1
|
Zhao L, Ma T, Wang X, Wang H, Liu Y, Wu S, Fu L, Gilissen L, van Ree R, Wang X, Gao Z. Food-Pollen Cross-Reactivity and its Molecular Diagnosis in China. Curr Allergy Asthma Rep 2024; 24:497-508. [PMID: 38976200 DOI: 10.1007/s11882-024-01162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis. RECENT FINDINGS Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role. Pollen allergy is relatively low in Southern China, with allergies to grass pollen being more important than weed and tree pollens. Rosaceae fruits and legume seeds stand out as major related allergenic foods. Non-specific lipid transfer protein (nsLTP) has been found to be the most clinically relevant cross-reacting allergenic component, able to induce severe reactions. PR-10, profilin, defensin, chitinase, and gibberellin-regulated proteins are other important cross-reactive allergen molecules. Artemisia pollen can induce allergenic cross-reactions with a wide range of plant-derived foods in China, and spring tree pollens (Betula) are also important. nsLTP found in both pollen and plant-derived food is considered the most significant allergen in food pollen cross-reactivity. Component-resolved diagnosis with potential allergenic proteins is recommended to improve diagnostic accuracy and predict the potential risk of causing allergic symptoms.
Collapse
Affiliation(s)
- Lan Zhao
- Allergy Research Center, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Ma
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongtian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd, Hangzhou, China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Luud Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Abu Risha M, Rick EM, Plum M, Jappe U. Legume Allergens Pea, Chickpea, Lentil, Lupine and Beyond. Curr Allergy Asthma Rep 2024; 24:527-548. [PMID: 38990406 PMCID: PMC11364600 DOI: 10.1007/s11882-024-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF THE REVIEW In the last decade, an increasing trend towards a supposedly healthier vegan diet could be observed. However, recently, more cases of allergic reactions to plants and plant-based products such as meat-substitution products, which are often prepared with legumes, were reported. Here, we provide the current knowledge on legume allergen sources and the respective single allergens. We answer the question of which legumes beside the well-known food allergen sources peanut and soybean should be considered for diagnostic and therapeutic measures. RECENT FINDINGS These "non-priority" legumes, including beans, pea, lentils, chickpea, lupine, cowpea, pigeon pea, and fenugreek, are potentially new important allergen sources, causing mild-to-severe allergic reactions. Severe reactions have been described particularly for peas and lupine. An interesting aspect is the connection between anaphylactic reactions and exercise (food-dependent exercise-induced anaphylaxis), which has only recently been highlighted for legumes such as soybean, lentils and chickpea. Most allergic reactions derive from IgE cross-reactions to homologous proteins, for example between peanut and lupine, which is of particular importance for peanut-allergic individuals ignorant to these cross-reactions. From our findings we conclude that there is a need for large-scale studies that are geographically distinctive because most studies are case reports, and geographic differences of allergic diseases towards these legumes have already been discovered for well-known "Big 9" allergen sources such as peanut and soybean. Furthermore, the review illustrates the need for a better molecular diagnostic for these emerging non-priority allergen sources to evaluate IgE cross-reactivities to known allergens and identify true allergic reactions.
Collapse
Affiliation(s)
- Marua Abu Risha
- Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Eva-Maria Rick
- Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Melanie Plum
- Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Uta Jappe
- Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany.
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
3
|
Ballmer-Weber BK, Wangorsch A, Bures P, Hanschmann KM, Gadermaier G, Mattsson L, Mills CEN, van Ree R, Lidholm J, Vieths S. New light on an old syndrome: Role of Api g 7 in mugwort pollen-related celery allergy. J Allergy Clin Immunol 2024; 154:679-689.e5. [PMID: 38763171 DOI: 10.1016/j.jaci.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Celery root is known to cause severe allergic reactions in patients sensitized to mugwort pollen. OBJECTIVE We studied clinically well-characterized patients with celery allergy by IgE testing with a comprehensive panel of celery allergens to disentangle the molecular basis of what is known as the celery-mugwort syndrome. METHODS Patients with suspected food allergy to celery underwent a standardized interview. Main inclusion criteria were a positive food challenge with celery or an unambiguous case history of severe anaphylaxis. IgE to celery allergens (rApi g 1.01, rApi g 1.02, rApi g 2, rApi g 4, nApi g 5, rApi g 6, rApi g 7) and to mugwort allergens (rArt v 1, rArt v 3, rArt v 4) were determined. IgE levels ≥0.35 kUA/L were regarded positive. RESULTS Seventy-nine patients with allergy to celery were included. Thirty patients had mild oral or rhinoconjunctival symptoms, and 49 had systemic reactions. Sixty-eight percent had IgE to celery extract, 80% to birch pollen, and 77% to mugwort pollen. A combination of Api g 1.01, 1.02, 4, 5, and 7 increased the diagnostic sensitivity for celery allergy to 92%. The lipid transfer proteins Api g 2 and Api g 6 were not relevant in our celery-allergic population. IgE to Api g 7, detected in 52% of patients, correlated closely (r = 0.86) to Art v 1 from mugwort pollen. Eleven of 12 patients with monosensitization to Api g 7 were IgE negative to celery extract. The odds ratio for developing a severe anaphylactic reaction rather than only mild oral symptoms was about 6 times greater (odds ratio, 5.87; 95% confidence interval, 1.08-32.0; P = .0410) for Api g 7-sensitized versus -nonsensitized subjects. CONCLUSION There is an urgent need for routine diagnostic tests to assess sensitization to Api g 7, not only to increase test sensitivity but also to identify patients at risk of a severe allergic reaction to celery.
Collapse
Affiliation(s)
- Barbara K Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Clinic for Dermatology and Allergology, Kantonsspital St Gallen, St Gallen, Switzerland.
| | | | | | | | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | | | - Clare E N Mills
- Division of Infection, Immunity, and Respiratory Medicine, Manchester Institute of Biotechnology & Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
4
|
Moya B, Dieguez MC, Crespo JF, Cabanillas B. Food Allergens of Plant and Animal Origin: Classification, Characteristics, and Properties. Methods Mol Biol 2024; 2717:1-14. [PMID: 37737974 DOI: 10.1007/978-1-0716-3453-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Food allergy is an adverse immune response to specific foods that can be either IgE-mediated or non-IgE mediated. The causes of IgE-mediated food allergy are multifactorial and involve genetic, dietary, and environmental factors. The prevalence of food allergy has increased over the last few decades, especially in urbanized, industrialized, and Westernized countries, and the epithelial barrier hypothesis has been recently suggested as a possible explanation for this increase. Food allergens of plant and animal origin are classified into a few families and superfamilies that are widely distributed and conserved. While it is known that food allergens share common properties, such as stability to enzymes and solubility, they also exhibit differential properties, and exceptions to the common characteristics exist. In recent years, novel characteristics of food allergens have been proposed based on their immunological properties and their ability to act as adjuvants or enhancers of the immune system.This chapter provides an overview of the current knowledge of food allergy, covering their prevalence, classification of food allergens from plant and animal origins, and recent advancements in the characterization of the properties of these allergens.
