1
|
Zhou MJ, Fu L, Lin WQ, Wu ZN, Nie F, Ye CY, Zhao WH. Impact of the pulmonary ventilation function on the prognosis of suspected asthma patients: a retrospective observational study. J Asthma 2024; 61:808-812. [PMID: 38385570 DOI: 10.1080/02770903.2024.2303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/20/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Asthma is a common chronic respiratory diseases, and the relationship between pulmonary ventilation function and the prognosis of patients with suspected asthma is not well understood. This study aims to explore the impact of pulmonary ventilation functions on the prognosis of patients with suspected asthma. METHODS This retrospective observational study included patients with suspected asthma who were diagnosed and treated at the Guangdong Provincial Hospital of Traditional Chinese Medicine between August 2015 and January 2020. The primary outcome of interest was improvement in asthma symptoms, as measured by bronchial provocation test (BPT) results within one year after diagnosis. The impact of pulmonary ventilation functions on prognosis was explored by multivariable logistic regression analysis. RESULTS Seventy-two patients were included in the study. Patients with normal (OR = 0.123, p = .004) or generally normal (OR = 0.075, p = .039) pulmonary ventilation function were more likely to achieve improvement in asthma symptoms compared with patients with mild obstruction. There were no significant differences between the improvement and non-improvement groups in baseline characteristics. CONCLUSION These results suggest that suspected asthma patients with normal or generally normal pulmonary ventilation function are more likely to achieve improvement in asthma symptoms within one year compared to patients with mild obstruction.
Collapse
Affiliation(s)
- Ming-Juan Zhou
- Department of Pulmonary Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li Fu
- Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wen-Qian Lin
- Department of Rehabilitation, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zhen-Ni Wu
- Department of Pulmonary Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang Nie
- Department of Pulmonary Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chu-Yin Ye
- Department of Pulmonary Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wen-Han Zhao
- Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Gervásio J, Ferreira A, Felicori LF. Yclon: Ultrafast clustering of B cell clones from high-throughput immunoglobulin repertoire sequencing data. J Immunol Methods 2023; 523:113576. [PMID: 37966818 DOI: 10.1016/j.jim.2023.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
MOTIVATION The next-generation sequencing technologies have transformed our understanding of immunoglobulin (Ig) profiles in various immune states. Clonotyping, which groups Ig sequences into B cell clones, is crucial in investigating the diversity of repertoires and changes in antigen exposure. Despite its importance, there is no widely accepted method for clonotyping, and existing methods are computationally intensive for large sequencing datasets. RESULTS To address this challenge, we introduce YClon, a fast and efficient approach for clonotyping Ig repertoire data. YClon uses a hierarchical clustering approach, similar to other methods, to group Ig sequences into B cell clones in a highly sensitive and specific manner. Notably, our approach outperforms other methods by being more than 30 to 5000 times faster in processing the repertoires analyzed. Astonishingly, YClon can effortlessly handle up to 2 million Ig sequences on a standard laptop computer. This enables in-depth analysis of large and numerous antibody repertoires. AVAILABILITY AND IMPLEMENTATION YClon was implemented in Python3 and is freely available on GitHub.
Collapse
Affiliation(s)
- João Gervásio
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alice Ferreira
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Liza F Felicori
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
3
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
4
|
Hoh RA, Thörnqvist L, Yang F, Godzwon M, King JJ, Lee JY, Greiff L, Boyd SD, Ohlin M. Clonal evolution and stereotyped sequences of human IgE lineages in aeroallergen-specific immunotherapy. J Allergy Clin Immunol 2023; 152:214-229. [PMID: 36828082 DOI: 10.1016/j.jaci.2023.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Allergic disease reflects specific inflammatory processes initiated by interaction between allergen and allergen-specific IgE. Specific immunotherapy (SIT) is an effective long-term treatment option, but the mechanisms by which SIT provides desensitization are not well understood. OBJECTIVE Our aim was to characterize IgE sequences expressed by allergen-specific B cells over a 3-year longitudinal study of patients with aeroallergies who were undergoing SIT. METHODS Allergen-specific IgE-expressing clones were identified by using combinatorial single-chain variable fragment libraries and tracked in PBMCs and nasal biopsy samples over a 3-year period with antibody gene repertoire sequencing. The characteristics of private IgE-expressing clones were compared with those of stereotyped or "public" IgE responses to the grass pollen allergen Phleum pratense (Phl p) 2. RESULT Members of the same allergen-specific IgE lineages were observed in nasal biopsy samples and blood, and lineages detected at baseline persisted in blood and nasal biopsy samples after 3 years of SIT, including B cells that express IgE. Evidence of progressive class switch recombination to IgG subclasses was observed after 3 years of SIT. A common stereotyped Phl p 2-specific antibody heavy chain sequence was detected in multiple donors. The amino acid residues enriched in IgE-stereotyped sequences from seropositive donors were analyzed with machine learning and k-mer motif discovery. Stereotyped IgE sequences had lower overall rates of somatic hypermutation and antigen selection than did single-chain variable fragment-derived allergen-specific sequences or IgE sequences of unknown specificity. CONCLUSION Longitudinal tracking of rare circulating and tissue-resident allergen-specific IgE+ clones demonstrates persistence of allergen-specific IgE+ clones, progressive class switch recombination to IgG subtypes, and distinct maturation of a stereotyped Phl p 2 clonotype.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, Calif
| | | | - Fan Yang
- Department of Pathology, Stanford University, Stanford, Calif
| | | | - Jasmine J King
- Department of Pathology, Stanford University, Stanford, Calif
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, Calif
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, Calif
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Jeusset L, Abdollahi N, Verny T, Armand M, De Septenville A, Davi F, Bernardes JS. ViCloD, an interactive web tool for visualizing B cell repertoires and analyzing intraclonal diversities: application to human B-cell tumors. NAR Genom Bioinform 2023; 5:lqad064. [PMID: 37388820 PMCID: PMC10304752 DOI: 10.1093/nargab/lqad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
High throughput sequencing of adaptive immune receptor repertoire (AIRR-seq) has provided numerous human immunoglobulin (IG) sequences allowing specific B cell receptor (BCR) studies such as the antigen-driven evolution of antibodies (soluble forms of the membrane-bound IG part of the BCR). AIRR-seq data allows researchers to examine intraclonal differences caused primarily by somatic hypermutations in IG genes and affinity maturation. Exploring this essential adaptive immunity process could help elucidate the generation of antibodies with high affinity or broadly neutralizing activities. Retracing their evolutionary history could also clarify how vaccines or pathogen exposition drive the humoral immune response, and unravel the clonal architecture of B cell tumors. Computational methods are necessary for large-scale analysis of AIRR-seq properties. However, there is no efficient and interactive tool for analyzing intraclonal diversity, permitting users to explore adaptive immune receptor repertoires in biological and clinical applications. Here we present ViCloD, a web server for large-scale visual analysis of repertoire clonality and intraclonal diversity. ViCloD uses preprocessed data in the format defined by the Adaptive Immune Receptor Repertoire (AIRR) Community. Then, it performs clonal grouping and evolutionary analyses, producing a collection of useful plots for clonal lineage inspection. The web server presents diverse functionalities, including repertoire navigation, clonal abundance analysis, and intraclonal evolutionary tree reconstruction. Users can download the analyzed data in different table formats and save the generated plots as images. ViCloD is a simple, versatile, and user-friendly tool that can help researchers and clinicians to analyze B cell intraclonal diversity. Moreover, its pipeline is optimized to process hundreds of thousands of sequences within a few minutes, allowing an efficient investigation of large and complex repertoires.
