1
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
2
|
Vural Solak GT, Aksu K, Akkale O, Telli O, Celik Tuglu H, Dindar Celik F, Yagdiran M. The long-term outcomes of mepolizumab treatment at 100 mg dose on idiopathic chronic eosinophilic pneumonia: A real-life experience. Allergy Asthma Proc 2024; 45:e46-e53. [PMID: 38982601 DOI: 10.2500/aap.2024.45.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Background: The standard therapeutic regimen for idiopathic chronic eosinophilic pneumonia (ICEP) involves the administration of oral corticosteroids (OCS). However, a notable proportion of individuals experience recurrent episodes after the tapering or cessation of OCS during the course of ICEP. There has been a growing interest in exploring alternative treatment modalities for patients with ICEP at heightened risk of relapse. Objective: The aim of this study was to assess the efficacy of mepolizumab at a dose of 100 mg administered every 4 weeks in preventing relapses of ICEP and its impact on the clinical outcomes. Methods: This retrospective clinical observational study used real-world data to assess the impact of mepolizumab on patients diagnosed with ICEP accompanied by severe asthma. Demographic information and clinical characteristics were extracted from medical records. The study examined the effect of mepolizumab on the annual relapse rate, OCS dose, eosinophil count, and respiratory function parameters. Results: All patients included in the study, with a median (range) follow-up period of 19 months (4-40 months), the annual relapse rate decreased from 0.33 to 0 after the initiation mepolizumab. In addition, the maintenance OCS dose, expressed in methylprednisolone equivalents, declined from 4 mg/day to 0 mg/day. A reduction in the blood eosinophil count was observed, alongside a partial improvement in respiratory function test results among the patients. Conclusıon: A dose regimen of 100 mg of mepolizumab administered every 4 weeks emerges as a promising and well-tolerated therapeutic approach for averting relapses of ICEP.
Collapse
|
3
|
Kwon EK, Choi Y, Sim S, Ye YM, Shin YS, Park HS, Ban GY. Cannabinoid receptor 2 as a regulator of inflammation induced oleoylethanolamide in eosinophilic asthma. J Allergy Clin Immunol 2024; 153:998-1009.e9. [PMID: 38061443 DOI: 10.1016/j.jaci.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Oleoylethanolamide (OEA), an endogenously generated cannabinoid-like compound, has been reported to be increased in patients with severe asthma and aspirin-exacerbated respiratory disease. Recruitment of activated eosinophils in the airways is a hallmark of bronchial asthma. OBJECTIVE We explored the direct contribution of cannabinoid receptor 2 (CB2), a cognate receptor of OEA, which induces eosinophil activation in vitro and in vivo. METHODS We investigated OEA signaling in the eosinophilic cell line dEol-1 in peripheral blood eosinophils from people with asthma. In order to confirm whether eosinophil activation by OEA is CB2 dependent or not, CB2 small interfering RNA and the CB2 antagonist SR144528 were used. The numbers of airway inflammatory cells and the levels of cytokines were measured in bronchoalveolar lavage fluid, and airway hyperresponsiveness was examined in the BALB/c mice. RESULTS CB2 expression was increased after OEA treatment in both peripheral blood eosinophils and dEol-1 cells. It was also elevated after OEA-induced recruitment of eosinophils to the lungs in vivo. However, SR144528 treatment reduced the activation of peripheral blood eosinophils from asthmatic patients. Furthermore, CB2 knockdown decreased the activation of dEol-1 cells and the levels of inflammatory and type 2 cytokines. SR144528 treatment alleviated airway hyperresponsiveness and eosinophil recruitment to the lungs in vivo. CONCLUSION CB2 may contribute to the pathogenesis of eosinophilic asthma. Our results provide new insight into the molecular mechanism of signal transduction by OEA in eosinophilic asthma.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea; Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
4
|