Collapse
Affiliation(s)
- Beatriz Moya
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Maria Carmen Dieguez
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jesus F Crespo
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
5
|
Połomska J, Dydak P, Sozańska B, Sikorska-Szaflik H. Peanut Allergy and Component-Resolved Diagnostics Possibilities-What Are the Benefits? Nutrients 2023; 15:5132. [PMID: 38140391 PMCID: PMC10746123 DOI: 10.3390/nu15245132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Peanut allergy is a widespread and potentially life-threatening condition that affects both children and adults, with a growing incidence worldwide. It is estimated to affect around 1-2% of the population in several developed countries. Component-resolved diagnostics is a modern approach to allergy diagnosis that focuses on identifying specific allergenic proteins to provide precise diagnoses and personalized treatment plans. It is a technique that enables the analysis of specific IgE antibodies against tightly defined molecules (components) that constitute the allergen. Component-resolved diagnostics is particularly valuable in peanut allergy diagnosis, helping to determine allergen components associated with severe reactions. It also aids in predicting the course of the allergy and enables the development of personalized immunotherapy plans; however, the full application of it for these purposes still requires more precise studies. In this paper, we present the current knowledge about peanut allergy and component-resolved diagnostics possibilities. We discuss the possibilities of using molecular diagnostics in the diagnosis of peanut allergy. We focus on examining and predicting the development of peanut allergy, including the risk of anaphylaxis, and describe the latest data related to desensitization to peanuts.
Collapse
Affiliation(s)
- Joanna Połomska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland; (J.P.); (B.S.)
| | - Paulina Dydak
- Clinical Department of Paediatrics, Specialist Hospital No. 2, Bytom, Silesian Medical University, 40-055 Katowice, Poland;
| | - Barbara Sozańska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland; (J.P.); (B.S.)
| | - Hanna Sikorska-Szaflik
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland; (J.P.); (B.S.)
| |
Collapse
|
6
|
Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, Foyer CH, Nwosu CV, Karpinska B, Baker A, Xu P, Liao B, Mir RR, Chen X, Guo B, Nguyen HT, Kumar R, Bera SK, Singam P, Kumar A, Varshney RK, Pandey MK. Prospects for developing allergen-depleted food crops. THE PLANT GENOME 2023; 16:e20375. [PMID: 37641460 DOI: 10.1002/tpg2.20375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.
Collapse
Affiliation(s)
- Vadthya Lokya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arun K Pandey
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Peggy Ozias-Akins
- Horticulture Department, The University of Georgia Tifton Campus, Tifton, GA, USA
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | | | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pei Xu
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory for Crops Genetic Improvement, Crops Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Gulbarga, India
| | | | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Anirudh Kumar
- Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
7
|
Cosi V, Gadermaier G. The Role of Defensins as Pollen and Food Allergens. Curr Allergy Asthma Rep 2023:10.1007/s11882-023-01080-3. [PMID: 37178263 PMCID: PMC10281898 DOI: 10.1007/s11882-023-01080-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE OF REVIEW Defensin-polyproline-linked proteins are relevant allergens in Asteraceae pollen. Depending on their prevalence and amount in the pollen source, they are potent allergens, as shown for the major mugwort pollen allergen Art v 1. Only a few allergenic defensins have been identified in plant foods, such as peanut and celery. This review provides an overview of structural and immunological features, IgE cross-reactivity, and diagnostic and therapeutic options regarding allergenic defensins. RECENT FINDINGS We present and critically review the allergenic relevance of pollen and food defensins. The recently identified Api g 7 from celeriac and other allergens potentially involved in Artemisia pollen-related food allergies are discussed and related to clinical severity and allergen stability. To specify Artemisia pollen-related food allergies, we propose the term "defensin-related food allergies" to account for defensin-polyproline-linked protein-associated food syndromes. There is increasing evidence that defensins are the causative molecules in several mugwort pollen-associated food allergies. A small number of studies have shown IgE cross-reactivity of Art v 1 with celeriac, horse chestnut, mango, and sunflower seed defensins, while the underlying allergenic molecule remains unknown in other mugwort pollen-associated food allergies. As these food allergies can cause severe allergic reactions, identification of allergenic food defensins and further clinical studies with larger patient cohorts are required. This will allow molecule-based allergy diagnosis and a better understanding of defensin-related food allergies to raise awareness of potentially severe food allergies due to primary sensitization to Artemisia pollen.
Collapse
Affiliation(s)
- Valentina Cosi
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
| |
Collapse
|
8
|
Prodić I, Krstić Ristivojević M, Smiljanić K. Antioxidant Properties of Protein-Rich Plant Foods in Gastrointestinal Digestion—Peanuts as Our Antioxidant Friend or Foe in Allergies. Antioxidants (Basel) 2023; 12:antiox12040886. [PMID: 37107261 PMCID: PMC10135473 DOI: 10.3390/antiox12040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Thermally processed peanuts are ideal plant models for studying the relationship between allergenicity and antioxidant capacity of protein-rich foods, besides lipids, carbohydrates and phytochemicals. Peanut is highly praised in the human diet; however, it is rich in allergens (>75% of total proteins). One-third of peanut allergens belong to the products of genes responsible for the defence of plants against stress conditions. The proximate composition of major peanut macromolecules and polyphenols is reviewed, focusing on the identity and relative abundance of all peanut proteins derived from recent proteomic studies. The importance of thermal processing, gastrointestinal digestion (performed by INFOGEST protocol) and their influence on allergenicity and antioxidant properties of protein-rich plant food matrices is elaborated. Antioxidant properties of bioactive peptides from nuts were also considered. Moreover, there are no studies dealing simultaneously with the antioxidant and allergenic properties of protein- and polyphenol-rich foods, considering all the molecules that can significantly contribute to the antioxidant capacity during and after gastrointestinal digestion. In summary, proteins and carbohydrates are underappreciated sources of antioxidant power released during the gastrointestinal digestion of protein-rich plant foods, and it is crucial to decipher their antioxidant contribution in addition to polyphenols and vitamins before and after gastrointestinal digestion.
Collapse
Affiliation(s)
- Ivana Prodić
- Innovative Centre of the Faculty of Chemistry in Belgrade Ltd., University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Krstić Ristivojević
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| | - Katarina Smiljanić
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia
| |
Collapse
|
9
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Čelakovská J, Čermákova E, Vaňková R, Andrýs C, Krejsek J. Sensitisation to molecular components of fungi in atopic dermatitis patients, the relation to the occurrence of food hypersensitivity reactions. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2074968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - E. Čermákova
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Gut Microbial Signatures Associated with Peanut Allergy in a BALB/c Mouse Model. Foods 2022; 11:foods11101395. [PMID: 35626965 PMCID: PMC9141413 DOI: 10.3390/foods11101395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple studies have uncovered the pivotal role of gut microbiota in the development of food allergy. However, the effects of gut microbiota on peanut allergy are still unclear. Here, we characterized the gut microbiota composition of peanut-allergic mice by 16S rRNA sequencing and analyzed the correlation between allergic indicators and gut microbiota composition. Outcomes showed that the gut microbiota composition was reshaped in peanut-allergic mice, with Acidobacteriota, Lachnospiraceae, Rikenellaceae, Alistipes, Lachnospiraceae_NK4A136_group significantly down-regulated and Muribaculaceae up-regulated. All of them were significantly correlated with the serum peanut-specific antibodies. These results suggested that these six bacterial OTUs might be the gut microbial signatures associated with peanut allergy.
