1
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2024:10.1038/s41380-024-02715-1. [PMID: 39237722 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Ferreira ACF, Szeto ACH, Clark PA, Crisp A, Kozik P, Jolin HE, McKenzie ANJ. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023; 56:1468-1484.e7. [PMID: 37285842 PMCID: PMC10501989 DOI: 10.1016/j.immuni.2023.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Collapse
Affiliation(s)
| | | | - Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
3
|
Martin-Almeida M, Perez-Garcia J, Herrera-Luis E, Rosa-Baez C, Gorenjak M, Neerincx AH, Sardón-Prado O, Toncheva AA, Harner S, Wolff C, Brandstetter S, Valletta E, Abdel-Aziz MI, Hashimoto S, Berce V, Corcuera-Elosegui P, Korta-Murua J, Buntrock-Döpke H, Vijverberg SJH, Verster JC, Kerssemakers N, Hedman AM, Almqvist C, Villar J, Kraneveld AD, Potočnik U, Kabesch M, der Zee AHMV, Pino-Yanes M, Consortium OBOTS. Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030676. [PMID: 36979655 PMCID: PMC10044864 DOI: 10.3390/biomedicines11030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.
Collapse
Affiliation(s)
- Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Brandstetter
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Elisa Valletta
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Mahmoud I. Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Heike Buntrock-Döpke
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Nikki Kerssemakers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-9223-16502-6343
| | | |
Collapse
|
4
|
Ke C, Bandyopadhyay D, Acunzo M, Winn R. Gene Screening in High-Throughput Right-Censored Lung Cancer Data. ONCO 2022; 2:305-318. [PMID: 37066112 PMCID: PMC10100230 DOI: 10.3390/onco2040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Advances in sequencing technologies have allowed collection of massive genome-wide information that substantially advances lung cancer diagnosis and prognosis. Identifying influential markers for clinical endpoints of interest has been an indispensable and critical component of the statistical analysis pipeline. However, classical variable selection methods are not feasible or reliable for high-throughput genetic data. Our objective is to propose a model-free gene screening procedure for high-throughput right-censored data, and to develop a predictive gene signature for lung squamous cell carcinoma (LUSC) with the proposed procedure. Methods A gene screening procedure was developed based on a recently proposed independence measure. The Cancer Genome Atlas (TCGA) data on LUSC was then studied. The screening procedure was conducted to narrow down the set of influential genes to 378 candidates. A penalized Cox model was then fitted to the reduced set, which further identified a 6-gene signature for LUSC prognosis. The 6-gene signature was validated on datasets from the Gene Expression Omnibus. Results Both model-fitting and validation results reveal that our method selected influential genes that lead to biologically sensible findings as well as better predictive performance, compared to existing alternatives. According to our multivariable Cox regression analysis, the 6-gene signature was indeed a significant prognostic factor (p-value < 0.001) while controlling for clinical covariates. Conclusions Gene screening as a fast dimension reduction technique plays an important role in analyzing high-throughput data. The main contribution of this paper is to introduce a fundamental yet pragmatic model-free gene screening approach that aids statistical analysis of right-censored cancer data, and provide a lateral comparison with other available methods in the context of LUSC.
Collapse
Affiliation(s)
- Chenlu Ke
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: ; Tel.: +1-804-827-2058
| | - Mario Acunzo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Robert Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Timing of Blood Sample Processing Affects the Transcriptomic and Epigenomic Profiles in CD4+ T-cells of Atopic Subjects. Cells 2022; 11:cells11192958. [PMID: 36230920 PMCID: PMC9563434 DOI: 10.3390/cells11192958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Optimal pre-analytical conditions for blood sample processing and isolation of selected cell populations for subsequent transcriptomic and epigenomic studies are required to obtain robust and reproducible results. This pilot study was conducted to investigate the potential effects of timing of CD4+ T-cell processing from peripheral blood of atopic and non-atopic adults on their transcriptomic and epigenetic profiles. Two heparinized blood samples were drawn from each of three atopic and three healthy individuals. For each individual, CD4+ T-cells were isolated from the first blood sample within 2 h (immediate) or from the second blood sample after 24 h storage (delayed). RNA sequencing (RNA-Seq) and histone H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-Seq) analyses were performed. A multiplicity of genes was shown to be differentially expressed in immediately processed CD4+ T-cells from atopic versus healthy subjects. These differences disappeared when comparing delayed processed cells due to a drastic change in expression levels of atopy-related genes in delayed processed CD4+ T-cells from atopic donors. This finding was further validated on the epigenomic level by examining H3K27 acetylation profiles. In contrast, transcriptomic and epigenomic profiles of blood CD4+ T-cells of healthy donors remained rather unaffected. Taken together, for successful transcriptomics and epigenomics studies, detailed standard operation procedures developed on the basis of samples from both healthy and disease conditions are implicitly recommended.