Collapse
Affiliation(s)
- Lucile Jeusset
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | - Nika Abdollahi
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- IMGT, the international ImMunoGeneTics Information System, CNRS, Institute of Human Genetics, Montpellier University, France
| | - Thibaud Verny
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Ecole des Mines ParisTech, Paris, France
| | - Marine Armand
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | | | - Frédéric Davi
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | - Juliana Silva Bernardes
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
6
|
Bai J, Tan BK. B Lineage Cells and IgE in Allergic Rhinitis and CRSwNP and the Role of Omalizumab Treatment. Am J Rhinol Allergy 2023; 37:182-192. [PMID: 36848269 PMCID: PMC10830379 DOI: 10.1177/19458924221147770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two prevalent nasal diseases where both type 2 inflammation and immunoglobulin E (IgE) may play important roles. Although they can exist independently or comorbidly, subtle but important differences exist in immunopathogenesis. OBJECTIVE To summarize current knowledge of pathophysiological roles of B lineage cells and IgE in AR and CRS with nasal polyps (CRSwNP). METHODS Searched PubMed database, reviewed AR and CRSwNP-related literature, and discussed disease diagnosis, comorbidity, epidemiology, pathophysiology, and treatment. Similarities and differences in B-cell biology and IgE are compared in the 2 conditions. RESULTS Both AR and CRSwNP have evidence for pathological type 2 inflammation, B-cell activation and differentiation, and IgE production. However, distinctions exist in the clinical and serological profiles at diagnosis, as well as treatments utilized. B-cell activation in AR may more frequently be regulated in the germinal center of lymphoid follicles, whereas CRSwNP may occur via extrafollicular pathways although controversies remain in these initial activating events. Oligoclonal and antigen-specific IgE maybe predominate in AR, but polyclonal and antigen-nonspecific IgE may predominate in CRSwNP. Omalizumab has been shown efficacious in treating both AR and CRSwNP in multiple clinical trials but is the only Food and Drug Administration-approved anti-IgE biologic to treat CRSwNP or allergic asthma. Staphylococcus aureus frequently colonizes the nasal airway and has the ability to activate type two responses including B-cell responses although the extent to which it modulates AR and CRSwNP disease severity is being investigated. CONCLUSION This review highlights current knowledge of the roles of B cells and IgE in the pathogenesis of AR and CRSwNP and a small comparison between the 2 diseases. More systemic studies should be done to elevate the understanding of these diseases and their treatment.
Collapse
Affiliation(s)
- Junqin Bai
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bruce K Tan
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Allergy and Immunology, Department of Medicine, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Testera-Montes A, Palomares F, Jurado-Escobar R, Fernandez-Santamaria R, Ariza A, Verge J, Salas M, Campo P, Mayorga C, Torres MJ, Rondon C, Eguiluz-Gracia I. Sequential class switch recombination to IgE and allergen-induced accumulation of IgE + plasmablasts occur in the nasal mucosa of local allergic rhinitis patients. Allergy 2022; 77:2712-2724. [PMID: 35340036 DOI: 10.1111/all.15292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The involvement of allergen-specific (s)IgE in local allergic rhinitis (LAR) has been debated. Here, we investigate the effect of nasal allergen challenge with Dermatophagoides pteronyssinus (NAC-DP) in mucosal and peripheral B-cell subpopulations in LAR patients. METHODS Nine LAR, 5 allergic rhinitis (AR), and 5 non-atopic healthy control (HC) individuals were subjected to a 3-day NAC-DP protocol, and nasal biopsies and blood samples were collected before and after provocation. Nasal biopsies were used for immunohistochemistry and gene expression studies, whereas the frequency of lymphocyte subsets and basophil activation test (BAT) were analyzed in blood samples by flow cytometry. sIgG was measured in sera. RESULTS NAC-DP induced an increase in IgE+ CD38+ plasmablasts in the nasal mucosa of LAR patients, but not in AR or HC individuals. Markers of sequential recombination to IgE (εCSR) (from IgG) were observed in 33% of LAR, 20% of AR, and 0% of HC subjects. NAC-DP increased the proportion of peripheral CD19+ CD20+ CD38+ plasmablasts in AR and LAR patients, but not in HC. Expression of the mucosal homing receptor CXCR3 in peripheral CD19+ CD20+ CD38+ plasmablasts from LAR, AR, and HC individuals was 7%, 5%, and 0.5%, respectively. In vitro DP stimulation increased proliferating CD19+ CD20+ CD38+ plasmablasts in LAR and AR patients, but not in HC. Serum DP-sIgG was higher in LAR and AR patients as compared to HC. BAT was positive in 33%, 100%, and 0% of LAR, AR, and HC subjects, respectively. CONCLUSION These results suggest that allergen exposure induces the sequential εCSR of IgG+ CD19+ CD20+ CD38+ plasmablasts in the nasal mucosa of LAR patients.
Collapse
Affiliation(s)
- Almudena Testera-Montes
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Raquel Jurado-Escobar
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Ruben Fernandez-Santamaria
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Jesus Verge
- ENT Unit, Hospital Clinico Virgen de la Victoria, Malaga, Spain
| | - Maria Salas
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Paloma Campo
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
| | - Cristobalina Mayorga
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
- Universidad de Málaga (UMA), Málaga, Spain
| | - Carmen Rondon
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| |
Collapse
|
8
|
Chen RX, Dai MD, Zhang QZ, Lu MP, Wang ML, Yin M, Zhu XJ, Wu ZF, Zhang ZD, Cheng L. TLR Signaling Pathway Gene Polymorphisms, Gene-Gene and Gene-Environment Interactions in Allergic Rhinitis. J Inflamm Res 2022; 15:3613-3630. [PMID: 35769128 PMCID: PMC9234183 DOI: 10.2147/jir.s364877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background Allergic rhinitis (AR) is a nasal inflammatory disease resulting from a complex interplay between genetic and environmental factors. The association between Toll-like receptor (TLR) signaling pathway and environmental factors in AR pathogenesis remains to be explored. This study aims to assess the genetic association of AR with single nucleotide polymorphisms (SNPs) in TLR signaling pathway, and investigate the roles of gene–gene and gene–environment interactions in AR. Methods A total of 452 AR patients and 495 healthy controls from eastern China were enrolled in this hospital-based case–control study. We evaluated putatively functional genetic polymorphisms in TLR2, TLR4 and CD14 genes for their association with susceptibility to AR and related clinical phenotypes. Interactions between environmental factors (such as traffic pollution, residence, pet keeping) and polymorphisms with AR were examined using logistic regression. Models were stratified by genotype and interaction terms, and tested for the significance of gene–gene and gene–environment interactions. Results In the single-locus analysis, two SNPs in CD14, rs2563298 (A/C) and rs2569191 (C/T) were associated with a significantly decreased risk of AR. Compared with the GG genotype, the GT and GT/TT genotypes of TLR2 rs7656411 (G/T) were associated with a significantly increased risk of AR. Gene–gene interactions (eg, TLR2 rs7656411, TLR4 rs1927914, and CD14 rs2563298) was associated with AR. Gene–environment interactions (eg, TLR4 or CD14 polymorphisms and certain environmental exposures) were found in AR cases, but they were not significant after Bonferroni correction. Conclusion The genetic polymorphisms of TLR2 and CD14 and gene–gene interactions in TLR signaling pathway were associated with susceptibility to AR in this Han Chinese population. However, the present results were limited to support the association between gene–environment interactions and AR.
Collapse
Affiliation(s)
- Ruo-Xi Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng-Di Dai
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing-Zhao Zhang
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei-Lin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Yin
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zheng-Dong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Qurashi TA, Shah A, Bhat GA, Khan MS, Rasool R, Mudassar S. Atopy in Kashmir-validation from a case control study with respect to IgE and Interleukin genes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:119. [PMID: 34814942 PMCID: PMC8609820 DOI: 10.1186/s13223-021-00623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Increased levels of serum Immunoglobulin-E (IgE) and different genetic variants of cytokines are common biochemical manifestation in Allergy. The current study was aimed to study the association of IgE and different variants of Interleukin-4 (IL-4), and Interleukin-13 (IL-13) genes with different kind of allergies. METHODS A pre-tested questionnaire was used to collect all the dietary, life style and clinical details by a trained staff. A blood sample of 2 ml each was collected in coagulated and anti-coagulated vials. DNA and serum samples were extracted and stored until further use. Serum IgE were estimated by ELISA while as the genotypic analysis was done by PCR-RFLP methods. RESULTS Statistically a significant difference of serum IgE levels were observed among cases and controls (P < 0.05). The observed significant difference of serum IgE levels were retained among subjects who also harboured variant genotypes of IL-4 and IL-13 genes (P < 0.05). Additionally, the above genetic variants significantly modified the risk of allergy when stratification was done based on various clinical characteristics. CONCLUSION Our study suggests that increased IgE levels and in association with variant forms of IL-4 and IL-13 genes are significantly associated with different types of allergies in study population.