Marques Azzini GO, Marques Azzini VO, Santos GS, Visoni S, Fusco MA, Beker NS, Mahmood A, Bizinotto Lana JV, Jeyaraman M, Nallakumarasamy A, Jeyaraman N, da Fonseca LF, Luz Arab MG, Vicente R, Rajendran RL, Gangadaran P, Ahn BC, Duarte Lana JFS. Cannabidiol for musculoskeletal regenerative medicine. Exp Biol Med (Maywood) 2023; 248:445-455. [PMID: 37158062 PMCID: PMC10281618 DOI: 10.1177/15353702231162086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most prevalent causes, which lead patients to a physician's office. The most common disorders affecting MSK structures are osteoarthritis, rheumatoid arthritis, back pain, and myofascial pain syndrome, which are all responsible for major pain and physical disability. Although there are many known management strategies currently in practice, phytotherapeutic compounds have recently begun to rise in the medical community, especially cannabidiol (CBD). This natural, non-intoxicating molecule derived from the cannabis plant has shown interesting results in many preclinical studies and some clinical settings. CBD plays vital roles in human health that go well beyond the classic immunomodulatory, anti-inflammatory, and antinociceptive properties. Recent studies demonstrated that CBD also improves cell proliferation and migration, especially in mesenchymal stem cells (MSCs). The foremost objective of this review article is to discuss the therapeutic potential of CBD in the context of MSK regenerative medicine. Numerous studies listed in the literature indicate that CBD possesses a significant capacity to modulate mammalian tissue to attenuate and reverse the notorious hallmarks of chronic musculoskeletal disorders (MSDs). The most of the research included in this review report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs. CBD is considered safe and well tolerated as no serious adverse effects were reported. CBD promotes many positive effects which can manage detrimental alterations brought on by chronic MSDs. Since the application of CBD for MSK health is still undergoing expansion, additional randomized clinical trials are warranted to further clarify its efficacy and to understand its cellular mechanisms.
Collapse
Affiliation(s)
| | | | - Gabriel Silva Santos
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Silvia Visoni
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Ansar Mahmood
- University Hospitals Birmingham,
Birmingham B15 2PR, UK
| | - João Vitor Bizinotto Lana
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Medical Specialties School Centre,
Centro Universitário Max Planck, Indaiatuba, 13343-060, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, A.C.S.
Medical College and Hospital, Dr.M.G.R. Educational and Research Institute, Chennai
600056, India
- Department of Biotechnology, School of
Engineering and Technology, Sharda University, Greater Noida 201310, India
- South Texas Orthopaedic Research
Institute (STORI Inc.), Laredo, TX 78045, USA
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, All India
Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, Atlas
Hospitals, Tiruchirappalli 620002, India
| | - Lucas Furtado da Fonseca
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Universidade Federal de São Paulo
(UNIFESP), São Paulo, 04021-001, Brazil
| | - Miguel Gustavo Luz Arab
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Saúde Máxima (SAMAX), São Paulo,
01239-040, Brazil
| | - Rodrigo Vicente
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Ultra Sports Science, São Paulo,
Brazil
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | | |
Collapse
|
5
|
Tang TYC, Kim JS, Das A. Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:375-422. [PMID: 37236765 DOI: 10.1016/bs.apha.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Endocannabinoids are derived from dietary omega-3 and omega-6 fatty acids and play an important role in regulation of inflammation, development, neurodegenerative diseases, cancer, and cardiovascular diseases. They elicit this effect via interactions with cannabinoid receptors 1 and 2 which are also targeted by plant derived cannabinoid from cannabis. The evidence of the involvement of the endocannabinoid system in cardiopulmonary function comes from studies that show that cannabis consumption leads to cardiovascular effect such as arrythmia and is beneficial in lung cancer patients. Moreover, omega-3 and omega-6 endocannabinoids play several important roles in cardiopulmonary system such as causing airway relaxation, suppressing atherosclerosis and hypertension. These effects are mediated via the cannabinoids receptors that are abundant in the cardiopulmonary system. Overall, this chapter reviews the known role of phytocannabinoids and endocannabinoids in the cardiopulmonary context.