Collapse
|
6
|
Kelly RS, Mendez KM, Huang M, Hobbs BD, Clish CB, Gerszten R, Cho MH, Wheelock CE, McGeachie MJ, Chu SH, Celedón JC, Weiss ST, Lasky-Su J. Metabo-Endotypes of Asthma Reveal Differences in Lung Function: Discovery and Validation in Two TOPMed Cohorts. Am J Respir Crit Care Med 2022; 205:288-299. [PMID: 34767496 PMCID: PMC8886990 DOI: 10.1164/rccm.202105-1268oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Current guidelines do not sufficiently capture the heterogeneous nature of asthma; a more detailed molecular classification is needed. Metabolomics represents a novel and compelling approach to derive asthma endotypes (i.e., subtypes defined by functional and/or pathobiological mechanisms). Objectives: To validate metabolomic-driven endotypes of asthma and explore their underlying biology. Methods: In the Genetics of Asthma in Costa Rica Study (GACRS), untargeted metabolomic profiling, similarity network fusion, and spectral clustering was used to identify metabo-endotypes of asthma, and differences in asthma-relevant phenotypes across these metabo-endotypes were explored. The metabo-endotypes were recapitulated in the Childhood Asthma Management Program (CAMP), and clinical differences were determined. Metabolomic drivers of metabo-endotype membership were investigated by meta-analyzing findings from GACRS and CAMP. Measurements and Main Results: Five metabo-endotypes were identified in GACRS with significant differences in asthma-relevant phenotypes, including prebronchodilator (p-ANOVA = 8.3 × 10-5) and postbronchodilator (p-ANOVA = 1.8 × 10-5) FEV1/FVC. These differences were validated in the recapitulated metabo-endotypes in CAMP. Cholesterol esters, trigylcerides, and fatty acids were among the most important drivers of metabo-endotype membership. The findings suggest dysregulation of pulmonary surfactant homeostasis may play a role in asthma severity. Conclusions: Clinically meaningful endotypes may be derived and validated using metabolomic data. Interrogating the drivers of these metabo-endotypes has the potential to help understand their pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Brian D. Hobbs
- Channing Division of Network Medicine and,Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clary B. Clish
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and,Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden;,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden;,Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan; and
| | | | - Su H. Chu
- Channing Division of Network Medicine and
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
7
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
8
|
Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2021; 81:108-116. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/25/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Interstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module. METHODS A transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD. RESULTS SSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module. CONCLUSIONS Integrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Leader BA, Koritala BSC, Moore CA, Dean EG, Kottyan LC, Smith DF. Epigenetics of obstructive sleep apnea syndrome: a systematic review. J Clin Sleep Med 2021; 17:2533-2541. [PMID: 34176557 DOI: 10.5664/jcsm.9514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is a chronic and widely prevalent disease, associated with multiple health disorders. Current diagnostic strategies for OSA are limited due to cost, time, and access. Epigenetic signatures offer insight into the relationships between disease and environment and could play a significant role in developing both diagnostic and therapeutic tools for OSA. In the current study, a systematic literature search was conducted to investigate the existing evidence of OSA-associated epigenetic modifications. METHODS A systematic literature search was performed using electronic academic databases including PubMed, CINAHL, Scopus, Embase, EBM Reviews, and Web of Science. However, the current study focused on screening for original, English language articles pertaining to OSA and associated epigenetic mechanisms. To produce unbiased results, screening was performed independently by authors. RESULTS We identified 2,944 publications in our systematic search. Among them, 65 research articles were related to OSA-associated differential gene expression, genetic variation, and epigenetic modifications. Although these 65 articles were considered for full manuscript review, only twelve articles met the criteria of OSA-associated epigenetic modifications in humans and animal models. Human subjects with OSA had unique epigenetic changes compared to healthy controls, and, interestingly, epigenetic signatures were commonly identified in genes associated with metabolic and inflammatory pathways. CONCLUSIONS Although the available studies are limited, this research provides novel insights for development of epigenetic markers for the diagnosis and treatment of OSA. Thorough genome wide investigations will be required to develop cost-effective, robust biomarkers for the identification of OSA among children and adults. Here, we offer a study design for such efforts.
Collapse
Affiliation(s)
- Brittany A Leader
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Contributed equally and are co-first authors
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Contributed equally and are co-first authors
| | - Charles A Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elaine G Dean
- Pratt Research Library, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David F Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
10
|
Abstract
Disease classification, or nosology, was historically driven by careful examination of clinical features of patients. As technologies to measure and understand human phenotypes advanced, so too did classifications of disease, and the advent of genetic data has led to a surge in genetic subtyping in the past decades. Although the fundamental process of refining disease definitions and subtypes is shared across diverse fields, each field is driven by its own goals and technological expertise, leading to inconsistent and conflicting definitions of disease subtypes. Here, we review several classical and recent subtypes and subtyping approaches and provide concrete definitions to delineate subtypes. In particular, we focus on subtypes with distinct causal disease biology, which are of primary interest to scientists, and subtypes with pragmatic medical benefits, which are of primary interest to physicians. We propose genetic heterogeneity as a gold standard for establishing biologically distinct subtypes of complex polygenic disease. We focus especially on methods to find and validate genetic subtypes, emphasizing common pitfalls and how to avoid them.