Collapse
Affiliation(s)
- Taha Ashraf Qurashi
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, 190006, India
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Mosin Saleem Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India.
| |
Collapse
|
10
|
Ohm-Laursen L, Meng H, Hoehn KB, Nouri N, Jiang Y, Clouser C, Johnstone TG, Hause R, Sandhar BS, Upton NEG, Chevretton EB, Lakhani R, Corrigan CJ, Kleinstein SH, Gould HJ. B Cell Mobilization, Dissemination, Fine Tuning of Local Antigen Specificity and Isotype Selection in Asthma. Front Immunol 2021; 12:702074. [PMID: 34721376 PMCID: PMC8552043 DOI: 10.3389/fimmu.2021.702074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
In order to better understand how the immune system interacts with environmental triggers to produce organ-specific disease, we here address the hypothesis that B and plasma cells are free to migrate through the mucosal surfaces of the upper and lower respiratory tracts, and that their total antibody repertoire is modified in a common respiratory tract disease, in this case atopic asthma. Using Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) we have catalogued the antibody repertoires of B cell clones retrieved near contemporaneously from multiple sites in the upper and lower respiratory tract mucosa of adult volunteers with atopic asthma and non-atopic controls and traced their migration. We show that the lower and upper respiratory tracts are immunologically connected, with trafficking of B cells directionally biased from the upper to the lower respiratory tract and points of selection when migrating from the nasal mucosa and into the bronchial mucosa. The repertoires are characterized by both IgD-only B cells and others undergoing class switch recombination, with restriction of the antibody repertoire distinct in asthmatics compared with controls. We conclude that B cells and plasma cells migrate freely throughout the respiratory tract and exhibit distinct antibody repertoires in health and disease.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Nima Nouri
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, United States
| | - Yue Jiang
- Bristol Myers Squibb, Seattle, WA, United States
| | | | | | - Ron Hause
- Bristol Myers Squibb, Seattle, WA, United States
| | - Balraj S. Sandhar
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Nadine E. G. Upton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Elfy B. Chevretton
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Raj Lakhani
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chris J. Corrigan
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
11
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
12
|
Testera-Montes A, Salas M, Palomares F, Ariza A, Torres MJ, Rondón C, Eguiluz-Gracia I. Local Respiratory Allergy: From Rhinitis Phenotype to Disease Spectrum. Front Immunol 2021; 12:691964. [PMID: 34149736 PMCID: PMC8206788 DOI: 10.3389/fimmu.2021.691964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Local respiratory allergy (LRA) is defined by the negativity of atopy tests, a clinical history suggestive of airway allergy and a positive response to the nasal and/or bronchial allergen challenge. The clinical spectrum of LRA is comprised of three conditions: local allergic rhinitis (LAR) and local allergic asthma in non-atopic patients, and dual allergic rhinitis (coexistence of allergic rhinitis and LAR) in atopic individuals. LRA is an independent disease phenotype not progressing to atopy over time, but naturally evolving to the clinical worsening and the onset of comorbidities. Published data suggests that LRA is mediated through the mucosal synthesis of allergen-specific (s)IgE, which binds to FcϵRI on resident mast cells, and in >50% of cases traffics to the blood stream to sensitize circulating basophils. To date, 4 clinical trials have demonstrated the capacity of allergen immunotherapy (AIT) to decrease nasal, conjunctival and bronchial symptoms, to improve quality of life, to increase the threshold dose of allergen eliciting respiratory symptoms, and to induce serum sIgG4 in LRA individuals. Collectively, these data indicate that local allergy is a relevant disease mechanisms in both atopic and non-atopic patients with airway diseases.
Collapse
Affiliation(s)
- Almudena Testera-Montes
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| | - Maria Salas
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| | - Francisca Palomares
- Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| | - Adriana Ariza
- Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| | - María J Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain.,Department of Medicine and Dermatology, Universidad de Malaga, Malaga, Spain.,Laboratory for Nanostructures for the Diagnosis and Treatment of Allergic Diseases, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Carmen Rondón
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain.,Allergy Group, Instituto de Investigación Biomédica de Málaga-IBIMA and Red Tematica de Investigacion Colaborativa en Salud (RETICS) de Asma, Reacciones Adversas y Alergicas (ARADyAL), Málaga, Spain
| |
Collapse
|
13
|
Hoh RA, Joshi SA, Lee JY, Martin BA, Varma S, Kwok S, Nielsen SCA, Nejad P, Haraguchi E, Dixit PS, Shutthanandan SV, Roskin KM, Zhang W, Tupa D, Bunning BJ, Manohar M, Tibshirani R, Fernandez-Becker NQ, Kambham N, West RB, Hamilton RG, Tsai M, Galli SJ, Chinthrajah RS, Nadeau KC, Boyd SD. Origins and clonal convergence of gastrointestinal IgE + B cells in human peanut allergy. Sci Immunol 2020; 5:5/45/eaay4209. [PMID: 32139586 DOI: 10.1126/sciimmunol.aay4209] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
B cells in human food allergy have been studied predominantly in the blood. Little is known about IgE+ B cells or plasma cells in tissues exposed to dietary antigens. We characterized IgE+ clones in blood, stomach, duodenum, and esophagus of 19 peanut-allergic patients, using high-throughput DNA sequencing. IgE+ cells in allergic patients are enriched in stomach and duodenum, and have a plasma cell phenotype. Clonally related IgE+ and non-IgE-expressing cell frequencies in tissues suggest local isotype switching, including transitions between IgA and IgE isotypes. Highly similar antibody sequences specific for peanut allergen Ara h 2 are shared between patients, indicating that common immunoglobulin genetic rearrangements may contribute to pathogenesis. These data define the gastrointestinal tract as a reservoir of IgE+ B lineage cells in food allergy.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shilpa A Joshi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandra C A Nielsen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parastu Nejad
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Priya S Dixit
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Swetha V Shutthanandan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krishna M Roskin
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dana Tupa
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan J Bunning
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert Tibshirani
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca S Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Eguiluz-Gracia I, Ariza A, Testera-Montes A, Rondón C, Campo P. Allergen Immunotherapy for Local Respiratory Allergy. Curr Allergy Asthma Rep 2020; 20:23. [PMID: 32430550 DOI: 10.1007/s11882-020-00920-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIESW Local respiratory allergy (LRA) is an eosinophilic phenotype of chronic airway disease. Three entities have been described within the LRA spectrum: local allergic rhinitis (LAR) and local allergic asthma (LAA) in non-atopic patients, and dual allergic rhinitis (DAR) in atopic patients (coexistence of LAR and allergic rhinitis). In this article, we aim to review the current evidence on the therapeutic options for LRA. RECENT FINDINGS No controlled study has assessed the effect of standard therapy (oral antihistamines, intranasal or inhaled corticosteroids, bronchodilators) in LRA subjects. Three randomized clinical trials and one observational study demonstrated that allergen immunotherapy (AIT) is able to control nasal and ocular symptoms, decrease the need for rescue medication, and improve quality of life in LAR individuals. Nasal or inhaled steroids can be expected to improve eosinophilic inflammation in LRA patients but cannot change the natural course of the disease. Moreover, the long-term and disease-modifying effects of AIT in LRA subjects need to be investigated.
Collapse
Affiliation(s)
- I Eguiluz-Gracia
- Allergy Department, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - A Ariza
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA and ARADyAL, Málaga, Spain
| | - A Testera-Montes
- Allergy Department, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - C Rondón
- Allergy Department, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain.
| | - P Campo
- Allergy Department, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| |
Collapse
|
15
|
Gould HJ, Wu YCB. IgE repertoire and immunological memory: compartmental regulation and antibody function. Int Immunol 2019; 30:403-412. [PMID: 30053010 PMCID: PMC6116883 DOI: 10.1093/intimm/dxy048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023] Open
Abstract
It is now generally recognized that bone marrow is the survival niche for antigen-specific plasma cells with long-term immunological memory. These cells release antibodies into the circulation, needed to prime effector cells in the secondary immune response. These antibodies participate in the surveillance for antigen and afford immune defence against pathogens and toxins previously encountered in the primary immune response. IgE antibodies function together with their effector cells, mast cells, to exert 'immediate hypersensitivity' in mucosal tissues at the front line of immune defence. The constant supply of IgE antibodies from bone marrow plasma cells allows the rapid 'recall response' by mast cells upon re-exposure to antigen even after periods of antigen absence. The speed and sensitivity of the IgE recall response and potency of the effector cell functions are advantageous in the early detection and elimination of pathogens and toxins at the sites of attack. Local antigen provocation also stimulates de novo synthesis of IgE or its precursors of other isotypes that undergo IgE switching in the mucosa. This process, however, introduces a delay before mast cells can be sensitized and resume activity; this is terminated shortly after the antigen is eliminated. Recent results from adaptive immune receptor repertoire sequencing of immunoglobulin genes suggest that the mucosal IgE+ plasmablasts, which have undergone affinity maturation in the course of their evolution in vivo, are a source of long-lived IgE+ plasma cells in the bone marrow that are already fully functional.