Collapse
Affiliation(s)
- Tiffany Y-C Tang
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States.
| |
Collapse
|
6
|
Merrien M, Wasik AM, Melén CM, Morsy MHA, Sonnevi K, Junlén HR, Christensson B, Wahlin BE, Sander B. 2-Arachidonoylglycerol Modulates CXCL12-Mediated Chemotaxis in Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:cancers15051585. [PMID: 36900374 PMCID: PMC10000973 DOI: 10.3390/cancers15051585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
To survive chemotherapy, lymphoma cells can relocate to protective niches where they receive support from the non-malignant cells. The biolipid 2-arachidonoylglycerol (2-AG), an agonist for the cannabinoid receptors CB1 and CB2, is released by stromal cells in the bone marrow. To investigate the role of 2-AG in lymphoma, we analyzed the chemotactic response of primary B-cell lymphoma cells enriched from peripheral blood of twenty-two chronic lymphocytic leukemia (CLL) and five mantle cell lymphoma (MCL) patients towards 2-AG alone and/or to the chemokine CXCL12. The expression of cannabinoid receptors was quantified using qPCR and the protein levels visualized by immunofluorescence and Western blot. Surface expression of CXCR4, the main cognate receptor to CXCL12, was analyzed by flow cytometry. Phosphorylation of key downstream signaling pathways activated by 2-AG and CXCL12 were measured by Western blot in three MCL cell lines and two primary CLL samples. We report that 2-AG induces chemotaxis in 80% of the primary samples, as well as 2/3 MCL cell lines. 2-AG induced in a dose-dependent manner, the migration of JeKo-1 cell line via CB1 and CB2. 2-AG affected the CXCL12-mediated chemotaxis without impacting the expression or internalization of CXCR4. We further show that 2-AG modulated p38 and p44/42 MAPK activation. Our results suggest that 2-AG has a previously unrecognized role in the mobilization of lymphoma cells by effecting the CXCL12-induced migration and the CXCR4 signaling pathways, however, with different effects in MCL compared to CLL.
Collapse
Affiliation(s)
- Magali Merrien
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (B.S.)
| | - Agata M. Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christopher M. Melén
- Division of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
- Unit of Haematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | | | - Kristina Sonnevi
- Division of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
- Unit of Haematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Henna-Riikka Junlén
- Division of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
- Unit of Haematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Pathology and Cancer, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Björn E. Wahlin
- Division of Haematology, Department of Medicine at Huddinge, Karolinska Institutet, 171 77 Stockholm, Sweden
- Unit of Haematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Pathology and Cancer, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Correspondence: (M.M.); (B.S.)
| |
Collapse
|
7
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
8
|
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB 2 Receptor in Human Leukocytes. Front Pharmacol 2022; 13:826400. [PMID: 35273503 PMCID: PMC8902156 DOI: 10.3389/fphar.2022.826400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is notably expressed in most, if not all leukocyte types. This relatively restricted localization, combined to the absence of psychotropic effects following its activation, make it an attractive drug target for inflammatory and autoimmune diseases. Therefore, there has been an increasing interest in the past decades to identify precisely which immune cells express the CB2 receptor and what are the consequences of such activation. Herein, we provide new data on the expression of both CB1 and CB2 receptors by human blood leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes, B and T lymphocytes, this receptor is most abundant in human eosinophils and B lymphocytes. We also review the evidence obtained from primary human leukocytes and immortalized cell lines regarding the regulation of their functions by the CB2 receptor, which underscore the urgent need to deepen our understanding of the CB2 receptor as an immunoregulator in humans.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit Between the Consiglio Nazionale Delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Naples, Italy