Collapse
|
12
|
Kleine-Tebbe J, Brans R, Jappe U. Allergene - Auslöser der verschiedenen Allergievarianten. ALLERGO JOURNAL 2022; 31:16-31. [PMID: 35340910 PMCID: PMC8934605 DOI: 10.1007/s15007-022-4980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Kleine-Tebbe
- Dermatologie, Umweltmedizin, Allergie- und Asthmazentrum Westend, Spandauer Damm 130, Haus 9, 14050 Berlin, Germany
| | | | - Uta Jappe
- Oberärztin, Klinische und Molekulare Allergologie - Forschungszentrum Borstel, Parkallee 35, 23845 Borstel, Germany
| |
Collapse
|
13
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Mani-López E, Palou E, López-Malo A. Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Čelakovská J, Bukač J, Vaňková R, Krejsek J, Andrýs C. Peanuts allergy in atopic dermatitis patients, analysis of sensitization to molecular components. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1911958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Bukač
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
16
|
Identification and Purification of Novel Low-Molecular-Weight Lupine Allergens as Components for Personalized Diagnostics. Nutrients 2021; 13:nu13020409. [PMID: 33525401 PMCID: PMC7911308 DOI: 10.3390/nu13020409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lupine flour is a valuable food due to its favorable nutritional properties. In spite of its allergenic potential, its use is increasing. Three lupine species, Lupinus angustifolius, L. luteus, and L. albus are relevant for human nutrition. The aim of this study is to clarify whether the species differ with regard to their allergen composition and whether anaphylaxis marker allergens could be identified in lupine. Patients with the following characteristics were included: lupine allergy, suspected lupine allergy, lupine sensitization only, and peanut allergy. Lupine sensitization was detected via CAP-FEIA (ImmunoCAP) and skin prick test. Protein, DNA and expressed sequence tag (EST) databases were queried for lupine proteins homologous to already known legume allergens. Different extraction methods applied on seeds from all species were examined by SDS-PAGE and screened by immunoblotting for IgE-binding proteins. The extracts underwent different and successive chromatography methods. Low-molecular-weight components were purified and investigated for IgE-reactivity. Proteomics revealed a molecular diversity of the three species, which was confirmed when investigated for IgE-reactivity. Three new allergens, L. albus profilin, L. angustifolius and L. luteus lipid transfer protein (LTP), were identified. LTP as a potential marker allergen for severity is a valuable additional candidate for molecular allergy diagnostic tests.
Collapse
|
17
|
Czolk R, Klueber J, Sørensen M, Wilmes P, Codreanu-Morel F, Skov PS, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Front Immunol 2021; 11:594350. [PMID: 33584660 PMCID: PMC7876438 DOI: 10.3389/fimmu.2020.594350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Martin Sørensen
- Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
- RefLab ApS, Copenhagen, Denmark
- Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
18
|
Zhang C, Recacha R, Ruddock LW, Moilanen A. Efficient soluble production of folded cat allergen Fel d 1 in Escherichia coli. Protein Expr Purif 2020; 180:105809. [PMID: 33338588 DOI: 10.1016/j.pep.2020.105809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
The major cat allergen Fel d 1 is one of the most common and potent causes of animal related allergy. Medical treatment of cat allergy has relied on immunotherapy carried out with cat dander extract. This approach has been problematic, mainly due to inconsistent levels of the major allergen in the produced extracts. Recombinant DNA technology has been proposed as an alternative method to produce more consistent pharmaceuticals for immunotherapy and diagnostics of allergy. Current approaches to produce recombinant Fel d 1 (recFel d 1) in the cytoplasm of Escherichia coli have however resulted in protein folding deficiencies and insoluble inclusion body formation, requiring elaborate in vitro processing to acquire folded material. In this study, we introduce an efficient method for cytoplasmic production of recFel d 1 that utilizes eukaryotic folding factors to aid recFel d 1 to fold and be produced in the soluble fraction of E. coli. The solubly expressed recFel d 1 is shown by biophysical in vitro experiments to contain structural disulfides, is extremely stable, and has a sensitivity for methionine sulfoxidation. The latter is discussed in the context of functional relevance.
Collapse
Affiliation(s)
- Chi Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
19
|
A proteomic analysis of peanut seed at different stages of underground development to understand the changes of seed proteins. PLoS One 2020; 15:e0243132. [PMID: 33284814 PMCID: PMC7721164 DOI: 10.1371/journal.pone.0243132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
In order to obtain more valuable insights into the protein dynamics and accumulation of allergens in seeds during underground development, we performed a proteomic study on developing peanut seeds at seven different stages. A total of 264 proteins with altered abundance and contained at least one unique peptide was detected by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). All identified proteins were classified into five functional categories as level 1 and 20 secondary functional categories as level 2. Among them, 88 identified proteins (IPs) were related to carbohydrate/ amino acid/ lipid transport and metabolism, indicating that carbohydrate/amino acid/ lipid metabolism played a key role in the underground development of peanut seeds. Hierarchical cluster analysis showed that all IPs could be classified into eight cluster groups according to the abundance profiles, suggesting that the modulatory patterns of these identified proteins were complicated during seed development. The largest group contained 41 IPs, the expression of which decreased at R 2 and reached a maximum at R3 but gradually decreased from R4. A total of 14 IPs were identified as allergen-like proteins by BLAST with A genome (Arachis duranensis) or B genome (Arachis ipaensis) translated allergen sequences. Abundance profile analysis of 14 identified allergens showed that the expression of all allergen proteins was low or undetectable by 2-DE at the early stages (R1 to R4), and began to accumulate from the R5 stage and gradually increased. Network analysis showed that most of the significant proteins were involved in active metabolic pathways in early development. Real time RT-PCR analysis revealed that transcriptional regulation was approximately consistent with expression at the protein level for 8 selected identified proteins. In addition, some amino acid sequences that may be associated with new allergens were also discussed.
Collapse
|
20
|
Santos AF, Barbosa‐Morais NL, Hurlburt BK, Ramaswamy S, Hemmings O, Kwok M, O’Rourke C, Bahnson HT, Cheng H, James L, Gould HJ, Sutton BJ, Maleki SJ, Lack G. IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2-specific IgE. Allergy 2020; 75:2309-2318. [PMID: 32248566 DOI: 10.1111/all.14301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Understanding the discrepancy between IgE sensitization and allergic reactions to peanut could facilitate diagnosis and lead to novel means of treating peanut allergy. OBJECTIVE To identify differences in IgE and IgG4 binding to peanut peptides between peanut-allergic (PA) and peanut-sensitized but tolerant (PS) children. METHODS PA (n = 56), PS (n = 42) and nonsensitized nonallergic (NA, n = 10) patients were studied. Synthetic overlapping 15-mer peptides of peanut allergens (Ara h 1-11) were spotted onto microarray slides, and patients' samples were tested for IgE and IgG4 binding using immunofluorescence. IgE and IgG4 levels to selected peptides were quantified using ImmunoCAP. Diagnostic model comparisons were performed using likelihood-ratio tests between each specified nominal logistic regression models. RESULTS Seven peptides on Ara h 1, Ara h 2, and Ara h 3 were bound more by IgE of PA compared to PS patients on the microarray. IgE binding to one peptide on Ara h 5 and IgG4 binding to one Ara h 9 peptide were greater in PS than in PA patients. Using ImmunoCAP, IgE to the Ara h 2 peptides enhanced the diagnostic accuracy of Ara h 2-specific IgE. Ratios of IgG4/IgE to 4 out of the 7 peptides were higher in PS than in PA subjects. CONCLUSIONS Ara h 2 peptide-specific IgE added diagnostic value to Ara h 2-specific IgE. Ability of peptide-specific IgG4 to surmount their IgE counterpart seems to be important in established peanut tolerance.