Collapse
Affiliation(s)
- Hannah J Gould
- Randall Centre in Cell and Molecular Biophysics, King's College London, London, UK.,MRC Asthma UK Center in Allergic Mechanisms of Asthma, London, UK
| | - Yu-Chang Bryan Wu
- Randall Centre in Cell and Molecular Biophysics, King's College London, London, UK.,MRC Asthma UK Center in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
16
|
Gould HJ, James LK. Orchestration of immunoglobulin isotypes, subclasses, and specificities in patients receiving intravenous IgG or subcutaneous immunotherapy and those with chronic rhinosinusitis with nasal polyps: Toward precision medicine. J Allergy Clin Immunol 2019; 144:407-409. [PMID: 31253362 DOI: 10.1016/j.jaci.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Hannah J Gould
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Mucosal IgE immune responses in respiratory diseases. Curr Opin Pharmacol 2019; 46:100-107. [PMID: 31220711 DOI: 10.1016/j.coph.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023]
Abstract
IgE is the less abundant immunoglobulin isotype in serum and displays higher affinity for its cognate Fc receptor (FcεRI) than the rest of antibody isotypes. Moreover, the class switch recombination and the generation of memory responses remarkably differ between IgE and other isotypes. Importantly, class switch recombination to IgE can occur in the mucosae, preferentially through the sequential switching from IgG. Therefore, resident effector cells get rapidly sensitized, and free IgE can be found in mucosal secretions. All these aspects explain the involvement of IgE in respiratory diseases. In allergic rhinitis and allergic asthma, the IgE-sensitization to environmental allergens triggers an eosinophilic inflammation of the airway mucosa of atopic patients. In recent years, growing evidence indicates that some non-atopic patients with nasal reactivity to allergens display nasal eosinophilic inflammation, which could be triggered by the local production of allergen-specific IgE. This phenotype has been termed local allergic rhinitis. Mucosal IgE is also implicated in the pathophysiology of chronic rhinosinusitis with nasal polyps, even though the mechanisms for IgE synthesis might differ in this case. The role of IgE as mediator of airway diseases identify this marker as a therapeutic target. Some biologicals antagonize IgE-mediated inflammation of the airway mucosa, but they have not shown a beneficial long-term effect after discontinuation. In contrast, allergen immunotherapy does not only control the symptoms of airway allergy, but it also induces a long-lasting effect after discontinuation, thus modifying the natural course of the disease.
Collapse
|
18
|
Dias ASO, Santos ICL, Delphim L, Fernandes G, Endlich LR, Cafasso MOSD, Maranhão AL, da Silva SR, Andrade RM, Agrawal A, Linhares UC, Bento CAM. Serum leptin levels correlate negatively with the capacity of vitamin D to modulate the in vitro cytokines production by CD4 + T cells in asthmatic patients. Clin Immunol 2019; 205:93-105. [PMID: 31173888 DOI: 10.1016/j.clim.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Both obesity and low vitamin D levels have been associated with allergic asthma (AA) severity. In the present study, severity of AA was associated with obesity but to the in vitro IgE production. In those patients, higher levels of IL-5, IL-6 and IL-17 were quantified in CD4+ T-cell cultures as compared with patients with mild and moderate AA. In addition, the lowest IL-10 levels were detected in the cell cultures from patients with a worse prognosis. Interestingly, the occurrence of AA elevates the plasma levels of leptin, and this adipokine was positively correlated with the release of IL-5, IL-6 and IL-17, but inversely correlated with IL-10 production, by CD4+ T-cells from patients. In AA-derived CD4+ T-cell cultures, 1,25(OH)2D3 was less efficient at inhibiting IL-5, IL-6 and IL-17 production, and up regulating IL-10 release, as those from healthy subjects. Interestingly, the in vitro immunomodulatory effects of vitamin D were inversely correlated with serum leptin levels. In summary, our findings suggested that obesity, probably due to the overproduction of leptin, negatively impacts AA as it favors imbalance between Th2/Th17 and regulatory phenotypes. The deleterious effects of leptin may also be due to its ability to counter-regulate the immunosuppressive effects of vitamin D.
Collapse
Affiliation(s)
- Aleida S O Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil
| | - Isabelle C L Santos
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Larissa R Endlich
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Ana Lúcia Maranhão
- Pulmonology Service, Federal University of the State of Rio de Janeiro, Brazil
| | | | - Regis M Andrade
- Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ulisses C Linhares
- Department of Morphological Sciences, Federal University of the State of Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Post-graduate Program in Microbiology, University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Gidoni M, Snir O, Peres A, Polak P, Lindeman I, Mikocziova I, Sarna VK, Lundin KEA, Clouser C, Vigneault F, Collins AM, Sollid LM, Yaari G. Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. Nat Commun 2019; 10:628. [PMID: 30733445 PMCID: PMC6367474 DOI: 10.1038/s41467-019-08489-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Analysis of antibody repertoires by high-throughput sequencing is of major importance in understanding adaptive immune responses. Our knowledge of variations in the genomic loci encoding immunoglobulin genes is incomplete, resulting in conflicting VDJ gene assignments and biased genotype and haplotype inference. Haplotypes can be inferred using IGHJ6 heterozygosity, observed in one third of the people. Here, we propose a robust novel method for determining VDJ haplotypes by adapting a Bayesian framework. Our method extends haplotype inference to IGHD- and IGHV-based analysis, enabling inference of deletions and copy number variations in the entire population. To test this method, we generated a multi-individual data set of naive B-cell repertoires, and found allele usage bias, as well as a mosaic, tiled pattern of deleted IGHD and IGHV genes. The inferred haplotypes may have clinical implications for genetic disease predispositions. Our findings expand the knowledge that can be extracted from antibody repertoire sequencing data.
Collapse
Affiliation(s)
- Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Omri Snir
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ida Lindeman
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Ivana Mikocziova
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Vikas Kumar Sarna
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Knut E A Lundin
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | | | | | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of NSW, Kensington, Sydney, NSW, 2052, Australia
| | - Ludvig M Sollid
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
20
|
Rondón C, Eguíluz-Gracia I, Shamji MH, Layhadi JA, Salas M, Torres MJ, Campo P. IgE Test in Secretions of Patients with Respiratory Allergy. Curr Allergy Asthma Rep 2018; 18:67. [PMID: 30317418 DOI: 10.1007/s11882-018-0821-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW IgE is a key player in multiple inflammatory airway diseases. Ample literature demonstrates its presence in mucosa of patients with allergic rhinitis (AR), local allergic rhinitis (LAR), asthma, or chronic rhinosinusitis with nasal polyposis (CRSwNP). RECENT FINDINGS Current evidence shows that high-affinity IgE in blood stream of allergic individuals derives mainly from the mucosae. Also, mucosal synthesis of IgE can occur in the absence of systemic atopy, and may be relevant in atopic and non-atopic phenotypes of rhinitis as demonstrated in LAR. Specific IgE (sIgE) detection varies depending on technique used for sample collection and its measurement. sIgE detection is highly specific for diagnosis of LAR. Moreover, measurement of sIgE in secretions could be useful in monitoring response to allergen-specific immunotherapy in both AR and LAR phenotypes. This review will focus on recent developments in the role of IgE in respiratory diseases, and the clinical implications of its measurement in secretions.
Collapse
Affiliation(s)
- Carmen Rondón
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, MRC Asthma UK Centre Imperial College London, London, UK
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, MRC Asthma UK Centre Imperial College London, London, UK
| | - María Salas
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | - María José Torres
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | - Paloma Campo
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain.