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| |
Collapse
|
9
|
Tashiro H, Takahashi K, Kurihara Y, Sadamatsu H, Kuwahara Y, Kimura S, Sueoka-Aragane N. Anti-IL-5 Agents for the Treatment of Idiopathic Chronic Eosinophilic Pneumonia: A Case Series. J Asthma Allergy 2022; 15:169-177. [PMID: 35177908 PMCID: PMC8843786 DOI: 10.2147/jaa.s343272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Idiopathic chronic eosinophilic pneumonia (ICEP) is a rare, chronic respiratory disease. Corticosteroid therapy is effective for ICEP, but relapse is frequent after its tapering, which leads to chronic use and corticosteroid-related adverse effects. Currently, biological agents targeting interleukin 5 (IL-5) are considered alternatives for treating ICEP patients with frequent relapse, but the detailed effects are not fully understood. Patients and Methods The clinical characteristics of 30 patients with ICEP, especially 12 patients with ICEP who experienced relapse after corticosteroid dose tapering, were evaluated retrospectively. In addition, 4 ICEP patients with frequent relapse treated by IL-5-targeted biological agents were reviewed. Results Of the 30 patients diagnosed with ICEP, 12 patients (40.0%) recurred after corticosteroid dose tapering, and 9 (30.0%) were treated with maintenance doses of corticosteroid. Of ICEP patients who experienced recurrence, 6 (50.0%) had frequent relapses (2 or more times). All 4 patients treated with anti-IL-5 agents had their corticosteroid dose reduced without any relapses; in 3 patients, corticosteroids were withdrawn. Conclusion Anti-IL-5 agents might be alternatives for treating ICEP patients with frequent relapses.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Correspondence: Hiroki Tashiro, Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture, 849-8501, Japan, Tel +81-952-34-2369, Fax +81-952-34-2017, Email
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hironori Sadamatsu
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
10
|
Human and Mouse Eosinophils Differ in Their Ability to Biosynthesize Eicosanoids, Docosanoids, the Endocannabinoid 2-Arachidonoyl-glycerol and Its Congeners. Cells 2022; 11:cells11010141. [PMID: 35011703 PMCID: PMC8750928 DOI: 10.3390/cells11010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
High eosinophil (EOS) counts are a key feature of eosinophilic asthma. EOS notably affect asthmatic response by generating several lipid mediators. Mice have been utilized in hopes of defining new pharmacological targets to treat asthma. However, many pinpointed targets in mice did not translate into clinics, underscoring that key differences exist between the two species. In this study, we compared the ability of human (h) and mouse (m) EOS to biosynthesize key bioactive lipids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). hEOS were isolated from the blood of healthy subjects and mild asthmatics, while mEOSs were differentiated from the bone marrow. EOSs were treated with fatty acids and lipid mediator biosynthesis assessed by LC-MS/MS. We found that hEOS biosynthesized leukotriene (LT) C4 and LTB4 in a 5:1 ratio while mEOS almost exclusively biosynthesized LTB4. The biosynthesis of the 15-lipoxygenase (LO) metabolites 15-HETE and 12-HETE also differed, with a 15-HETE:12-HETE ratio of 6.3 for hEOS and 0.727 for mEOS. EOS biosynthesized some specialized pro-resolving mediators, and the levels from mEOS were 9-times higher than those of hEOS. In contrast, hEOS produced important amounts of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and its congeners from EPA and DHA, a biosynthetic pathway that was up to ~100-fold less prominent in mEOS. Our data show that hEOS and mEOS biosynthesize the same lipid mediators but in different amounts. Compared to asthmatics, mouse models likely have an amplified involvement of LTB4 and specialized pro-resolving mediators and a diminished impact of the endocannabinoid 2-arachidonoyl-glycerol and its congeners.