Collapse
Affiliation(s)
- Andy Dahl
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA; .,Department of Neurology, University of California, Los Angeles, California 90024, USA; .,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, California 90024, USA; .,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Molecular analysis of phenotypic interactions of asthma. Cytokine 2021; 143:155524. [PMID: 33849767 DOI: 10.1016/j.cyto.2021.155524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease characterized by multiples respiratory symptoms; this is a polygenic entity that involves a complex interaction of environmental factors and inherent to the individual. To understand the development of asthma, some phenotypes have been proposed. OBJECTIVE This work's purpose was to explore different molecules related to asthma development and to define each phenotype's specific characteristics. MATERIAL AND METHODS 96 adult patients diagnosed with asthma before any treatment were enrolled in the protocol. Spirometric parameters, circulating leukocytes, serum IgE, body mass index, exhaled nitric oxide (FENO), and leukotrienes (LTB4) in urine were determined in each patient. The presence of asthma phenotypes proposed by the Global Initiative for Asthma (GINA) were explored: A) Allergic asthma, B) Non-allergic asthma, C) Late-onset asthma, D) Asthma with persistent airflow limitation, and E) Asthma with overweight and obesity. RESULTS In the cohort analyzed, we found four of phenotypes proposed by GINA; however, these phenotypes overlapped, due to this, 4 groups were integrated with allergic, non-allergic and obese patients, which were the main phenotypes. The main overlap was that of patients not-obese allergic, and was characterized by earlier onset, elevated levels of IgE, LTB4 and inflammasome related cytokines. Non-allergic patients had a significant association between interleukin (IL)-18 and IL-18 binding protein (BP) with narrow ratio between these cytokines. Finally, LTB4 had remarkable capacity to discriminate between allergic and not allergic patients. CONCLUSIONS Asthmatic phenotypes exist as interrelated characteristics and not as discrete entities. High levels of leukotrienes and IgE are hallmarks in the allergic phenotype of asthma.
Collapse
|
12
|
Tyler SR, Chun Y, Ribeiro VM, Grishina G, Grishin A, Hoffman GE, Do AN, Bunyavanich S. Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes. Cell Rep 2021; 35:108975. [PMID: 33852839 PMCID: PMC8195153 DOI: 10.1016/j.celrep.2021.108975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Although clinical and laboratory data have long been used to guide medical practice, this information is rarely integrated with multi-omic data to identify endotypes. We present Merged Affinity Network Association Clustering (MANAclust), a coding-free, automated pipeline enabling integration of categorical and numeric data spanning clinical and multi-omic profiles for unsupervised clustering to identify disease subsets. Using simulations and real-world data from The Cancer Genome Atlas, we demonstrate that MANAclust’s feature selection algorithms are accurate and outperform competitors. We also apply MANAclust to a clinically and multi-omically phenotyped asthma cohort. MANAclust identifies clinically and molecularly distinct clusters, including heterogeneous groups of “healthy controls” and viral and allergy-driven subsets of asthmatic subjects. We also find that subjects with similar clinical presentations have disparate molecular profiles, highlighting the need for additional testing to uncover asthma endotypes. This work facilitates data-driven personalized medicine through integration of clinical parameters with multi-omics. MANAclust is freely available at https://bitbucket.org/scottyler892/manaclust/src/master/. Clinical data commonly used in medical practice are underutilized in multi-omic analyses to identify disease endotypes. Tyler et al. present a python package called Merged Affinity Network Association Clustering (MANAclust) that automatically processes and integrates categorical and numeric data types, facilitating the inclusion of clinical data in multi-omic endotyping efforts.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victoria M Ribeiro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anh N Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
13
|
Leveraging -omics for asthma endotyping. J Allergy Clin Immunol 2020; 144:13-23. [PMID: 31277743 DOI: 10.1016/j.jaci.2019.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Asthma is a highly heterogeneous disease, often manifesting with wheeze, dyspnea, chest tightness, and cough as prominent symptoms. The eliciting factors, natural history, underlying molecular biology, and clinical management of asthma vary highly among affected subjects. Because of this variation, many efforts have gone into subtyping asthma. Endotypes are subtypes of disease based on distinct pathophysiologic mechanisms. Endotypes can be clinically useful because they organize our mechanistic understanding of heterogeneous diseases and can direct treatment toward modalities that are likely to be the most effective. Asthma endotyping can be shaped by clinical features, laboratory parameters, and/or -omics approaches. We discuss the application of -omics approaches, including transcriptomics, epigenomics, microbiomics, metabolomics, and proteomics, to asthma endotyping. -Omics approaches have provided supporting evidence for many existing endotyping paradigms and also suggested novel ways to conceptualize asthma endotypes. Although endotypes based on single -omics approaches are relatively common, their integrated multi-omics application to asthma endotyping has been more limited thus far. We discuss paths forward to integrate multi-omics with clinical features and laboratory parameters to achieve the goal of precise asthma endotypes.