- Plaza Hospital Civil, 29009, Málaga, Spain.
| |
Collapse
|
21
|
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2018; 201:2502-2509. [PMID: 30217829 DOI: 10.4049/jimmunol.1800708] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Jinwoo Leem
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|
22
|
Ohm-Laursen L, Meng H, Chen J, Zhou JQ, Corrigan CJ, Gould HJ, Kleinstein SH. Local Clonal Diversification and Dissemination of B Lymphocytes in the Human Bronchial Mucosa. Front Immunol 2018; 9:1976. [PMID: 30245687 PMCID: PMC6137163 DOI: 10.3389/fimmu.2018.01976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The efficacy of the adaptive humoral immune response likely requires diverse, yet focused regional B cell antibody production throughout the body. Here we address, in the first study of its kind, the B cell repertoire in the bronchial mucosa, an important barrier to antigens inhaled from the atmosphere. To accomplish this, we have applied high-throughput Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) to 10 bronchial biopsies from altogether four different sites in the right lungs from an asthmatic patient and a healthy subject. While the majority of identified B cell clones were restricted to a single site, many were disseminated in multiple sites. Members of a clone were shared more between adjacent biopsies than between distal biopsies, suggesting local mucosal migration and/or a homing mechanism for B cells through the blood or lymph. A smaller fraction of clones spanned the bronchial mucosa and peripheral blood, suggesting ongoing trafficking between these compartments. The bronchial mucosal B cell repertoire in the asthmatic patient was geographically more variable but less diverse compared to that of the healthy subject, suggesting an ongoing, antigen-driven humoral immune response in atopic asthma. Whether this is a feature of atopy or disease status remains to be clarified in future studies. We observed a subset of highly mutated and antigen-selected IgD-only cells in the bronchial mucosa. These cells were found in relative high abundance in the asthmatic individual but also, albeit at lower abundance, in the healthy subject. This novel finding merits further exploration using a larger cohort of subjects.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Jessica Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Chris J Corrigan
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
23
|
Correa I, Ilieva KM, Crescioli S, Lombardi S, Figini M, Cheung A, Spicer JF, Tutt ANJ, Nestle FO, Karagiannis P, Lacy KE, Karagiannis SN. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells. Front Immunol 2018; 9:493. [PMID: 29628923 PMCID: PMC5876289 DOI: 10.3389/fimmu.2018.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.
Collapse
Affiliation(s)
- Isabel Correa
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Sara Lombardi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Mariangela Figini
- Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Immunology and Inflammation Therapeutic Research Area, Sanofi US, Cambridge, MA, United States
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Department of Oncology, Haematology and Stem Cell Transplantation, University Hospital of Hamburg Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
24
|
Tan YG, Wang XF, Zhang M, Yan HP, Lin DD, Wang YQ, Zhang HP, Yu XQ, Liao HY, Wang YP, Lv FD, Gao ZH. Clonal characteristics of paired infiltrating and circulating B lymphocyte repertoire in patients with primary biliary cholangitis. Liver Int 2018; 38:542-552. [PMID: 28834158 DOI: 10.1111/liv.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND PBC is a prototypical autoimmune liver disease characterized by portal lymphoplasmacyte infiltration. ALD is a prototypical environment-driven disease, featured by mild lymphocyte infiltration. We hypothesize that B cells are more involved in the pathogenesis of PBC. By analysing the infiltrating B cell repertoire, we aimed to unveil greater oligoclonal expansion and active clonal exchange between liver and periphery in PBC than in ALD patients. METHODS Using NGS of Ig H chain genes, we analysed the liver-infiltrating and paired peripheral B lymphocyte repertoire from nine PBC and four ALD patients. RESULTS In the liver of PBC and ALD patients, (i) roughly 10% of the B lymphocytes were clonally related and highly expressed, and there were also lineages that underwent extensive clonal expansion; (ii) there was different use of IGHV/IGHJ segments between PBC and ALD, suggesting distinct Ag exposure backgrounds, but this did not lead to a significant difference in their clonal expansion level. Analysis of data sets from paired samples further revealed, (iii) direct clonal exchange and evolutionally related B cell clones between the infiltrating and peripheral repertoire; (iv) the seeding of the infiltrating clones to periphery, and peripheral ones to the liver, for further extensive evolution. CONCLUSIONS The oligoclonally expanded nature of the infiltrating B cell repertoire implies B cell immunity is involved in the pathogenesis of both diseases. The observed clonal exchange might provide an approach to identify and monitor the infiltrating B cells through the periphery.
Collapse
Affiliation(s)
- Yan-Guo Tan
- Department of Clinical Laboratory, FuXing Hospital, Capital Medical University, Beijing, China.,Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Xiao-Feng Wang
- Tianjin Translational Genomics Center, BGI-Tianjin, Tianjin, China.,BGI-Shenzhen, Shenzhen, China
| | - Ming Zhang
- Tianjin Translational Genomics Center, BGI-Tianjin, Tianjin, China.,Tianjin Marvelbio Technology Co. Ltd, Tianjin, China
| | - Hui-Ping Yan
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Dong-Dong Lin
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | | | - Hai-Ping Zhang
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Xin-Qiu Yu
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hui-Yu Liao
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yi-Peng Wang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Beijing, China
| | - Fu-Dong Lv
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Zu-Hua Gao
- Beijing You An Hospital, Capital Medical University, Beijing, China.,Department of Pathology, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol 2017; 140:1485-1498. [PMID: 29221580 DOI: 10.1016/j.jaci.2017.10.010] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Allergen immunotherapy is effective in patients with IgE-dependent allergic rhinitis and asthma. When immunotherapy is given continuously for 3 years, there is persistent clinical benefit for several years after its discontinuation. This disease-modifying effect is both antigen-specific and antigen-driven. Clinical improvement is accompanied by decreases in numbers of effector cells in target organs, including mast cells, basophils, eosinophils, and type 2 innate lymphoid cells. Immunotherapy results in the production of blocking IgG/IgG4 antibodies that can inhibit IgE-dependent activation mediated through both high-affinity IgE receptors (FcεRI) on mast cells and basophils and low-affinity IgE receptors (FcεRII) on B cells. Suppression of TH2 immunity can occur as a consequence of either deletion or anergy of antigen-specific T cells; induction of antigen-specific regulatory T cells; or immune deviation in favor of TH1 responses. It is not clear whether the altered long-term memory resides within the T-cell or the B-cell compartment. Recent data highlight the role of IL-10-producing regulatory B cells and "protective" antibodies that likely contribute to long-term tolerance. Understanding mechanisms underlying induction and persistence of tolerance should identify predictive biomarkers of clinical response and discover novel and more effective strategies for immunotherapy.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology; Section of Inflammation, Repair and Development; National Heart and Lung Institute; Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology; Section of Inflammation, Repair and Development; National Heart and Lung Institute; Imperial College London, and the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
26
|
Bolen CR, Rubelt F, Vander Heiden JA, Davis MM. The Repertoire Dissimilarity Index as a method to compare lymphocyte receptor repertoires. BMC Bioinformatics 2017; 18:155. [PMID: 28264647 PMCID: PMC5340033 DOI: 10.1186/s12859-017-1556-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The B and T cells of the human adaptive immune system leverage a highly diverse repertoire of antigen-specific receptors to protect the human body from pathogens. The sequencing and analysis of immune repertoires is emerging as an important tool to understand immune responses, whether beneficial or harmful (in the case of autoimmunity). However, methods for studying these repertoires, and for directly comparing different immune repertoires, are lacking. RESULTS In this paper, we present a non-parametric method for directly comparing sequencing repertoires, with the goal of rigorously quantifying differences in V, D, and J gene segment utilization. This method, referred to as the Repertoire Dissimilarity Index (RDI), uses a bootstrapped subsampling approach to account for variance in sequencing depth, and, coupled with a data simulation approach, allows for direct quantification of the average variation between repertoires. We use the RDI method to recapitulate known differences in the formation of the CD4+ and CD8+ T cell repertoires, and further show that antigen-driven activation of naïve CD8+ T cells is more selective than in the CD4+ repertoire, resulting in a more specialized CD8+ memory repertoire. CONCLUSIONS We prove that the RDI method is an accurate and versatile method for comparisons of immune repertoires. The RDI method has been implemented as an R package, and is available for download through Bitbucket.