Collapse
|
11
|
Archambault AS, Tinto F, Dumais É, Rakotoarivelo V, Kostrzewa M, Plante PL, Martin C, Simard M, Silvestri C, Pouliot R, Laviolette M, Boulet LP, Vitale RM, Ligresti A, Di Marzo V, Flamand N. Biosynthesis of the Novel Endogenous 15-Lipoxygenase Metabolites N-13-Hydroxy-octodecadienoyl-ethanolamine and 13-Hydroxy-octodecadienoyl-glycerol by Human Neutrophils and Eosinophils. Cells 2021; 10:2322. [PMID: 34571971 PMCID: PMC8470279 DOI: 10.3390/cells10092322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine are lipids regulating many physiological processes, notably inflammation. Endocannabinoid hydrolysis inhibitors are now being investigated as potential anti-inflammatory agents. In addition to 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine, the endocannabinoidome also includes other monoacylglycerols and N-acyl-ethanolamines such as 1-linoleoyl-glycerol (1-LG) and N-linoleoyl-ethanolamine (LEA). By increasing monoacylglycerols and/or N-acyl-ethanolamine levels, endocannabinoid hydrolysis inhibitors will likely increase the levels of their metabolites. Herein, we investigated whether 1-LG and LEA were substrates for the 15-lipoxygenase pathway, given that both possess a 1Z,4Z-pentadiene motif, near their omega end. We thus assessed how human eosinophils and neutrophils biosynthesized the 15-lipoxygenase metabolites of 1-LG and LEA. Linoleic acid (LA), a well-documented substrate of 15-lipoxygenases, was used as positive control. N-13-hydroxy-octodecadienoyl-ethanolamine (13-HODE-EA) and 13-hydroxy-octodecadienoyl-glycerol (13-HODE-G), the 15-lipoxygenase metabolites of LEA and 1-LG, were synthesized using Novozym 435 and soybean lipoxygenase. Eosinophils, which express the 15-lipoxygenase-1, metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was almost complete after five minutes. Substrate preference of eosinophils was LA > LEA > 1-LG in presence of 13-HODE-G hydrolysis inhibition with methyl-arachidonoyl-fluorophosphonate. Human neutrophils also metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was maximal after 15-30 s. Substrate preference was LA ≫ 1-LG > LEA. Importantly, 13-HODE-G was found in humans and mouse tissue samples. In conclusion, our data show that human eosinophils and neutrophils metabolize 1-LG and LEA into the novel endogenous 15-lipoxygenase metabolites 13-HODE-G and 13-HODE-EA. The full biological importance of 13-HODE-G and 13-HODE-EA remains to be explored.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Francesco Tinto
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Pier-Luc Plante
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Cyril Martin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
- Faculté de Pharmacie de l’Université Laval and Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Cristoforo Silvestri
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie de l’Université Laval and Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Michel Laviolette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
| | - Louis-Philippe Boulet
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
| | - Rosa Maria Vitale
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; (M.K.); (R.M.V.); (A.L.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Québec City, QC G1V 0A6, Canada;
- Joint International Unit between the Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Canada on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G5, Canada; (A.-S.A.); (F.T.); (É.D.); (V.R.); (C.M.); (M.S.); (C.S.); (M.L.); (L.-P.B.); (V.D.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Kwon EK, Choi Y, Yoon IH, Won HK, Sim S, Lee HR, Kim HS, Ye YM, Shin YS, Park HS, Ban GY. Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Exp Mol Med 2021; 53:1036-1045. [PMID: 34079051 PMCID: PMC8257664 DOI: 10.1038/s12276-021-00622-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic eosinophilic inflammatory disease with an increasing prevalence worldwide. Endocannabinoids are known to have immunomodulatory biological effects. However, the contribution of oleoylethanolamide (OEA) to airway inflammation remains to be elucidated. To investigate the effect of OEA, the expression of proinflammatory cytokines was measured by RT-qPCR and ELISA in airway epithelial (A549) cells. The numbers of airway inflammatory cells and cytokine levels in bronchoalveolar lavage fluid, airway hyperresponsiveness, and type 2 innate lymphoid cells (ILC2s) were examined in BALB/c mice after 4 days of OEA treatment. Furthermore, eosinophil activation after OEA treatment was evaluated by measuring cellular CD69 levels in eosinophils from human peripheral eosinophils using flow cytometry. OEA induced type 2 inflammatory responses in vitro and in vivo. OEA increased the levels of proinflammatory cytokines, such as IL-6, IL-8, and IL-33, in A549 cells. In addition, it also induced eosinophilic inflammation, the production of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, and airway hyperresponsiveness. OEA increased the numbers of IL-5- or IL-13-producing ILC2s in a mouse model. Finally, we confirmed that OEA increased CD69 expression (an eosinophil activation marker) on purified eosinophils from patients with asthma compared to those from healthy controls. OEA may play a role in the pathogenesis of asthma by activating ILC2s and eosinophils.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Il-Hee Yoon
- VHS Veterans Medical Research Institute, VHS Medical Center, Seoul, Korea
| | - Ha-Kyeong Won
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hyoung Su Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea. .,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Dongtan, Korea.