Collapse
Affiliation(s)
- Alexandra F. Santos
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Children’s Allergy ServiceEvelina London Children's Hospital, Guy’s and St Thomas’ Hospital London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Nuno L. Barbosa‐Morais
- Faculdade de Medicina Instituto de Medicina Molecular João Lobo Antunes Universidade de Lisboa Lisbon Portugal
| | - Barry K. Hurlburt
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Sneha Ramaswamy
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Oliver Hemmings
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Matthew Kwok
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | | | | | - Hsiaopo Cheng
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Louisa James
- Blizard Institute Queen Mary University of London London UK
| | - Hannah J. Gould
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Brian J. Sutton
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Soheila J. Maleki
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Gideon Lack
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Children’s Allergy ServiceEvelina London Children's Hospital, Guy’s and St Thomas’ Hospital London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| |
Collapse
|
21
|
Parisi K, Poon S, Renda RF, Sahota G, English J, Yalpani N, Bleackley MR, Anderson MA, van der Weerden NL. Improving the Digestibility of Plant Defensins to Meet Regulatory Requirements for Transgene Products in Crop Protection. FRONTIERS IN PLANT SCIENCE 2020; 11:1227. [PMID: 32922418 PMCID: PMC7456892 DOI: 10.3389/fpls.2020.01227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 06/01/2023]
Abstract
Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Rosemary F. Renda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Gurinder Sahota
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - James English
- Maxygen LLC, Sunnyvale, CA, United States
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
| | - Nasser Yalpani
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Mark R. Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Nicole L. van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
22
|
Yu J, Smith IN, Idris N, Gregory N, Mikiashvili N. Oxidative Stability of Protease Treated Peanut with Reduced Allergenicity. Foods 2020; 9:E762. [PMID: 32531900 PMCID: PMC7353559 DOI: 10.3390/foods9060762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Oxidative stability and allergenicity are two major concerns of peanuts. This study evaluated the impact of protease treatment of peanuts on its oxidative stability during storage. The raw and dry-roasted peanut kernels were hydrolyzed with Alcalase solution at pH 7.5 for 3 h. The contents of Ara h 1, Ara h 2, and Ara h 6 in peanuts were determined before and after enzyme treatment by a sandwich ELISA. After drying, the samples were packed in eight amber glass jars and stored at 37 °C for 1-8 weeks. Controls are untreated raw and dry-roasted peanuts packed and stored in the same way as their treated counterparts. Samples were taken biweekly to determine peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) as indicators of oxidation (n = 3), and to determine antioxidant activity. Alcalase treatment reduced intact major allergens Ara h 1, Ara h 2, and Ara h 6 by 100%, 99.8%, and 85%, respectively. The PVs of Alcalase-treated raw and roasted peanuts was lower than those of untreated (p < 0.05) over the 8-week storage. The TBARS of Alcalase-treated raw peanuts were slightly higher than that of untreated (p < 0.05), but the TBARS of Alcalase-treated dry-roasted peanuts were slightly but significantly lower than that of untreated (p < 0.05). The protease treatment increased the antioxidant activities including reducing power, DPPH free radical scavenging capacity, and metal chelating capacity of peanuts.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (I.N.S.); (N.I.); (N.G.); (N.M.)
| | | | | | | | | |
Collapse
|
23
|
Monaci L, Pilolli R, De Angelis E, Crespo JF, Novak N, Cabanillas B. Food allergens: Classification, molecular properties, characterization, and detection in food sources. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:113-146. [PMID: 32711861 DOI: 10.1016/bs.afnr.2020.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food allergy is a large and growing public health problem in many areas of the world. The prevalence of food allergy has increased in the last decades in a very significant way in many world regions, particularly in developed countries. In that respect, the research field of food allergy has experienced an extensive growth and very relevant progress has been made in recent years regarding the characterization of food allergens, the study of their immunological properties, and their detection in food sources. Furthermore, food labeling policies have also been improved decidedly in recent years. For that immense progress made, it is about time to review the latest progress in the field of food allergy. In this review, we intend to carry out an extensive and profound overview regarding the latest scientific advances and knowledge in the field of food allergen detection, characterization, and in the study of the effects of food processing on the physico-chemical properties of food allergens. The advances in food labeling policies, and methodologies for the characterization of food allergens are also thoroughly reviewed in the present overview.
Collapse
Affiliation(s)
- Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | | | - Jesus F Crespo
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain
| | - Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Aalberse RC, Mueller GA, Derksen NIL, Aalberse JA, Edwards LL, Pomés A, Lidholm J, Rispens T, Briza P. Identification of the amino-terminal fragment of Ara h 1 as a major target of the IgE-binding activity in the basic peanut protein fraction. Clin Exp Allergy 2020; 50:401-405. [PMID: 31880850 DOI: 10.1111/cea.13554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Small, basic peanut proteins are often poorly extracted in pH-neutral buffers that are optimal for the extraction of peanut storage proteins such as Ara h 1. As a result, such proteins are easily missed as potential allergens. OBJECTIVE To analyse the allergenic composition of the basic peanut protein (BPP) fraction. METHODS A peanut extract prepared at pH 4 was fractionated by physicochemical procedures. Chemical analysis was performed by SDS-PAGE and mass spectrometry. Because immunoblotting was found to be inefficient for most of these small basic proteins, IgE-binding activity was measured by coupling the fractions to CNBr-activated Sepharose, followed by incubation with sera from 55 Dutch peanut-allergic children and 125 I-labelled anti-IgE. RESULTS Most IgE reactivity of the BPP fraction was due to the 5-7 kDa amino-terminal fragment of Ara h 1. This finding was confirmed by the use of the fragment in recombinant form, to which 25/55 of the sera was IgE-positive. CONCLUSION The amino-terminal fragment of Ara h 1, a member of a family of small anti-microbial proteins, is an allergen independent of the carboxy-terminal fragment of Ara h 1.