Collapse
Affiliation(s)
- Christopher R. Bolen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
- Genentech, Inc., 1 DNA Way, MS 93, South San Francisco, 94080 CA USA
| | - Florian Rubelt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Jason A. Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Department of Computational Biology & Bioinformatics, Yale University, New Haven, 06520 CT USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, 94305 CA USA
- Institute of Immunity, Department of Microbiology and Immunology, Transplantation and Infection, Stanford University School of Medicine, Stanford, 94305 CA USA
| |
Collapse
|
27
|
Gupta NT, Adams KD, Briggs AW, Timberlake SC, Vigneault F, Kleinstein SH. Hierarchical Clustering Can Identify B Cell Clones with High Confidence in Ig Repertoire Sequencing Data. THE JOURNAL OF IMMUNOLOGY 2017; 198:2489-2499. [PMID: 28179494 DOI: 10.4049/jimmunol.1601850] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
Abstract
Adaptive immunity is driven by the expansion, somatic hypermutation, and selection of B cell clones. Each clone is the progeny of a single B cell responding to Ag, with diversified Ig receptors. These receptors can now be profiled on a large scale by next-generation sequencing. Such data provide a window into the microevolutionary dynamics that drive successful immune responses and the dysregulation that occurs with aging or disease. Clonal relationships are not directly measured, but they must be computationally inferred from these sequencing data. Although several hierarchical clustering-based methods have been proposed, they vary in distance and linkage methods and have not yet been rigorously compared. In this study, we use a combination of human experimental and simulated data to characterize the performance of hierarchical clustering-based methods for partitioning sequences into clones. We find that single linkage clustering has high performance, with specificity, sensitivity, and positive predictive value all >99%, whereas other linkages result in a significant loss of sensitivity. Surprisingly, distance metrics that incorporate the biases of somatic hypermutation do not outperform simple Hamming distance. Although errors were more likely in sequences with short junctions, using the entire dataset to choose a single distance threshold for clustering is near optimal. Our results suggest that hierarchical clustering using single linkage with Hamming distance identifies clones with high confidence and provides a fully automated method for clonal grouping. The performance estimates we develop provide important context to interpret clonal analysis of repertoire sequencing data and allow for rigorous testing of other clonal grouping algorithms.
Collapse
Affiliation(s)
- Namita T Gupta
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
| | | | | | | | | | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520; .,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and.,Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
28
|
Rondón C, Bogas G, Barrionuevo E, Blanca M, Torres MJ, Campo P. Nonallergic rhinitis and lower airway disease. Allergy 2017; 72:24-34. [PMID: 27439024 DOI: 10.1111/all.12988] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
In the past years, several investigators have demonstrated the existence of local nasal responses in some patients with typical allergic rhinitis symptoms but without atopy and have defined a new phenotype called local allergic rhinitis (LAR) or 'entopy'. In a percentage of LAR subjects, the upper airway disease is also associated with lower airway symptoms. After the description of this phenotype, the differential diagnosis between LAR and nonallergic rhinitis (NAR) has become a challenge for the clinician. To correctly identify LAR patients is of high importance for treatment and management of these patients, and for an appropriate inclusion of patients in clinical trials and genetics studies. The treatment of LAR patients, in contrast with NAR, is oriented to allergen avoidance and specific treatment. Allergen immunotherapy, the aetiological treatment for allergic respiratory diseases, has demonstrated to be an effective and safe treatment in LAR, increasing immunological tolerance, and reducing the clinical symptoms and the use of medication. In this article, the important and novel aspects of LAR in terms of mechanisms, diagnosis and treatment will be discussed. Also, the involvement of the lower airway and the potential role of IgE in the bronchial disease will be also reviewed.
Collapse
Affiliation(s)
- C. Rondón
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - G. Bogas
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - E. Barrionuevo
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - M. Blanca
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - M. J. Torres
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - P. Campo
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| |
Collapse
|
29
|
Chen JB, James LK, Davies AM, Wu YCB, Rimmer J, Lund VJ, Chen JH, McDonnell JM, Chan YC, Hutchins GH, Chang TW, Sutton BJ, Kariyawasam HH, Gould HJ. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2016; 139:1195-1204.e11. [PMID: 27658758 PMCID: PMC5380656 DOI: 10.1016/j.jaci.2016.06.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Background Chronic rhinosinusitis with nasal polyps is associated with local immunoglobulin hyperproduction and the presence of IgE antibodies against Staphylococcus aureus enterotoxins (SAEs). Aspirin-exacerbated respiratory disease is a severe form of chronic rhinosinusitis with nasal polyps in which nearly all patients express anti-SAEs. Objectives We aimed to understand antibodies reactive to SAEs and determine whether they recognize SAEs through their complementarity-determining regions (CDRs) or framework regions. Methods Labeled staphylococcal enterotoxin (SE) A, SED, and SEE were used to isolate single SAE-specific B cells from the nasal polyps of 3 patients with aspirin-exacerbated respiratory disease by using fluorescence-activated cell sorting. Recombinant antibodies with “matched” heavy and light chains were cloned as IgG1, and those of high affinity for specific SAEs, assayed by means of ELISA and surface plasmon resonance, were recloned as IgE and antigen-binding fragments. IgE activities were tested in basophil degranulation assays. Results Thirty-seven SAE-specific, IgG- or IgA-expressing B cells were isolated and yielded 6 anti-SAE clones, 2 each for SEA, SED, and SEE. Competition binding assays revealed that the anti-SEE antibodies recognize nonoverlapping epitopes in SEE. Unexpectedly, each anti-SEE mediated SEE-induced basophil degranulation, and IgG1 or antigen-binding fragments of each anti-SEE enhanced degranulation by the other anti-SEE. Conclusions SEEs can activate basophils by simultaneously binding as antigens in the conventional manner to CDRs and as superantigens to framework regions of anti-SEE IgE in anti-SEE IgE-FcεRI complexes. Anti-SEE IgG1s can enhance the activity of anti-SEE IgEs as conventional antibodies through CDRs or simultaneously as conventional antibodies and as “superantibodies” through CDRs and framework regions to SEEs in SEE–anti-SEE IgE-FcεRI complexes.
Collapse
Affiliation(s)
- Jiun-Bo Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Louisa K James
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Joanne Rimmer
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Valerie J Lund
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Jou-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - James M McDonnell
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yih-Chih Chan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - George H Hutchins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Tse Wen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Harsha H Kariyawasam
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom.
| |
Collapse
|
30
|
van Setten G, Labetoulle M, Baudouin C, Rolando M. Evidence of seasonality and effects of psychrometry in dry eye disease. Acta Ophthalmol 2016; 94:499-506. [PMID: 27105776 DOI: 10.1111/aos.12985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/13/2015] [Indexed: 12/28/2022]
Abstract
PURPOSE Current models consider the development of dry eye disease (DED) as a more or less continuous process with only minor daily variations. Clinical evidence, however, does suggest the existence of phase-like recurring dry eye complaints that may be linked to seasonal environmental conditions. In this survey-based study, we examined the influence of seasonality in dry eye pathophysiology. METHODS A specific protocol for a telephone interview was created. Then, 738 patients suffering from dry eye and/or Sjögren's syndrome were interviewed and asked about the impact of the four seasons and other weather conditions on their ocular symptoms. Data were statistically analysed. All data were compared in respect to the relation between season, gender, country of origin and the presence of comorbidities. RESULTS Overall, 47% of respondents stated that seasonal conditions had a high impact on their DED symptoms, with only 15% reporting that there was no seasonal impact on their symptoms. Wind was the most commonly reported weather condition to impact dry eye symptoms (for 71% of patients), followed by sunshine (60%) and heat (42%). Cold weather was also reported to aggravate dry eye sensation by 34% of patients. The two seasons most commonly associated with dry eye complaints were summer and winter (for 51% and 43% of patients, respectively). Only 8% stated that no weather conditions affected their symptoms. DISCUSSION This study confirms the seasonal enhancement of dry eye sensations and symptoms. Environmental characteristics such as cold and heat as well as wind were the most commonly cited triggering factors. Geographical differences do exist between the countries surveyed and the seasonal peak of complaints appears related to temperature and humidity. The main seasons of dry eye complaints in Europe were winter and summer. Such seasonal characteristics in ocular surface disease should be kept in mind when considering diagnosis and treatment as well when investigating the ocular surface. CONCLUSION Our study confirmed high prevalence of both seasonal and weather-related enhancement of dry eye sensations and symptoms.