| |
Collapse
|
13
|
Wiley MB, Bobardt SD, Nordgren TM, Nair MG, DiPatrizio NV. Cannabinoid Receptor Subtype-1 Regulates Allergic Airway Eosinophilia During Lung Helminth Infection. Cannabis Cannabinoid Res 2021; 6:242-252. [PMID: 33998896 PMCID: PMC8217601 DOI: 10.1089/can.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.
Collapse
Affiliation(s)
- Mark B. Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
14
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
16
|
Cannabinoid agonists possibly mediate interaction between cholinergic and cannabinoid systems in regulating intestinal inflammation. Med Hypotheses 2020; 139:109613. [DOI: 10.1016/j.mehy.2020.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
|
17
|
Turcotte C, Archambault AS, Dumais É, Martin C, Blanchet MR, Bissonnette E, Ohashi N, Yamamoto K, Itoh T, Laviolette M, Veilleux A, Boulet LP, Di Marzo V, Flamand N. Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes. FASEB J 2020; 34:4253-4265. [PMID: 32012340 DOI: 10.1096/fj.201902916r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Elyse Bissonnette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Alain Veilleux
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Louis-Philippe Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada.,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
18
|
Chen X, Xu Z, Wei C, Yang X, Xu L, Zhou S, Zhu J, Su C. Follicular helper T cells recruit eosinophils into host liver by producing CXCL12 during Schistosoma japonicum infection. J Cell Mol Med 2020; 24:2566-2572. [PMID: 31912645 PMCID: PMC7028866 DOI: 10.1111/jcmm.14950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis affects at least 200 million people in tropical and subtropical areas. The major pathology of schistosomiasis is egg‐induced liver granuloma characterized by an eosinophil‐rich inflammatory infiltration around the eggs, which subsequently leads to hepatic fibrosis and circulatory impairment in host. However, the mechanisms how eosinophils are recruited into the liver, which are crucial for the better understanding of the mechanisms underlying granuloma formation and control of schistosomiasis, remain unclear. In this study, we showed that follicular helper T (Tfh) cells participate in recruitment of eosinophils into liver partially by producing CXCL12 during schistosome infection. Our findings uncovered a previously unappreciated role of Tfh cells in promotion of the development of liver granuloma in schistosomiasis, making Tfh‐CXCL12‐eosinophil axis a potential target for intervention of schistosomiasis.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - XiaoWei Yang
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Bozkurt TE. Endocannabinoid System in the Airways. Molecules 2019; 24:E4626. [PMID: 31861200 PMCID: PMC6943521 DOI: 10.3390/molecules24244626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids and the mammalian endocannabinoid system is an important research area of interest and attracted many researchers because of their widespread biological effects. The significant immune-modulatory role of cannabinoids has suggested their therapeutic use in several inflammatory conditions. Airways are prone to environmental irritants and stimulants, and increased inflammation is an important process in most of the respiratory diseases. Therefore, the main strategies for treating airway diseases are suppression of inflammation and producing bronchodilation. The ability of cannabinoids to induce bronchodilation and modify inflammation indicates their importance for airway physiology and pathologies. In this review, the contribution of cannabinoids and the endocannabinoid system in the airways are discussed, and the existing data for their therapeutic use in airway diseases are presented.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
20
|
Turcotte C, Dumais É, Archambault AS, Martin C, Blanchet MR, Bissonnette É, Boulet LP, Laviolette M, Di Marzo V, Flamand N. Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways. J Leukoc Biol 2019; 106:1337-1347. [PMID: 31556464 DOI: 10.1002/jlb.3a0919-049rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG ≥ 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ∼52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élizabeth Dumais
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Anne-Sophie Archambault
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Cyril Martin
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Marie-Renée Blanchet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élyse Bissonnette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Louis-Philippe Boulet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Michel Laviolette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Vincenzo Di Marzo
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Nicolas Flamand
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| |
Collapse
|
21
|
Archambault AS, Poirier S, Lefebvre JS, Robichaud PP, Larose MC, Turcotte C, Martin C, Provost V, Boudreau LH, McDonald PP, Laviolette M, Surette ME, Flamand N. 20-Hydroxy- and 20-carboxy-leukotriene (LT) B4