Collapse
|
14
|
Kachuri L, Johansson M, Rashkin SR, Graff RE, Bossé Y, Manem V, Caporaso NE, Landi MT, Christiani DC, Vineis P, Liu G, Scelo G, Zaridze D, Shete SS, Albanes D, Aldrich MC, Tardón A, Rennert G, Chen C, Goodman GE, Doherty JA, Bickeböller H, Field JK, Davies MP, Dawn Teare M, Kiemeney LA, Bojesen SE, Haugen A, Zienolddiny S, Lam S, Le Marchand L, Cheng I, Schabath MB, Duell EJ, Andrew AS, Manjer J, Lazarus P, Arnold S, McKay JD, Emami NC, Warkentin MT, Brhane Y, Obeidat M, Martin RM, Relton C, Davey Smith G, Haycock PC, Amos CI, Brennan P, Witte JS, Hung RJ. Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nat Commun 2020; 11:27. [PMID: 31911640 PMCID: PMC6946810 DOI: 10.1038/s41467-019-13855-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Impaired lung function is often caused by cigarette smoking, making it challenging to disentangle its role in lung cancer susceptibility. Investigation of the shared genetic basis of these phenotypes in the UK Biobank and International Lung Cancer Consortium (29,266 cases, 56,450 controls) shows that lung cancer is genetically correlated with reduced forced expiratory volume in one second (FEV1: rg = 0.098, p = 2.3 × 10-8) and the ratio of FEV1 to forced vital capacity (FEV1/FVC: rg = 0.137, p = 2.0 × 10-12). Mendelian randomization analyses demonstrate that reduced FEV1 increases squamous cell carcinoma risk (odds ratio (OR) = 1.51, 95% confidence intervals: 1.21-1.88), while reduced FEV1/FVC increases the risk of adenocarcinoma (OR = 1.17, 1.01-1.35) and lung cancer in never smokers (OR = 1.56, 1.05-2.30). These findings support a causal role of pulmonary impairment in lung cancer etiology. Integrative analyses reveal that pulmonary function instruments, including 73 novel variants, influence lung tissue gene expression and implicate immune-related pathways in mediating the observed effects on lung carcinogenesis.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Sara R Rashkin
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| | - Venkata Manem
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| | - Neil E Caporaso
- Division of Cancer Epidemiology & Genetics, US NCI, Bethesda, MD, USA
| | | | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | | | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Sanjay S Shete
- Department of Biostatistics, Division of Basic Sciences, MD Anderson Cancer Center, Houston, TX, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology & Genetics, US NCI, Bethesda, MD, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adonina Tardón
- Faculty of Medicine, University of Oviedo and ISPA and CIBERESP, Campus del Cristo, Oviedo, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center, Technion Faculty of Medicine, Haifa, Israel
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, The University of Liverpool, London, UK
| | - Michael P Davies
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, The University of Liverpool, London, UK
| | - M Dawn Teare
- Biostatistics Research Group, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Aage Haugen
- The National Institute of Occupational Health, Oslo, Norway
| | | | | | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Iona Cheng
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric J Duell
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Angeline S Andrew
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jonas Manjer
- Skåne University Hospital, Lund University, Lund, Sweden
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - James D McKay
- International Agency for Research on Cancer, Lyon, France
| | - Nima C Emami
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ma'en Obeidat
- University of British Columbia, Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - John S Witte
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chem Res Toxicol 2019; 32:952-968. [PMID: 31124663 DOI: 10.1021/acs.chemrestox.8b00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. AgNP toxicity in the respiratory system is well characterized, but few in vitro or in vivo studies have evaluated the effects of interactions between host genetic and acquired factors or gene × environment interactions (G × E) on AgNP toxicity in the respiratory system. The primary goal of this article is to review host genetic and acquired factors identified across in vitro and in vivo studies and prioritize those necessary for defining exposure limits to protect all populations. The impact of these exposures and the work being done to address the current limited protections are also discussed. Future research on G × E effects on AgNP toxicity is warranted and will assist with informing regulatory or recommended exposure limits that enforce special protections for all populations to AgNP exposures in occupational settings.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine , University of Washington , Seattle , Washington 98109 , United States
| |
Collapse
|
16
|