Collapse
Affiliation(s)
| | - Marc Labetoulle
- Ophthalmology Department; Bicêtre Hospital; APHP; South Paris University; Paris France
| | | | | |
Collapse
|
31
|
Tan YG, Wang YQ, Zhang M, Han YX, Huang CY, Zhang HP, Li ZM, Wu XL, Wang XF, Dong Y, Zhu HM, Zhu SD, Li HM, Li N, Yan HP, Gao ZH. Clonal Characteristics of Circulating B Lymphocyte Repertoire in Primary Biliary Cholangitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1609-20. [DOI: 10.4049/jimmunol.1600096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022]
|
32
|
The Cloning and Expression of Human Monoclonal Antibodies: Implications for Allergen Immunotherapy. Curr Allergy Asthma Rep 2016; 16:15. [PMID: 26780523 PMCID: PMC4715835 DOI: 10.1007/s11882-015-0588-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allergic responses are dependent on the highly specific effector functions of IgE antibodies. Conversely, antibodies that block the activity of IgE can mediate tolerance to allergen. Technologies that harness the unparalleled specificity of antibody responses have revolutionized the way that we diagnose and treat human disease. This area of research continues to advance at a rapid pace and has had a significant impact on our understanding of allergic disease. This review will present an overview of humoral responses and provide an up-to-date summary of technologies used in the generation of human monoclonal antibodies. The impact that monoclonal antibodies have on allergic disease will be discussed, with a particular focus on allergen immunotherapy, which remains the only form of treatment that can modulate the underlying immune mechanisms and induce long-term clinical tolerance.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In this review, we summarize the latest publications on the genetic and environmental determinants of allergic rhinitis. RECENT FINDINGS Recent advances in genetic technology and bioinformatics have enabled simultaneous unbiased analysis of the entire genome regarding DNA sequence variants, epigenetic modifications and gene expression, providing functional correlates for DNA variants and phenotypes. As a result, new genes of mitochondrial and B-lymphocyte metabolism have been associated with allergic rhinitis phenotypes. Epidemiological studies recently showed an increased risk to develop allergic rhinitis in all age groups with reduction in farm exposure and in children with few older siblings. Climate changes seem to have also influenced pollen exposure and pollen-induced allergic disease. Lastly, occupational rhinitis has been increasingly recognized as a large burden to society. SUMMARY In summary, new high throughput genetics research technologies have pointed to new previously unsuspected pathways that may modulate the risk of developing allergic rhinitis such as mitochondrial metabolism. In addition, recent environmental factors found to influence the risk of developing allergic rhinitis include exposure to farm, pollution, occupational agents, and changes in climate.
Collapse
|
34
|
Kerzel S, Rogosch T, Struecker B, Maier RF, Kabesch M, Zemlin M. Unlike in Children with Allergic Asthma, IgE Transcripts from Preschool Children with Atopic Dermatitis Display Signs of Superantigen-Driven Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:4885-92. [PMID: 27183570 DOI: 10.4049/jimmunol.1402889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
The IgE repertoire in children with asthma reflects an adaptive B cell response, indicative of Ag-driven selection. However, the same might not apply to atopic dermatitis, which is often the first manifestation of atopy. The objective of our present study was to characterize the IgE repertoire of preschool children with atopic dermatitis with regard to signs of superantigen-like activation, clonal relationship, and indications of Ag selection. Total RNA was isolated from PBMCs of five children with atopic dermatitis. IgE transcripts were amplified, cloned, and sequenced using RT-PCR. We obtained 200 functional IgE sequences, which were compared with 1140 sequences from 11 children with asthma. Whereas variable gene segment of the H Ig chain (VH) gene usage in asthma reflected germline distribution, IgE transcripts from children with atopic dermatitis displayed a dominance of the otherwise scarcely expressed VH2 and VH4 family. Whereas IgE transcripts from children with asthma were highly mutated (7.2%), somatic mutation rate in atopic dermatitis was less than half as high (3.4%). Moreover, the proportion of transcripts that were indicative of Ag selection was reduced to 11% in atopic dermatitis (24% in asthma). In summary, IgE repertoires vary significantly between children with different atopic diseases. Compared with children with asthma, IgE transcripts from preschool children with atopic dermatitis are significantly less mutated, clonally less focused, and less indicative of Ag selection. We consider our data reconcilable with the hypothesis that a superantigen-like activation contributes to the maturation and selection of the IgE repertoire in atopic dermatitis.
Collapse
Affiliation(s)
- Sebastian Kerzel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, St. Hedwig Campus, D-93049 Regensburg, Germany; and Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Benjamin Struecker
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Rolf F Maier
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, St. Hedwig Campus, D-93049 Regensburg, Germany; and
| | - Michael Zemlin
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| |
Collapse
|
35
|
Persistence of the IgE repertoire in birch pollen allergy. J Allergy Clin Immunol 2016; 137:1884-1887.e8. [PMID: 27001158 DOI: 10.1016/j.jaci.2015.12.1333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 01/04/2023]
|
36
|
Campo P, Rondón C, Gould HJ, Barrionuevo E, Gevaert P, Blanca M. Local IgE in non-allergic rhinitis. Clin Exp Allergy 2016; 45:872-881. [PMID: 25495772 DOI: 10.1111/cea.12476] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Local allergic rhinitis (LAR) is characterized by the presence of a nasal Th2 inflammatory response with local production of specific IgE antibodies and a positive response to a nasal allergen provocation test (NAPT) without evidence of systemic atopy. The prevalence has been shown to be up to 25% in subjects affected with rhinitis with persistence, comorbidity and evolution similar to allergic rhinitis. LAR is a consistent entity that does not evolve to allergic rhinitis with systemic atopy over time although patients have significant impairment in quality of life and increase in the severity of nasal symptoms over time. Lower airways can be also involved. The diagnosis of LAR is based mostly on demonstration of positive response to NAPT and/or local synthesis of specific IgE. Allergens involved include seasonal or perennial such as house dusts mites, pollens, animal epithelia, moulds (alternaria) and others. Basophils from peripheral blood may be activated by the involved allergens suggesting the spill over of locally synthesized specific IgE to the circulation. LAR patients will benefit from the same treatment as allergic patients using antihistamines, inhaled corticosteroids and IgE antagonists. Studies on immunotherapy are ongoing and will determine its efficacy in LAR in terms of symptoms improvement and evolution of the natural course of the disease.
Collapse
Affiliation(s)
- P Campo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - C Rondón
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, Division of Asthma, Allergy and Lung Biology, King's College London, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - E Barrionuevo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - P Gevaert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - M Blanca
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| |
Collapse
|
37
|
Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 2015; 7:121. [PMID: 26589402 PMCID: PMC4654805 DOI: 10.1186/s13073-015-0243-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing of B-cell immunoglobulin repertoires is increasingly being applied to gain insights into the adaptive immune response in healthy individuals and in those with a wide range of diseases. Recent applications include the study of autoimmunity, infection, allergy, cancer and aging. As sequencing technologies continue to improve, these repertoire sequencing experiments are producing ever larger datasets, with tens- to hundreds-of-millions of sequences. These data require specialized bioinformatics pipelines to be analyzed effectively. Numerous methods and tools have been developed to handle different steps of the analysis, and integrated software suites have recently been made available. However, the field has yet to converge on a standard pipeline for data processing and analysis. Common file formats for data sharing are also lacking. Here we provide a set of practical guidelines for B-cell receptor repertoire sequencing analysis, starting from raw sequencing reads and proceeding through pre-processing, determination of population structure, and analysis of repertoire properties. These include methods for unique molecular identifiers and sequencing error correction, V(D)J assignment and detection of novel alleles, clonal assignment, lineage tree construction, somatic hypermutation modeling, selection analysis, and analysis of stereotyped or convergent responses. The guidelines presented here highlight the major steps involved in the analysis of B-cell repertoire sequencing data, along with recommendations on how to avoid common pitfalls.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA. .,Departments of Pathology and Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
38
|
Levin M, King JJ, Glanville J, Jackson KJL, Looney TJ, Hoh RA, Mari A, Andersson M, Greiff L, Fire AZ, Boyd SD, Ohlin M. Persistence and evolution of allergen-specific IgE repertoires during subcutaneous specific immunotherapy. J Allergy Clin Immunol 2015; 137:1535-44. [PMID: 26559321 DOI: 10.1016/j.jaci.2015.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Specific immunotherapy (SIT) is the only treatment with proved long-term curative potential in patients with allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B-cell repertoires are not well understood. OBJECTIVE We sought to characterize the IgE sequences expressed by allergen-specific B cells and track the fate of these B-cell clones during SIT. METHODS We used high-throughput antibody gene sequencing and identification of allergen-specific IgE with combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and the nasal mucosa from aeroallergen-sensitized subjects before and during the first year of subcutaneous SIT. RESULTS Of 52 distinct allergen-specific IgE heavy chains from 8 allergic donors, 37 were also detected by using high-throughput antibody gene sequencing of blood samples, nasal mucosal samples, or both. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. CONCLUSION In the future, combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies might aid assessment of SIT mechanisms and efficacy.