downregulate LTB4
-mediated responses of human neutrophils and eosinophils. J Leukoc Biol 2019; 105:1131-1142. [DOI: 10.1002/jlb.ma0718-306r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Samuel Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Julie-S Lefebvre
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | | | - Marie-Chantal Larose
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Véronique Provost
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Luc H. Boudreau
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Patrick P. McDonald
- Centre de recherche du CHUS et Faculté de Médecine; Université de Sherbrooke; Sherbrooke QC J1H 5N4 Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Marc E. Surette
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| |
Collapse
|
22
|
Vuolo F, Abreu SC, Michels M, Xisto DG, Blanco NG, Hallak JE, Zuardi AW, Crippa JA, Reis C, Bahl M, Pizzichinni E, Maurici R, Pizzichinni MMM, Rocco PRM, Dal-Pizzol F. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur J Pharmacol 2018; 843:251-259. [PMID: 30481497 DOI: 10.1016/j.ejphar.2018.11.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling. Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and - 2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren't fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario. Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated. CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1 levels and lung function in asthmatic patients. CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.
Collapse
Affiliation(s)
- Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil
| | - Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil
| | - Débora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Ec Hallak
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Cardine Reis
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marina Bahl
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emílio Pizzichinni
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rosemeri Maurici
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcia M M Pizzichinni
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil; Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
23
|
SYK protects cardiocytes against anoxia and hypoglycemia-induced injury in ischemic heart failure. Mol Immunol 2017; 91:35-41. [DOI: 10.1016/j.molimm.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
|
24
|
Bagnasco D, Ferrando M, Varricchi G, Puggioni F, Passalacqua G, Canonica GW. Anti-Interleukin 5 (IL-5) and IL-5Ra Biological Drugs: Efficacy, Safety, and Future Perspectives in Severe Eosinophilic Asthma. Front Med (Lausanne) 2017; 4:135. [PMID: 28913336 PMCID: PMC5583162 DOI: 10.3389/fmed.2017.00135] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
The definition of asthma has changed considerably in recent years, to the extent that asthma is no longer considered a single disease but a heterogeneous disorder that includes several phenotypes and, possibly, endotypes. A more detailed analysis of the immunological mechanisms underlying the pathogenesis of asthma shows interleukin 5 (IL-5) to be a crucial cytokine in several asthma phenotypes. In fact, IL-5 exerts selective action on eosinophils, which, in turn, sustain airway inflammation and worsen asthma symptoms and control. Clinical trials have shown drugs targeting IL-5 or its receptor alpha subunit (IL-5Ra) to be a promising therapeutic approach to severe asthma, whose characteristics render standard therapy of little use: systemic corticosteroids only partially control the disease and have well-known adverse effects, and omalizumab is used for allergic subtypes. Analysis of the design process of clinical trials reveals the importance of patient selection, taking into account both clinical data (e.g., exacerbations, lung function, and quality of life) and biomarkers (e.g., eosinophils, which are predictive of therapeutic response).
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Matteo Ferrando
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy
| | - Francesca Puggioni
- Department of Internal Medicine, Respiratory Disease Clinic, IRCCS Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Giorgio Walter Canonica
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy.,Department of Internal Medicine, Respiratory Disease Clinic, IRCCS Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| |
Collapse
|
25
|
Larose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma. Front Med (Lausanne) 2017; 4:136. [PMID: 28848734 PMCID: PMC5554517 DOI: 10.3389/fmed.2017.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
26
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73:4449-4470. [PMID: 27402121 PMCID: PMC5075023 DOI: 10.1007/s00018-016-2300-4] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
28
|
Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther 2016; 169:57-77. [PMID: 27773786 DOI: 10.1016/j.pharmthera.2016.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.