Jiang Y, Gruzieva O, Wang T, Forno E, Boutaoui N, Sun T, Merid SK, Acosta-Pérez E, Kull I, Canino G, Antó JM, Bousquet J, Melén E, Chen W, Celedón JC. Transcriptomics of atopy and atopic asthma in white blood cells from children and adolescents. Eur Respir J 2019; 53:13993003.00102-2019. [PMID: 30923181 DOI: 10.1183/13993003.00102-2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
Early allergic sensitisation (atopy) is the first step in the development of allergic diseases such as atopic asthma later in life. Genes and pathways associated with atopy and atopic asthma in children and adolescents have not been well characterised.A transcriptome-wide association study (TWAS) of atopy and atopic asthma in white blood cells (WBCs) or whole blood was conducted in a cohort of 460 Puerto Ricans aged 9-20 years (EVA-PR study) and in a cohort of 250 Swedish adolescents (BAMSE study). Pathway enrichment and network analyses were conducted to further assess top findings, and classification models of atopy and atopic asthma were built using expression levels for the top differentially expressed genes (DEGs).In a meta-analysis of the study cohorts, both previously implicated genes (e.g. IL5RA and IL1RL1) and genes not previously reported in TWASs (novel) were significantly associated with atopy and/or atopic asthma. Top novel genes for atopy included SIGLEC8 (p=8.07×10-13), SLC29A1 (p=7.07×10-12) and SMPD3 (p=1.48×10-11). Expression quantitative trait locus analyses identified multiple asthma-relevant genotype-expression pairs, such as rs2255888/ALOX15 Pathway enrichment analysis uncovered 16 significantly enriched pathways at adjusted p<0.01, including those relevant to T-helper cell type 1 (Th1) and Th2 immune responses. Classification models built using the top DEGs and a few demographic/parental history variables accurately differentiated subjects with atopic asthma from nonatopic control subjects (area under the curve 0.84).We have identified genes and pathways for atopy and atopic asthma in children and adolescents, using transcriptome-wide data from WBCs and whole blood samples.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China.,These two authors contributed equally to this work
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,These two authors contributed equally to this work
| | - Ting Wang
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Dept of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Josep M Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Jean Bousquet
- CESP, Inserm U1018, Villejuif, France.,University Hospital, Montpellier, France
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,These three authors are joint senior authors
| | - Wei Chen
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,These three authors are joint senior authors
| | - Juan C Celedón
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA .,These three authors are joint senior authors
| |
Collapse
|
17
|
Boudier A, Chanoine S, Accordini S, Anto JM, Basagaña X, Bousquet J, Demoly P, Garcia‐Aymerich J, Gormand F, Heinrich J, Janson C, Künzli N, Matran R, Pison C, Raherison C, Sunyer J, Varraso R, Jarvis D, Leynaert B, Pin I, Siroux V. Data-driven adult asthma phenotypes based on clinical characteristics are associated with asthma outcomes twenty years later. Allergy 2019; 74:953-963. [PMID: 30548629 DOI: 10.1111/all.13697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Research based on cluster analyses led to the identification of particular phenotypes confirming phenotypic heterogeneity of asthma. The long-term clinical course of asthma phenotypes defined by clustering analysis remains unknown, although it is a key aspect to underpin their clinical relevance. We aimed to estimate risk of poor asthma events between asthma clusters identified 20 years earlier. METHODS The study relied on two cohorts of adults with asthma with 20-year follow-up, ECRHS (European Community Respiratory Health Survey) and EGEA (Epidemiological study on Genetics and Environment of Asthma). Regression models were used to compare asthma characteristics (current asthma, asthma exacerbations, asthma control, quality of life, and FEV1 ) at follow-up and the course of FEV1 between seven cluster-based asthma phenotypes identified 20 years earlier. RESULTS The analysis included 1325 adults with ever asthma. For each asthma characteristic assessed at follow-up, the risk for adverse outcomes differed significantly between the seven asthma clusters identified at baseline. As compared with the mildest asthma phenotype, ORs (95% CI) for asthma exacerbations varied from 0.9 (0.4 to 2.0) to 4.0 (2.0 to 7.8) and the regression estimates (95% CI) for FEV1 % predicted varied from 0.6 (-3.5 to 4.6) to -9.9 (-14.2 to -5.5) between clusters. Change in FEV1 over time did not differ significantly across clusters. CONCLUSION Our findings show that the long-term risk for poor asthma outcomes differed between comprehensive adult asthma phenotypes identified 20 years earlier, and suggest a strong tracking of asthma activity and impaired lung function over time.