Collapse
Affiliation(s)
- Rob C Aalberse
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ninotska I L Derksen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Lori L Edwards
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anna Pomés
- Indoor Biotechnologies, Inc, Charlottesville, VA, USA
| | | | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Soto N, Hernández Y, Delgado C, Rosabal Y, Ortiz R, Valencia L, Borrás-Hidalgo O, Pujol M, Enríquez GA. Field Resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of Transgenic Soybean Expressing the NmDef02 Plant Defensin Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:562. [PMID: 32528487 PMCID: PMC7264373 DOI: 10.3389/fpls.2020.00562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/15/2020] [Indexed: 05/20/2023]
Abstract
Fungal diseases lead to significant losses in soybean yields and a decline in seed quality; such is the case of the Asian soybean rust and anthracnose caused by Phakopsora pachyrhizi and Colletotrichum truncatum, respectively. Currently, the development of transgenic plants carrying antifungal defensins offers an alternative for plant protection against pathogens. This paper shows the production of transgenic soybean plants expressing the NmDef02 defensin gene using the biolistic delivery system, in an attempt to improve resistance against diseases and reduce the need for chemicals. Transgenic lines were assessed in field conditions under the natural infections of P. pachyrhizi and C. truncatum. The constitutive expression of the NmDef02 gene in transgenic soybean plants was shown to enhance resistance against these important plant pathogens. The quantification of the P. pachyrhizi biomass in infected soybean leaves revealed significant differences between transgenic lines and the non-transgenic control. In certain transgenic lines there was a strong reduction of fungal biomass, revealing a less severe disease. Integration and expression of the transgenes were confirmed by PCR, Southern blot, and qRT-PCR, where the Def1 line showed a higher relative expression of defensin. It was also found that the expression of the NmDef02 defensin gene in plants of the Def1 line did not have a negative effect on the nodulation induced by Bradyrhizobium japonicum. These results indicate that transgenic soybean plants expressing the NmDef02 defensin gene have a substantially enhanced resistance to economically important diseases, providing a sound environmental approach for decreasing yield losses and lowering the burden of chemicals in agriculture.
Collapse
Affiliation(s)
- Natacha Soto
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- *Correspondence: Natacha Soto,
| | - Yuniet Hernández
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Celia Delgado
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yamilka Rosabal
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rodobaldo Ortiz
- National Institute of Agricultural Sciences, San José de las Lajas, Cuba
| | - Laura Valencia
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Orlando Borrás-Hidalgo
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qilu University of Technology, Jinan, China
| | - Merardo Pujol
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gil A. Enríquez
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
26
|
Chen F, Ma H, Li Y, Wang H, Samad A, Zhou J, Zhu L, Zhang Y, He J, Fan X, Jin T. Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11219-11229. [PMID: 31408330 DOI: 10.1021/acs.jafc.9b02388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peanut allergy is a major health problem worldwide. Detection of food allergens is a critical aspect of food safety. The VHH domain of single chain antibody from camelids, also known as nanobody (Nb), showed its advantages in the development of biosensors because of its high stability, small molecular size, and ease of production. However, no nanobody specific to peanut allergens has been developed. In this study, we constructed a library with random triplets (NNK) in its CDR regions of a camel nanobody backbone. We screened the library with peanut allergy Ara h 3 and obtained several candidate nanobodies. One of the promising nanobodies, Nb16 was further biochemical characterization by gel filtration, isothermal titration calorimetry (ITC), cocrystallization, and Western blot in terms of its interaction with Ara h 3. Nb16 specifically binds to peanut major allergen Ara h 3 with a dissociation constant of 400 nM. Furthermore, we obtained the Ara h 3-Nb16 complex crystals. Structure analysis shows the packing mode is completely different between the Ara h 3-Nb16 complex crystal and the native Ara h 3 crystal. Structural determination of Ara h 3-Nb16 will provide the necessary information to understand the allergenicity of this important peanut allergen. The nanobody Nb16 may have application in the development of biosensors for peanut allergen detection.
Collapse
Affiliation(s)
- Feng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Yuelong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Heqiao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Abdus Samad
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Jiahui Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Lixia Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Yuzhu Zhang
- Healthy Processed Foods Research Unit, USDA-ARS , Western Regional Research Center , 800 Buchanan Street , Albany , California 94710 , United States
| | - Jie He
- Departments of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui 230001 , P.R. China
| | - Xiaojiao Fan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230027 China
| |
Collapse
|
27
|
Pablos I, Egger M, Vejvar E, Reichl V, Briza P, Zennaro D, Rafaiani C, Pickl W, Bohle B, Mari A, Ferreira F, Gadermaier G. Similar Allergenicity to Different Artemisia Species Is a Consequence of Highly Cross-Reactive Art v 1-Like Molecules. ACTA ACUST UNITED AC 2019; 55:medicina55080504. [PMID: 31434264 PMCID: PMC6723817 DOI: 10.3390/medicina55080504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: Pollens of weeds are relevant elicitors of type I allergies. While many Artemisia species occur worldwide, allergy research so far has only focused on Artemisia vulgaris. We aimed to characterize other prevalent Artemisia species regarding their allergen profiles. Materials and Methods: Aqueous extracts of pollen from seven Artemisia species were characterized by gel electrophoresis and ELISA using sera from mugwort pollen-allergic patients (n = 11). The cDNA sequences of defensin–proline-linked proteins (DPLPs) were obtained, and purified proteins were tested in a competition ELISA, in rat basophil mediator release assays, and for activation of Jurkat T cells transduced with an Art v 1-specific TCR. IgE cross-reactivity to other allergens was evaluated using ImmunoCAP and ISAC. Results: The protein patterns of Artemisia spp. pollen extracts were similar in gel electrophoresis, with a major band at 24 kDa corresponding to DPLPs, like the previously identified Art v 1. Natural Art v 1 potently inhibited IgE binding to immobilized pollen extracts. Six novel Art v 1 homologs with high sequence identity and equivalent IgE reactivity were identified and termed Art ab 1, Art an 1, Art c 1, Art f 1, Art l 1, and Art t 1. All proteins triggered mediator release and cross-reacted at the T cell level. The Artemisia extracts contained additional IgE cross-reactive molecules from the nonspecific lipid transfer protein, pectate lyase, profilin, and polcalcin family. Conclusions: Our findings demonstrate that DPLPs in various Artemisia species have high allergenic potential. Therefore, related Artemisia species need to be considered to be allergen elicitors, especially due to the consideration of potential geographic expansion due to climatic changes.
Collapse
Affiliation(s)
- Isabel Pablos
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Matthias Egger
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Eva Vejvar
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Victoria Reichl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Danila Zennaro
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Chiara Rafaiani
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriano Mari
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | | |
Collapse
|
28
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
29
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part II. Biosynthesis, Biological Functions, and Possible Practical Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
31
|
Mamone G, Di Stasio L, De Caro S, Picariello G, Nicolai MA, Ferranti P. Comprehensive analysis of the peanut allergome combining 2-DE gel-based and gel-free proteomics. Food Res Int 2019; 116:1059-1065. [DOI: 10.1016/j.foodres.2018.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
|
32
|
A structural perspective of plant antimicrobial peptides. Biochem J 2018; 475:3359-3375. [PMID: 30413680 DOI: 10.1042/bcj20180213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
Abstract
Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.