Collapse
Affiliation(s)
| | | | | | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
30
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs. Front Pharmacol 2016; 7:317. [PMID: 27695418 PMCID: PMC5023687 DOI: 10.3389/fphar.2016.00317] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| |
Collapse
|
31
|
Frei RB, Luschnig P, Parzmair GP, Peinhaupt M, Schranz S, Fauland A, Wheelock CE, Heinemann A, Sturm EM. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice. Allergy 2016; 71:944-56. [PMID: 26850094 PMCID: PMC5225803 DOI: 10.1111/all.12858] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 01/09/2023]
Abstract
Background Accumulation of activated eosinophils in tissue is a hallmark of allergic inflammation. The endocannabinoid 2‐arachidonoylglycerol (2‐AG) has been proposed to elicit eosinophil migration in a CB2 receptor/Gi/o‐dependent manner. However, it has been claimed recently that this process may also involve other mechanisms such as cytokine priming and the metabolism of 2‐AG into eicosanoids. Here, we explored the direct contribution of specific CB2 receptor activation to human and mouse eosinophil effector function in vitro and in vivo. Methods In vitro studies including CB2 expression, adhesion and migratory responsiveness, respiratory burst, degranulation, and calcium mobilization were conducted in human peripheral blood eosinophils and mouse bone marrow‐derived eosinophils. Allergic airway inflammation was assessed in mouse models of acute OVA‐induced asthma and directed eosinophil migration. Results CB2 expression was significantly higher in eosinophils from symptomatic allergic donors. The selective CB2 receptor agonist JWH‐133 induced a moderate migratory response in eosinophils. However, short‐term exposure to JWH‐133 potently enhanced chemoattractant‐induced eosinophil shape change, chemotaxis, CD11b surface expression, and adhesion as well as production of reactive oxygen species. Receptor specificity of the observed effects was confirmed in eosinophils from CB2 knockout mice and by using the selective CB2 antagonist SR144528. Of note, systemic application of JWH‐133 clearly primed eosinophil‐directed migration in vivo and aggravated both AHR and eosinophil influx into the airways in a CB2‐specific manner. This effect was completely absent in eosinophil‐deficient ∆dblGATA mice. Conclusion Our data indicate that CB2 may directly contribute to the pathogenesis of eosinophil‐driven diseases. Moreover, we provide new insights into the molecular mechanisms underlying the CB2‐mediated priming of eosinophils. Hence, antagonism of CB2 receptors may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophilic disorders.
Collapse
Affiliation(s)
- R. B. Frei
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - P. Luschnig
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - G. P. Parzmair
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - M. Peinhaupt
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - S. Schranz
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - A. Fauland
- Division of Physiological Chemistry II Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - C. E. Wheelock
- Division of Physiological Chemistry II Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - A. Heinemann
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| | - E. M. Sturm
- Institute of Experimental and Clinical Pharmacology Medical University of Graz Graz Austria
| |
Collapse
|
32
|
Abstract
Over the last 10 years, a great boost of knowledge accumulated on the immunomodulatory and anti-inflammatory properties of endocannabinoids (eCBs). In this scenario, these bioactive lipids, which are produced by most immune cells along with a set of receptors and enzymes that regulate their synthesis and degradation, act as secondary modulators and increase or decrease a plethora of immune functions. In this review, the manifold immunomodulatory effects of the main eCBs in different compartments of innate and adaptive immunity will be discussed, suggesting that they could be considered as master regulators of innate-adaptive immune axis and as potent immunoresolvents.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
33
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
34
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
35
|
Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology 2015; 144:352-364. [PMID: 25585882 DOI: 10.1111/imm.12441] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.,Centre of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|