genetic analysis of STAT1 was performed in patients and their relatives. The mutations identified were characterized by immunoblot and reporter assay using transient gene expression experiments. Patients' leukocytes are investigated by flow cytometry and immunoblot. Six GOF mutations were identified, three of which are reported for the first time, that affect the CCD and DBD of STAT1 in two sporadic and four multiplex cases in 10 CMCD patients from Japan. Two of the 10 patients presented with clinical symptoms atypical to CMCD, including other fungal and viral infections, and three patients developed bronchiectasis. Immunoblot analyses of patients' leukocytes showed abnormally high levels of pSTAT1 following IFN-γ stimulation. Based on this finding, we performed a flow cytometry-based functional analysis of STAT1 GOF alleles using IFN-γ stimulation and the tyrosine kinase inhibitor, staurosporine. The higher levels of pSTAT1 observed in primary CD14(+) cells from patients compared with control cells persisted and were amplified by the presence of staurosporine. We developed a flow cytometry-based STAT1 functional screening method that would greatly facilitate the diagnosis of CMCD patients with GOF STAT1 mutations.
Collapse
Affiliation(s)
- Yoko Mizoguchi
- 2.Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy and other primary immunodeficiency diseases help to resolve the nature of protective immunity against chronic mucocutaneous candidiasis. Curr Opin Pediatr 2013; 25:715-21. [PMID: 24240291 DOI: 10.1097/mop.0000000000000028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review summarizes and discusses the most recent and important publications describing Mendelian diseases associated with susceptibility to chronic mucocutaneous candidiasis (CMC) as a means of gaining insight into the pathogenesis of this immunodeficiency. RECENT FINDINGS Impairment to T helper 17 (Th17) cell-associated signalling pathways are common in immunodeficiency syndromes associated with CMC infections. Mutations in CARD9, STAT3, IL17RA, IL17F, STAT1, and IL12RB and polymorphisms in Dectin 1 and interleukin-22 (IL-22) encoding genes have been shown to impair the development or function of Th17 cells and are associated with susceptibility to candidiasis. Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy have revealed autoimmunity to Th17 cytokines and cells as the basis for CMC. IL-17A, IL-17F, and IL-22 induce production of antimicrobial peptides and chemoattractants that recruit neutrophils in response to invading fungi. Th17 cell-associated cytokines may play a role in shaping the host's microbiome (that competes with C. albicans) preventing overgrowth of this pathogen. Recent evidence also suggests that IL-22 together with IL-17F might be the most important Th17 cytokine in protection against Candida. SUMMARY Dissection of critical molecular and immunological mechanisms will allow the development of new treatments for primary and secondary immunodeficiency disorders resulting in chronic Candida infections.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antifungal Agents/immunology
- Autoimmunity
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Candidiasis, Chronic Mucocutaneous/therapy
- Chemotactic Factors/genetics
- Chemotactic Factors/immunology
- Disease Susceptibility
- Female
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interleukin-17/immunology
- Interleukins/immunology
- Male
- Mutation
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/therapy
- Polymorphism, Single Nucleotide
- Signal Transduction/immunology
- Th17 Cells/immunology
- Young Adult
- Interleukin-22
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
42
|
Abstract
Heritable defects in human B cell/antibody development are not associated with increased susceptibility to Staphylococcus aureus infection. Protein A (SpA), a surface molecule of S. aureus, binds the Fcγ domain of immunoglobulin (Ig) and cross-links the Fab domain of VH3-type B cell receptors (IgM). Here we generated S. aureus spa variants harboring amino acid substitutions at four key residues in each of the five Ig-binding domains of SpA. Wild-type S. aureus required SpA binding to Ig to resist phagocytosis and SpA-mediated B cell receptor cross-linking to block antibody development in mice. The spaKKAA mutant, which cannot bind Ig or IgM, was phagocytosed and elicited B cell responses to key virulence antigens that protected animals against lethal S. aureus challenge. The immune evasive attributes of S. aureus SpA were abolished in µMT mice lacking mature B cells and antibodies. Thus, while wild-type S. aureus escapes host immune surveillance, the spaKKAA variant elicits adaptive responses that protect against recurrent infection. Staphylococcus aureus causes recurrent skin and bloodstream infections without eliciting immunity. Heritable defects in neutrophil and T cell function, but not B cell or antibody development, are associated with increased incidence of S. aureus infection, and efforts to develop antibody-based S. aureus vaccines have thus far been unsuccessful. We show here that the Fcγ and VH3-type Fab binding activities of staphylococcal protein A (SpA) are essential for S. aureus escape from host immune surveillance in mice. The virulence attributes of SpA in mice required mature B cells and immunoglobulin. These results suggest that antibodies and B cells play a key role in the pathogenesis of staphylococcal infections and provide insights into the development of a vaccine against S. aureus.
Collapse
|
43
|
Soltész B, Tóth B, Shabashova N, Bondarenko A, Okada S, Cypowyj S, Abhyankar A, Csorba G, Taskó S, Sarkadi AK, Méhes L, Rozsíval P, Neumann D, Chernyshova L, Tulassay Z, Puel A, Casanova JL, Sediva A, Litzman J, Maródi L. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet 2013; 50:567-78. [PMID: 23709754 PMCID: PMC3756505 DOI: 10.1136/jmedgenet-2013-101570] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. OBJECTIVE To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. RESULTS The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. CONCLUSIONS The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2012. J Allergy Clin Immunol 2013; 131:675-82. [DOI: 10.1016/j.jaci.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 01/29/2023]
|
46
|
Peden DB, Bush RK. Advances in environmental and occupational disorders in 2012. J Allergy Clin Immunol 2013; 131:668-74. [PMID: 23384680 DOI: 10.1016/j.jaci.2012.12.1572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The year 2012 produced a number of advances in our understanding of the effect of environmental factors on allergic diseases, identification of new allergens, immune mechanisms in host defense, factors involved in asthma severity, and therapeutic approaches. This review focuses on the articles published in the Journal in 2012 that enhance our knowledge base of environmental and occupational disorders. Identification of novel allergens can improve diagnostics, risk factor analysis can aid preventative approaches, and studies of genetic-environmental interactions and immune mechanisms will lead to better therapeutics.
Collapse
Affiliation(s)
- David B Peden
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology, and Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7310, USA.
| | | |
Collapse
|