Collapse
|
33
|
Campos ML, de Souza CM, de Oliveira KBS, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4997-5011. [PMID: 30099553 DOI: 10.1093/jxb/ery294] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá/MT, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Universidade de Brasilia, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasilia/DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande/MS, Brazil
| |
Collapse
|
34
|
Čelakovská J, Bukač J, Ettler K, Vaneckova J, Ettlerova K, Krejsek J. Sensitisation to outdoor and indoor fungi in atopic dermatitis patients and the relation to the occurrence of food allergy to peanuts and walnuts. Mycoses 2018; 61:698-703. [PMID: 29772091 DOI: 10.1111/myc.12795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The aim of this study is the evaluation of the relation between the sensitisation to outdoor and indoor fungi and allergy to peanuts and walnuts in atopic dermatitis patients aged 14 years and older. The complete dermatological and allergological examinations were performed in all included patients; the occurrence of food allergy to peanuts and walnuts was recorded (specific IgE, skin prick test, history of allergic reaction) and the sensitisation to mixture of outdoor fungi and indoor fungi was also examined (skin prick test, specific IgE). The statistical evaluation of the relation between the sensitisation to outdoor and indoor fungi and the occurrence of food allergy to peanuts and walnuts was performed; 329 patients were included in the study, 110 men and 219 women, the average age 26.8 years. The sensitisation to outdoor fungi was recorded in 91 patients (28%), the sensitisation to indoor fungi was recorded in 61 patients (18.5%), the occurrence of food allergy to peanuts was confirmed in 90 (27%) patients and to walnuts in 121 (36.7%) patients. We confirmed, that patients suffering from sensitisation to outdoor fungi suffer significantly more from food allergy to peanuts and walnuts. The significant relation between the sensitisation to indoor fungi and food allergy to peanuts and walnuts was not confirmed.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Josef Bukač
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Karel Ettler
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Jaroslava Vaneckova
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Kvetuse Ettlerova
- Department of Allergy and Clinical Immunology, Outpatient Clinic, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
35
|
Abstract
Peanut allergens have the potential to negatively impact on the health and quality of life of millions of consumers worldwide. The seeds of the peanut plant Arachis hypogaea contain an array of allergens that are able to induce the production of specific IgE antibodies in predisposed individuals. A lot of effort has been focused on obtaining the sequences and structures of these allergens due to the high health risk they represent. At present, 16 proteins present in peanuts are officially recognized as allergens. Research has also focused on their in-depth immunological characterization as well as on the design of modified hypoallergenic derivatives for potential use in clinical studies and the formulation of strategies for immunotherapy. Detailed research protocols are available for the purification of natural allergens as well as their recombinant production in bacterial, yeast, insect, and algal cells. Purified allergen molecules are now routinely used in diagnostic multiplex protein arrays for the detection of the presence of allergen-specific IgE. This review gives an overview on the wealth of knowledge that is available on individual peanut allergens.
Collapse
Affiliation(s)
- Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Finkina EI, Ovchinnikova TV. Plant Defensins: Structure, Functions, Biosynthesis, and the Role in the Immune Response. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Aguilera-Insunza R, Venegas LF, Iruretagoyena M, Rojas L, Borzutzky A. Role of dendritic cells in peanut allergy. Expert Rev Clin Immunol 2018; 14:367-378. [PMID: 29681186 DOI: 10.1080/1744666x.2018.1467757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prevalence of peanut allergy (PA) has increased, affecting approximately 1.1% of children in Western countries. PA causes life-threatening anaphylaxis and frequently persists for life. There are no standardized curative therapies for PA, and avoidance of peanuts remains the main therapeutic option. A better understanding of the pathogenesis of PA is essential to identify new treatment strategies. Intestinal dendritic cells (DCs) are essential in the induction and maintenance of food tolerance because they present dietary allergens to T cells, thereby directing subsequent immune responses. Areas covered: In this review, we discuss the factors related to the acquisition of oral tolerance to peanut proteins. We focus on intestinal DC-related aspects, including the latest advances in the biology of intestinal DC subtypes, effect of tolerance-inducing factors on DCs, effect of dietary components on oral tolerance, and role of DCs in peanut sensitization. Expert commentary: Given the increasing prevalence of PA, difficulty of avoiding peanut products, and the potentially serious accidental reactions, the development of novel therapies for PA is needed. The ability of DCs to trigger tolerance or immunity makes them an interesting target for new treatment strategies against PA.
Collapse
Affiliation(s)
- Raquel Aguilera-Insunza
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Luis F Venegas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mirentxu Iruretagoyena
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leticia Rojas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Arturo Borzutzky
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Millennium Institute on Immunology and Immunotherapy, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
38
|
Pablos I, Eichhorn S, Machado Y, Briza P, Neunkirchner A, Jahn-Schmid B, Wildner S, Soh WT, Ebner C, Park JW, Pickl WF, Arora N, Vieths S, Ferreira F, Gadermaier G. Distinct epitope structures of defensin-like proteins linked to proline-rich regions give rise to differences in their allergenic activity. Allergy 2018; 73:431-441. [PMID: 28960341 PMCID: PMC5771466 DOI: 10.1111/all.13298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 01/17/2023]
Abstract
Background Art v 1, Amb a 4, and Par h 1 are allergenic defensin‐polyproline–linked proteins present in mugwort, ragweed, and feverfew pollen, respectively. We aimed to investigate the physicochemical and immunological features underlying the different allergenic capacities of those allergens. Methods Recombinant defensin‐polyproline–linked proteins were expressed in E. coli and physicochemically characterized in detail regarding identity, secondary structure, and aggregation status. Allergenic activity was assessed by mediator releases assay, serum IgE reactivity, and IgE inhibition ELISA using sera of patients from Austria, Canada, and Korea. Endolysosomal protein degradation and T‐cell cross‐reactivity were studied in vitro. Results Despite variations in the proline‐rich region, similar secondary structure elements were observed in the defensin‐like domains. Seventy‐four percent and 52% of the Austrian and Canadian patients reacted to all three allergens, while Korean patients were almost exclusively sensitized to Art v 1. This was reflected by IgE inhibition assays demonstrating high cross‐reactivity for Austrian, medium for Canadian, and low for Korean sera. In a subgroup of patients, IgE reactivity toward structurally altered Amb a 4 and Par h 1 was not changed suggesting involvement of linear epitopes. Immunologically relevant endolysosomal stability of the defensin‐like domain was limited to Art v 1 and no T‐cell cross‐reactivity with Art v 125‐36 was observed. Conclusions Despite structural similarity, different IgE‐binding profiles and proteolytic processing impacted the allergenic capacity of defensin‐polyproline–linked molecules. Based on the fact that Amb a 4 demonstrated distinct IgE‐binding epitopes, we suggest inclusion in molecule‐based allergy diagnosis.