Collapse
Affiliation(s)
- Mattias Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Jasmine J King
- Department of Biology, Stanford University, Stanford, Calif; Department of Pathology, Stanford University, Stanford, Calif
| | - Jacob Glanville
- Department of Immunology, Stanford University, Stanford, Calif
| | | | | | - Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, Calif
| | - Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Rome, Italy; Associated Centers for Molecular Allergology, Rome, Italy
| | - Morgan Andersson
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, Calif; Department of Genetics, Stanford University, Stanford, Calif
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, Calif
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Wang XQ, Ke X, Shen Y, Kang HY, Gu Z, Hu GH, Hong SL. Changes in circulating follicular helper T-cells in Chinese patients with allergic rhinitis. Acta Otolaryngol 2015; 136:199-204. [PMID: 26472169 DOI: 10.3109/00016489.2015.1093169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONCLUSIONS Changes of circulating Follicular helper T (cTfh) cells existed in allergic rhinitis (AR) patients, and the severity of disease was associated with a more severe change of cTfh milieu. These results imply that cTfh cells may play a crucial role in the pathology of AR in Chinese patients. OBJECTIVES The aim of this study was to investigate the changes in cTfh cells in Chinese AR patients. METHODS Fifty-two patients were studied (32 in the AR group and 20 in the control group) for this research. The cTfh cell frequency and mRNA levels of transcription factor Bcl-6, B lymphocyte induced maturation protein 1 (BLIMP-1), and related cytokine IL-21 (IL-21 protein was also measured) were analyzed. Clinical severity was evaluated by total serum IgE levels, visual analog scale scores (VAS), and rhino-conjunctivitis quality-of-life questionnaires (RQLQ). RESULTS The frequency of cTfh cells were elevated in AR groups vs healthy controls (p < 0.05). Levels of IL-21 mRNA, Bcl-6 mRNA and the level of IL-21 protein were also significantly higher in the AR groups (p < 0.05), whereas BLIMP-1 mRNA was decreased (p < 0.05). Furthermore, positive correlations were identified between the frequency of cTfh cells and indicators of clinical severity (p < 0.01).
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Xia Ke
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Yang Shen
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Hou-Yong Kang
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Zheng Gu
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Guo-hua Hu
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| | - Su-Ling Hong
- a Department of Otorhinolaryngology-Head and Neck Surgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , PR China
| |
Collapse
|
40
|
Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G, Kleinstein SH. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 2015; 31:3356-8. [PMID: 26069265 PMCID: PMC4793929 DOI: 10.1093/bioinformatics/btv359] [Citation(s) in RCA: 550] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Advances in high-throughput sequencing technologies now allow for large-scale characterization of B cell immunoglobulin (Ig) repertoires. The high germline and somatic diversity of the Ig repertoire presents challenges for biologically meaningful analysis, which requires specialized computational methods. We have developed a suite of utilities, Change-O, which provides tools for advanced analyses of large-scale Ig repertoire sequencing data. Change-O includes tools for determining the complete set of Ig variable region gene segment alleles carried by an individual (including novel alleles), partitioning of Ig sequences into clonal populations, creating lineage trees, inferring somatic hypermutation targeting models, measuring repertoire diversity, quantifying selection pressure, and calculating sequence chemical properties. All Change-O tools utilize a common data format, which enables the seamless integration of multiple analyses into a single workflow. AVAILABILITY AND IMPLEMENTATION Change-O is freely available for non-commercial use and may be downloaded from http://clip.med.yale.edu/changeo. CONTACT steven.kleinstein@yale.edu.
Collapse
Affiliation(s)
- Namita T Gupta
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Mohamed Uduman
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511, USA and
| | - Daniel Gadala-Maria
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA, Department of Pathology, Yale University School of Medicine, New Haven, CT 06511, USA and
| |
Collapse
|
41
|
Liu Y, Shi J, Chen X. Identification of novel targets for seasonal allergic rhinitis during and outside the pollen season by microarray analysis. Acta Otolaryngol 2015; 135:1330-6. [PMID: 26189617 DOI: 10.3109/00016489.2015.1067906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION FOS, JUN, and DUSP1 could be used as candidate targets for the treatment of seasonal allergic rhinitis (SAR) during the pollen season, while KLF4 and CD163 could be used as candidate targets outside the pollen season. OBJECTIVES The aim of this study is to screen novel genes related to SAR during and outside the pollen season, by using microarray analysis. METHODS The mRNA expression profile (GSE50101) of CD4(+) T cells from SAR and healthy controls during and outside the pollen season was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were then screened with the cut-off criteria of fold change larger than 1.5 and p-value less than 0.05. RESULTS A total of 47 DEGs were identified. Ten DEGs were shared by SAR patient samples during and outside the pollen season, while four and 23 DEGs were specific to during and outside the pollen season, respectively. Five miRNAs were screened in this study. Among these miRNAs, miR-139, miR-101, miR-29A, and miR-181 could target FOS; miR-200 and miR-29A could target KLF4; miR-101 and miR-200 could target DUSP1; miR-139 and miR-181 could target JUN and CD163, respectively.
Collapse
|
42
|
Gould HJ, Ramadani F. IgE responses in mouse and man and the persistence of IgE memory. Trends Immunol 2014; 36:40-8. [PMID: 25499855 DOI: 10.1016/j.it.2014.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/29/2022]
Abstract
Rapid and robust recall or 'memory' responses are an essential feature of adaptive immunity. They constitute a defense against reinfection by pathogens, yet arguably do more harm than good in allergic disease. Immunoglobulin (Ig)E antibodies mediate the allergic reaction characterized by immediate hypersensitivity, a manifestation of IgE memory. The origin of IgE memory remains obscure, mainly due to the low proportion of IgE-expressing B cells in the total B cell population. The recent development of ultrasensitive methods for tracking these cells in vivo has overcome this obstacle, and their use has revealed unexpected pathways to IgE memory in the mouse. Here, we review these findings and consider their bearing on our understanding of IgE memory and allergic disease in man.
Collapse
Affiliation(s)
- Hannah J Gould
- Divisions of Cell and Molecular Biophysics and Asthma, Allergy and Lung Biology, King's College London, London, SE1 1UL, UK.
| | - Faruk Ramadani
- Divisions of Cell and Molecular Biophysics and Asthma, Allergy and Lung Biology, King's College London, London, SE1 1UL, UK
| |
Collapse
|
43
|
Rogosch T, Kerzel S, Dey F, Wagner JJ, Zhang Z, Maier RF, Zemlin M. IgG4 and IgE transcripts in childhood allergic asthma reflect divergent antigen-driven selection. THE JOURNAL OF IMMUNOLOGY 2014; 193:5801-8. [PMID: 25385824 DOI: 10.4049/jimmunol.1401409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The physiologic function of the "odd" Ab IgG4 remains enigmatic. IgG4 mediates immunotolerance, as, for example, during specific immunotherapy of allergies, but it mediates tissue damage in autoimmune pemphigus vulgaris and "IgG4-related disease." Approximately half of the circulating IgG4 molecules are bispecific owing to their unique ability to exchange half-molecules. Better understanding of the interrelation between IgG4 and IgE repertoires may yield insight into the pathogenesis of allergies and into potential novel therapies that modulate IgG4 responses. We aimed to compare the selective forces that forge the IgG4 and IgE repertoires in allergic asthma. Using an IgG4-specific RT-PCR, we amplified, cloned, and sequenced IgG4 H chain transcripts of PBMCs from 10 children with allergic asthma. We obtained 558 functional IgG4 sequences, of which 286 were unique. Compared with previously published unique IgE transcripts from the same blood samples, the somatic mutation rate was significantly enhanced in IgG4 transcripts (62 versus 83%; p < 0.001), whereas fewer IgG4 sequences displayed statistical evidence of Ag-driven selection (p < 0.001). On average, the hypervariable CDRH3 region was four nucleotides shorter in IgG4 than in IgE transcripts (p < 0.001). IgG4 transcripts in the circulation of children with allergic asthma reflect some characteristics of classical Ag-driven B2 immune responses but display less indication of Ag selection than do IgE transcripts. Although allergen-specific IgG4 can block IgE-mediated allergen presentation and degranulation of mast cells, key factors that influence the Ag-binding properties of the Ab differ between the overall repertoires of circulating IgG4- and IgE-expressing cells.
Collapse
Affiliation(s)
- Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | - Sebastian Kerzel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, St. Hedwig Campus, 93053 Regensburg, Germany; and
| | - Friederike Dey
- Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | | | - Zhixin Zhang
- Department of Pathology and Microbiology, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198
| | - Rolf F Maier
- Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | - Michael Zemlin
- Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany;
| |
Collapse
|