Collapse
Affiliation(s)
- Anne Boudier
- IAB Team of Environmental Epidemiology Applied To Reproduction and Respiratory Health INSERM Université Grenoble Alpes CNRS Grenoble France
| | - Sébastien Chanoine
- IAB Team of Environmental Epidemiology Applied To Reproduction and Respiratory Health INSERM Université Grenoble Alpes CNRS Grenoble France
- Faculté de Pharmacie Université Grenoble Alpes Grenoble France
- Pôle Pharmacie CHU Grenoble Alpes Grenoble France
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics Department of Diagnostics and Public Health University of Verona Verona Italy
| | - Josep M. Anto
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | - Xavier Basagaña
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | - Jean Bousquet
- Epidemiological and Public Health Approaches INSERM U1168: Aging and Chronic Diseases Villejuif France
| | - Pascal Demoly
- Pneumology Department CHU Montpellier Montpellier France
| | - Judith Garcia‐Aymerich
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | | | - Joachim Heinrich
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine University Hospital of Ludwig Maximilians University Comprehensive Pneumology Centre Munich German Centre for Lung Research Muenchen Germany
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research Uppsala University Uppsala Sweden
| | - Nino Künzli
- Swiss Tropical and Public Health Institute University of Basel Basel Switzerland
| | | | - Christophe Pison
- Clinique Universitaire de Pneumologie Pôle Thorax et Vaisseaux CHU de Grenoble INSERM U1055 Université Grenoble Alpes Grenoble France
| | - Chantal Raherison
- INSERM Bordeaux Population Health Research Center Team EPICENE UMR 1219 Université Bordeaux Bordeaux France
| | - Jordi Sunyer
- ISGlobal Centre for Research in Environmental Epidemiology (CREAL) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | - Raphaëlle Varraso
- Epidemiological and Public Health Approaches INSERM U1168: Aging and Chronic Diseases Villejuif France
| | - Deborah Jarvis
- National Heart and Lung Institute Imperial College London UK
| | - Bénédicte Leynaert
- Unit 1152 Team of Epidemiology INSERM University Paris‐Diderot Paris France
| | - Isabelle Pin
- IAB Team of Environmental Epidemiology Applied To Reproduction and Respiratory Health INSERM Université Grenoble Alpes CNRS Grenoble France
- Pediatric Department CHU Grenoble Grenoble France
| | - Valérie Siroux
- IAB Team of Environmental Epidemiology Applied To Reproduction and Respiratory Health INSERM Université Grenoble Alpes CNRS Grenoble France
| |
Collapse
|
18
|
In Suh D, Song DJ, Baek HS, Shin M, Yoo Y, Kwon JW, Jang GC, Yang HJ, Lee E, Kim HS, Seo JH, Woo SI, Kim HY, Shin YH, Lee JS, Yoon J, Jung S, Han M, Eom E, Yu J, Kim WK, Lim DH, Kim JT, Chang WS, Lee JK. Korean childhood asthma study (KAS): a prospective, observational cohort of Korean asthmatic children. BMC Pulm Med 2019; 19:64. [PMID: 30876418 PMCID: PMC6420748 DOI: 10.1186/s12890-019-0829-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Asthma is a syndrome composed of heterogeneous disease entities. Although it is agreed that proper asthma endo-typing and appropriate type-specific interventions are crucial in the management of asthma, little data are available regarding pediatric asthma. Methods We designed a cluster-based, prospective, observational cohort study of asthmatic children in Korea (Korean childhood Asthma Study [KAS]). A total of 1000 Korean asthmatic children, aged from 5 to 15 years, will be enrolled at the allergy clinics of the 19 regional tertiary hospitals from August 2016 to December 2018. Physicians will verify the relevant histories of asthma and comorbid diseases, as well as airway lability from the results of spirometry and bronchial provocation tests. Questionnaires regarding subjects’ baseline characteristics and their environment, self-rating of asthma control, and laboratory tests for allergy and airway inflammation will be collected at the time of enrollment. Follow-up data regarding asthma control, lung function, and environmental questionnaires will be collected at least every 6 months to assess outcome and exacerbation-related aggravating factors. In a subgroup of subjects, peak expiratory flow rate will be monitored by communication through a mobile application during the overall study period. Cluster analysis of the initial data will be used to classify Korean pediatric asthma patients into several clusters; the exacerbation and progression of asthma will be assessed and compared among these clusters. In a subgroup of patients, big data-based deep learning analysis will be applied to predict asthma exacerbation. Discussion Based on the assumption that asthma is heterogeneous and each subject exhibits a different subset of risk factors for asthma exacerbation, as well as a different disease progression, the KAS aims to identify several asthma clusters and their essential determinants, which are more suitable for Korean asthmatic children. Thereafter we may suggest cluster-specific strategies by focusing on subjects’ personalized aggravating factors during each exacerbation episode and by focusing on disease progression. The KAS will provide a good academic background with respect to each interventional strategy to achieve better asthma control and prognosis.
Collapse
Affiliation(s)
- Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Hey-Sung Baek
- Department of Pediatrics, Hallym University Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Meeyong Shin
- Department of Pediatrics, Soonchunhyang University School of Medicine, Bucheon, South Korea
| | - Young Yoo
- Department of Pediatrics, Korea University Anam Hospital, Seoul, South Korea
| | - Ji-Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Gwang Cheon Jang
- Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Ilsan, South Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Pediatric Allergy and Respiratory Center, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hwan Soo Kim
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon, South Korea
| | - Ju-Hee Seo
- Department of Pediatrics, Dankook University Hospital, Cheonan, South Korea
| | - Sung-Il Woo
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyung Young Kim
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, Gangnam CHA Medical Center CHA University School of Medicine, Seoul, South Korea
| | - Ju Suk Lee
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong hospital, Incheon, South Korea
| | - Sungsu Jung
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Eunjin Eom
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinho Yu
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Woo Kyung Kim
- Department of Pediatrics, Inje University Seoul Paik Hospital, Seoul, South Korea.