Collapse
Affiliation(s)
- I. Pablos
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - S. Eichhorn
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - Y. Machado
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - P. Briza
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Neunkirchner
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - S. Wildner
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
- Christian Doppler Laboratory for Biosimilar Characterization; University of Salzburg; Salzburg Austria
| | - W. T. Soh
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - C. Ebner
- Allergy Clinic Reumannplatz; Vienna Austria
| | - J.-W. Park
- Department of Internal Medicine and Institute of Allergy; Yonsei University College of Medicine; Seoul Korea
| | - W. F. Pickl
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - N. Arora
- Allergy and Immunology Section; CSIR-Institute of Genomic and Integrative Biology; Delhi India
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - F. Ferreira
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - G. Gadermaier
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
39
|
Pina-Pérez M, Ferrús Pérez M. Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Celakovská J, Josef B, Ettler K, Vaneckova J, Ettlerova K, Jan K. Sensitization to Fungi in Atopic Dermatitis Patients 14 Year and Older - Association with Other Atopic Diseases and Parameters. Indian J Dermatol 2018; 63:391-398. [PMID: 30210160 PMCID: PMC6124231 DOI: 10.4103/ijd.ijd_493_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Fungi as a source of allergen are still largely neglected in basic research as well as in clinical practice. This study aimed to highlight the impact of fungal allergens in a group of patients suffering from atopic dermatitis (AD). Aims and Objectives: The evaluation of the sensitization to fungi in AD patients aged 14 year and older and the evaluation of the relation of fungal sensitization to the occurrence of other atopic diseases and parameters. Materials and Methods: All patients satisfying inclusion criteria attending our hospital between 2008 and 2017 were included in the study. The complete dermatological and allergological examinations were performed in all included patients including examination of specific immunoglobulin E, skin prick test to mixture of fungi and inhalant allergens, evaluation of asthma bronchiale, rhinitis, onset of AD, family history about atopy, duration of eczematous lesions, severity of AD. Pairs of these categories were entered in the contingency tables and the Chi-square test for relationship of these variables was performed with the level of significance set below 5%. Results: Three hundred and thirty-one patients were included in the study; the average age was 26.8 years. The sensitization to fungi was recorded in 100 patients (30%). In these patients, the occurrence of asthma bronchiale, rhinitis, family history about atopy, sensitization to grass and trees was significantly higher than in patients without sensitization to fungi. We did not find any significant relation between the sensitization to fungi and the severity of AD, no relation was also found between the sensitization to fungi and sensitization to mites, animal dander, bird feather, and dust. Conclusion: The occurrence of asthma bronchiale, rhinitis, family history about atopy, sensitization to grass and trees was significantly higher in AD patients with sensitization to fungi. No relation was found between the severity of AD and the sensitization to fungi.
Collapse
Affiliation(s)
- Jarmila Celakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Bukac Josef
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Karel Ettler
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Jaroslava Vaneckova
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Kvetuse Ettlerova
- Department of Allergy and Clinical Immunology, Outpatient Clinic, Hradec Králové, Czech Republic
| | - Krejsek Jan
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
41
|
Cabanillas B, Jappe U, Novak N. Allergy to Peanut, Soybean, and Other Legumes: Recent Advances in Allergen Characterization, Stability to Processing and IgE Cross-Reactivity. Mol Nutr Food Res 2018; 62. [PMID: 28944625 DOI: 10.1002/mnfr.201700446] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Indexed: 12/16/2022]
Abstract
Peanut and soybean are members of the Leguminosae family. They are two of the eight foods that account for the most significant food allergies in the United States and Europe. Allergic reactions to other legume species can be of importance in other regions of the world. The major allergens from peanut and soybean have been extensively analyzed and members of new protein families identified as potential marker allergens for symptom severity. Important recent advances concerning their molecular properties or clinical relevance have been made. Therefore, there is increasing interest in the characterization of allergens from other legume species such as lupine, lentil, chickpea, green bean, or pea. As legumes are mainly consumed after thermal processing, knowledge about the effect of such processing on the allergenicity of legumes has increased during the last years. In the present review, recent advances in the identification of allergens from peanut, soybean, lupine, and other legume species are summarized and discussed. An overview of the most recently described effects of thermal processing on the allergenic properties of legumes is provided and the potential IgE cross-reactivity among members of the Leguminosae family is discussed.
Collapse
Affiliation(s)
- Beatriz Cabanillas
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Luebeck, Luebeck, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
42
|
Čelakovská J, Bukač J, Ettler K, Vaneckova J, Krcmova I, Ettlerova K. Sensitisation to fungi in atopic dermatitis patients over 14 years of age and the relation to the occurrence of food hypersensitivity reactions. Mycoses 2017; 61:88-95. [PMID: 28940850 DOI: 10.1111/myc.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/14/2017] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate if there is some relation between the sensitisation to fungi and the occurrence of food hypersensitivity reactions in atopic dermatitis patients aged 14 years and older. Complete dermatological and allergological examination was performed in all included patients; the occurrence of food hypersensitivity reactions was recorded and the sensitisation to mixture of fungi was examined (skin prick test, specific IgE). The statistical evaluation of the relation between the sensitisation to fungi and the occurrence of food hypersensitivity reactions was performed; 331 patients were included in the study, 110 men and 221 women, the average age was 26.8 years. The sensitisation to fungi was recorded in 100 patients (30%), the occurrence of food hypersensitivity reactions was recorded in 261 patients (79%). We confirmed that patients suffering from sensitisation to fungi suffer significantly more often from food hypersensitivity reactions to nuts (walnuts, peanuts) and sea fish; no significant relation was confirmed between the sensitisation to fungi and the occurrence of food hypersensitivity reactions to tomatoes, kiwi, apples, spices, oranges, capsicum, celery and carrot.
Collapse
Affiliation(s)
- J Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J Bukač
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - K Ettler
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J Vaneckova
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - I Krcmova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - K Ettlerova
- Department of Allergy and Clinical Immunology, Outpatient Clinic, Hradec Králové, Czech Republic
| |
Collapse
|
43
|
|
44
|
Jappe U, Schwager C. Relevance of Lipophilic Allergens in Food Allergy Diagnosis. Curr Allergy Asthma Rep 2017; 17:61. [PMID: 28795292 DOI: 10.1007/s11882-017-0731-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide available data on a new class of allergens, the oleosins, and their diagnostic value. There is evidence that allergen extracts used for in vivo as well as in vitro diagnostic tests do not contain oleosins because these proteins are lipophilic and nearly insoluble in saline or aqueous solutions. So far, only oleosins of peanut, sesame and hazelnut have been registered as allergens. Reports on IgE-binding tests performed with oleosins of different species with sera from allergic patients show that IgE specific for oleosins are associated with severe allergic reactions which is why they should be part of the diagnostic tests in the future. RECENT FINDINGS Recent findings showed that oleosins purified from in shell-roasted peanuts revealed a higher IgE-binding capacity when compared to raw ones. Naturally purified as well as recombinantly produced peanut oleosins can be used in basophil activation test. The synopsis of all reports on different thermal processing of several oleosin sources and the respective data obtained with patients sera investigated via immunoblot and basophil activation test points to the recommendation that-if naturally purified oleosins are used, they should mostly be obtained from roasted food allergen sources. For immunoblot and basophil activation test, both, naturally purified oleosins as well as recombinant modified oleosins are valuable diagnostic tools.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Research Center Borstel, Parkallee 35, 23845, Borstel, Germany. .,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany.
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Research Center Borstel, Parkallee 35, 23845, Borstel, Germany
| |
Collapse
|
45
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
46
|
Schwager C, Kull S, Behrends J, Röckendorf N, Schocker F, Frey A, Homann A, Becker WM, Jappe U. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol 2017; 140:1331-1338.e8. [PMID: 28342912 DOI: 10.1016/j.jaci.2017.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Peanut allergy is one of the most common and most severe food allergies in Western countries and its accurate diagnosis to prevent potential life-threatening allergic reactions is crucial. However, aqueous extracts used for routine diagnostic measurements are devoid of lipophilic allergens such as oleosins. We have recently succeeded in the isolation and purification of these unique proteins, and the present study evaluates their allergenic potential and clinical relevance. OBJECTIVE We sought to assess allergenicity and sensitization prevalence of oleosins obtained from both raw and in-shell roasted peanuts. In addition, we tested the utilization of natural and recombinant oleosins for allergy diagnostic purposes. METHODS Oleosin sensitization, prevalence, and impact of thermal processing were analyzed by immunoblot with sera from 52 peanut-allergic individuals displaying different clinical phenotypes. The application of natural and recombinant oleosins for allergy diagnostics was investigated by basophil activation test (BAT). IgE-binding epitopes were identified by oligopeptide microarray. RESULTS Sensitization to oleosins was observed exclusively in peanut-allergic subjects suffering from severe systemic reactions. IgE-binding capacity of oleosins derived from in-shell roasted peanuts was increased as shown by immunoblot analysis and BAT. Both natural and recombinant molecules can be used to identify oleosin-sensitized patients by BAT. A linear epitope of Ara h 15 was determined that displays high similarity to other seed-derived oleosins. CONCLUSIONS Oleosins are clinically relevant peanut allergens and most likely associated with severe allergic symptoms. In-shell roasting increases their allergenicity, which is consistent with the observation that most allergic reactions are in connection with roasted peanuts.
Collapse
Affiliation(s)
- Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Skadi Kull
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Borstel, Germany
| | - Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Frauke Schocker
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Arne Homann
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Wolf-Meinhard Becker
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
47
|
Molina-Infante J, Gonzalez-Cordero PL, Arias A, Lucendo AJ. Update on dietary therapy for eosinophilic esophagitis in children and adults. Expert Rev Gastroenterol Hepatol 2017; 11:115-123. [PMID: 27998193 DOI: 10.1080/17474124.2017.1271324] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory esophageal disease triggered predominantly, but not excusively, by food antigens. Elimination diet thus remains the only therapy targeting the cause of the disease. Importantly, EoE is a unique form of non-IgE mediated food allergy, largely dependant upon delayed, cell-mediated hypersensitivity. Areas covered: A comprehensive review of literature to summarize and update the most relevant advances on dietary therapy for pediatric and adult EoE patients is conducted. Expert commentary: None of the currently available food allergy tests adequately predict food triggers for EoE, especially in adults. Elemental diet (exclusive feeding with aminoacid-based formulas) and empiric six-food elimination diet, withdrawing cow´s milk, wheat, egg, soy, nuts and fish/seafood for 6 weeks, have consistently shown the best cure rates. However, their high level of restriction and need for multiple endoscopies (top-down approach) have been a deterrent for patients and physicians. Less restrictive empiric schemes, like a four-food (animal milk, gluten-containing cereals, egg, legumes) or a two-food (animal milk and gluten-containing cereals) elimination diet have lately shown encouraging results. Therefore, a novel step-up strategy (2-4-6) may enhance patient uptake and promptly identify most responders to empiric diets with few food triggers, besides saving unnecessary dietary restrictions and endoscopic procedures.
Collapse
Affiliation(s)
- Javier Molina-Infante
- a Department of Gastroenterology , Hospital Universitario San Pedro de Alcantara , Caceres , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | | | - Angel Arias
- b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Research Unit, Complejo Hospitalario La Mancha Centro , Alcázar de San Juan , Spain
| | - Alfredo J Lucendo
- b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,d Department of Gastroenterology , Hospital General de Tomelloso , Tomelloso , Spain
| |
Collapse
|
48
|
Peanut protein extraction conditions strongly influence yield of allergens Ara h 1 and 2 and sensitivity of immunoassays. Food Chem 2016; 221:335-344. [PMID: 27979211 DOI: 10.1016/j.foodchem.2016.10.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/12/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022]
Abstract
The clinical importance of peanut (Arachis hypogaea) allergies demands standardized allergen extraction protocols. We determined the effectiveness of common extraction conditions (20 buffers, defatting reagents, extraction time/temperatures, processing, extraction repeats) on crude protein and Ara h 1 and 2 yields. Despite similar 1D-gel profiles, defatting with n-hexane resulted in significantly higher yields of crude protein, Ara h 1, and Ara h 2 than with diethyl ether. The yields were affected by the composition and pH of the extraction buffers and other conditions, but crude protein yield did not always correlate with Ara h 1 and 2 yields. Denaturants, reducing agents, acidic buffers, and thermal processing of peanuts perturbed allergen quantification in ELISAs, probably via exposure of additional epitopes. Allergen detection in 2D-Western blots with PBS resulted in greater sensitivity than with TBS or Tris. We recommend that allergen extraction conditions be selected based on the research question being investigated.
Collapse
|
49
|
Ferrando M, Bagnasco D, Passalacqua G, Varricchi G, Canonica GW. MK-8237: a house dust mite vaccine for treating allergic rhinitis, asthma and atopic dermatitis. Expert Opin Biol Ther 2016; 16:1435-1441. [PMID: 27620194 DOI: 10.1080/14712598.2016.1234601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Since its introduction in clinical practice one century ago for the treatment of respiratory allergic diseases, allergen-specific immunotherapy (AIT) has exhibited a relevant clinical efficacy that was subsequently confirmed in controlled trials. Thus, AIT has been accepted worldwide, as testified by guidelines and international documents. AIT is considered pivotal in the management of allergic rhinitis with or without conjunctivitis and with or without asthma. These conditions, in addition to hymenoptera venom allergy, currently are the accepted indications. The use of AIT in house-dust mite allergy still remains debated, especially due to the methodological problems in assessing this form of respiratory allergy. The more recent experimental data on MK-8237 sublingual tablets provided evidence that AIT, in the sublingual form, is effective in dust mite allergy. AREAS COVERED At present, the evidence of the efficacy of AIT in conditions other than respiratory allergy are not conclusive, but encouraging results have been obtained in food allergy and atopic dermatitis. Herein, the authors discuss the data for these indications. EXPERT OPINION Not all patients respond to AIT in the same way. Accordingly, AIT represents a promising path to precision medicine and hopefully will be able to reduce this burden of non-responding patients.
Collapse
Affiliation(s)
- Matteo Ferrando
- a Allergy & Respiratory Diseases, DIMI Department of Internal Medicine , University of Genoa, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Diego Bagnasco
- a Allergy & Respiratory Diseases, DIMI Department of Internal Medicine , University of Genoa, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Giovanni Passalacqua
- a Allergy & Respiratory Diseases, DIMI Department of Internal Medicine , University of Genoa, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Gilda Varricchi
- b Department of Translational Medical Sciences, Division of Clinical Immunology and Allergy , University of Naples Federico II , Naples , Italy
| | - Giorgio Walter Canonica
- a Allergy & Respiratory Diseases, DIMI Department of Internal Medicine , University of Genoa, IRCCS AOU San Martino-IST , Genoa , Italy
| |
Collapse
|
50
|
Javaux C, Stordeur P, Azarkan M, Mascart F, Baeyens-Volant D. Isolation of a thiol-dependent serine protease in peanut and investigation of its role in the complement and the allergic reaction. Mol Immunol 2016; 75:133-43. [DOI: 10.1016/j.molimm.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
|