| | - Dae Hyun Lim
- Department of Pediatrics, School of Medicine, Inha University, Incheon, South Korea
| | - Jin Tack Kim
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's hospital, Uijeongbu, South Korea
| | - Woo-Sung Chang
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, South Korea
| | - Jeom-Kyu Lee
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, South Korea
| |
Collapse
|
19
|
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory disease with an as-yet-undefined etiology. The management of CRS has historically been phenotypically driven, and the presence or absence of nasal polyps has frequently guided diagnosis, prognosis, and treatment algorithms. Research over the last decade has begun to question the role of this distinction in disease management, and renewed attention has been placed on molecular and cellular endotyping and a more personalized approach to care. Current research exploring immunologic mechanisms, inflammatory endotypes, and molecular biomarkers has the potential to more effectively delineate distinct and clinically relevant subgroups of CRS. The focus of this review will be to discuss and summarize the endotypic characterization of CRS and the potential diagnostic and therapeutic implications of this approach to disease management.
Collapse
Affiliation(s)
- Eric F Succar
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Eguiluz-Gracia I, Tay TR, Hew M, Escribese MM, Barber D, O'Hehir RE, Torres MJ. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy 2018; 73:2290-2305. [PMID: 30289997 DOI: 10.1111/all.13628] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
The potential of precision medicine in allergy and asthma has only started to be explored. A significant clarification in the pathophysiology of rhinitis, chronic rhinosinusitis, asthma, food allergy and drug hypersensitivity was made in the last decade. This improved understanding led to a better classification of the distinct phenotypes and to the discovery of new drugs such as biologicals, targeting phenotype-specific mechanisms. Nevertheless, many conditions remain poorly understood such as non-eosinophilic airway diseases or non-IgE-mediated food allergy. Moreover, there is a need to predict the response to specific therapies and the outcome of drug and food provocations. The identification of patients at risk of progression towards severity is also an unmet need in order to establish adequate preventive or therapeutic measures. The implementation of precision medicine in the clinical practice requires the identification of phenotype-specific markers measurable in biological matrices. To become useful, these biomarkers need to be quantifiable by reliable systems, and in samples obtained in an easy, rapid and cost-efficient way. In the last years, significant research resources have been put in the identification of valid biomarkers for asthma and allergic diseases. This review summarizes these recent advances with focus on the biomarkers with higher clinical applicability.
Collapse
Affiliation(s)
- Ibon Eguiluz-Gracia
- Unidad de Alergia; IBIMA-Hospital Regional Universitario de Malaga-UMA; ARADyAL; Malaga Spain
| | - Tunn Ren Tay
- Department of Respiratory and Critical Care Medicine; Changi General Hospital; Singapore Singapore
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology Service; The Alfred Hospital; Melbourne Victoria Australia
- School of Public Health & Preventive Medicine; Monash University; Melbourne Victoria Australia
| | - Maria M. Escribese
- Facultad de Medicina; Instituto de Medicina Molecular Aplicada (IMMA); Universidad San Pablo CEU; Madrid Spain
- Departamento de Ciencias Médicas Básicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid Spain
| | - Domingo Barber
- Facultad de Medicina; Instituto de Medicina Molecular Aplicada (IMMA); Universidad San Pablo CEU; Madrid Spain
| | - Robyn E. O'Hehir
- Allergy, Asthma and Clinical Immunology Service; The Alfred Hospital; Melbourne Victoria Australia
- Department of Allergy, Clinical Immunology & Respiratory Medicine; Central Clinical School; Monash University; Melbourne Victoria Australia
| | - Maria J. Torres
- Unidad de Alergia; IBIMA-Hospital Regional Universitario de Malaga-UMA; ARADyAL; Malaga Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND; Malaga Spain
| |
Collapse
|
21
|
Puthucheary ZA, Astin R, Mcphail MJW, Saeed S, Pasha Y, Bear DE, Constantin D, Velloso C, Manning S, Calvert L, Singer M, Batterham RL, Gomez-Romero M, Holmes E, Steiner MC, Atherton PJ, Greenhaff P, Edwards LM, Smith K, Harridge SD, Hart N, Montgomery HE. Metabolic phenotype of skeletal muscle in early critical illness. Thorax 2018; 73:926-935. [PMID: 29980655 DOI: 10.1136/thoraxjnl-2017-211073] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To characterise the sketetal muscle metabolic phenotype during early critical illness. METHODS Vastus lateralis muscle biopsies and serum samples (days 1 and 7) were obtained from 63 intensive care patients (59% male, 54.7±18.0 years, Acute Physiology and Chronic Health Evaluation II score 23.5±6.5). MEASUREMENTS AND MAIN RESULTS From day 1 to 7, there was a reduction in mitochondrial beta-oxidation enzyme concentrations, mitochondrial biogenesis markers (PGC1α messenger mRNA expression (-27.4CN (95% CI -123.9 to 14.3); n=23; p=0.025) and mitochondrial DNA copy number (-1859CN (IQR -5557-1325); n=35; p=0.032). Intramuscular ATP content was reduced compared tocompared with controls on day 1 (17.7mmol/kg /dry weight (dw) (95% CI 15.3 to 20.0) vs. 21.7 mmol/kg /dw (95% CI 20.4 to 22.9); p<0.001) and decreased over 7 days (-4.8 mmol/kg dw (IQR -8.0-1.2); n=33; p=0.001). In addition, the ratio of phosphorylated:total AMP-K (the bioenergetic sensor) increased (0.52 (IQR -0.09-2.6); n=31; p<0.001). There was an increase in intramuscular phosphocholine (847.2AU (IQR 232.5-1672); n=15; p=0.022), intramuscular tumour necrosis factor receptor 1 (0.66 µg (IQR -0.44-3.33); n=29; p=0.041) and IL-10 (13.6 ng (IQR 3.4-39.0); n=29; p=0.004). Serum adiponectin (10.3 µg (95% CI 6.8 to 13.7); p<0.001) and ghrelin (16.0 ng/mL (IQR -7-100); p=0.028) increased. Network analysis revealed a close and direct relationship between bioenergetic impairment and reduction in muscle mass and between intramuscular inflammation and impaired anabolic signaling. ATP content and muscle mass were unrelated to lipids delivered. CONCLUSIONS Decreased mitochondrial biogenesis and dysregulated lipid oxidation contribute to compromised skeletal muscle bioenergetic status. In addition, intramuscular inflammation was associated with impaired anabolic recovery with lipid delivery observed as bioenergetically inert. Future clinical work will focus on these key areas to ameliorate acute skeletal muscle wasting. TRIAL REGISTRATION NUMBER NCT01106300.
Collapse
Affiliation(s)
- Zudin A Puthucheary
- Institute for Sport, Exercise and Health, University College London, London, UK
- Department of Medicine, Centre for Human Health and Performance, University College London, London, UK
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Ronan Astin
- Institute for Sport, Exercise and Health, University College London, London, UK
- Department of Medicine, Centre for Human Health and Performance, University College London, London, UK
| | - Mark J W Mcphail
- Hepatology and Gastroenterology, St Mary's Hospital, Imperial College London, London, UK
- Institute of Liver Studies, Kings College Hospital NHS Foundation Trust, London, UK
| | - Saima Saeed
- Wolfson Institute Centre for Intensive Care Medicine, University College London, London, UK
| | - Yasmin Pasha
- Hepatology and Gastroenterology, St Mary's Hospital, Imperial College London, London, UK
| | - Danielle E Bear
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London
- Lane Fox Clinical Respiratory Physiology Research Centre, St Thomas' Hospital, Guy's and St Thomas' Foundation Trust, London, London, UK
| | - Despina Constantin
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Aging Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Cristiana Velloso
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Sean Manning
- Centre for Obesity Research, University College London, London, UK
- National Institute of Health Research, UCLH Biomedical Research Centre, University College London Hospitals, London
- School of Medicine, University College Cork, Cork, Ireland
| | - Lori Calvert
- Northwest Anglia foundation Trust, Peterborough City Hospital NHS Trust, Peterborough, UK
| | - Mervyn Singer
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London, UK
- Wolfson Institute Centre for Intensive Care Medicine, University College London, London, UK
| | - Rachel L Batterham
- Centre for Obesity Research, University College London, London, UK
- National Institute of Health Research, UCLH Biomedical Research Centre, University College London Hospitals, London
| | - Maria Gomez-Romero
- Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, London, UK
| | - Elaine Holmes
- Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, London, UK
| | - Michael C Steiner
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre-Respiratory, University of Leicester, Leicester, UK
| | - Philip J Atherton
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Aging Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Paul Greenhaff
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Aging Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Lindsay M Edwards
- Digital, Data & Analytics Unit, Respiratory Therapy Area, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Kenneth Smith
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Aging Research, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Stephen D Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Nicholas Hart
- Lane Fox Clinical Respiratory Physiology Research Centre, St Thomas' Hospital, Guy's and St Thomas' Foundation Trust, London, London, UK
- Lane Fox Respiratory Service, St Thomas' Hospital, Guy's and St Thomas' Foundation Trust, London, UK
| | - Hugh E Montgomery
- Institute for Sport, Exercise and Health, University College London, London, UK
- Department of Medicine, Centre for Human Health and Performance, University College London, London, UK
| |
Collapse
|
22
|
Choi H, Song WM, Zhang B. Linking childhood allergic asthma phenotypes with endotype through integrated systems biology: current evidence and research needs. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:55-63. [PMID: 28170342 DOI: 10.1515/reveh-2016-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Asthma and other complex diseases results from a complex web of interactions involving inflammation, immunity, cell cycle, apoptosis, and metabolic perturbations across multiple organ systems. The extent to which various degrees of the age at onset, symptom severity, and the natural progression of the disease reflect multiple disease subtypes, influenced by unique process of development remains unknown. One of the most critical challenges to our understanding stems from incomplete understanding of the mechanisms. Within this review, we focus on the phenotypes of childhood allergic asthma as the basis to better understand the endotype for quantitative define subtypes of asthma. We highlight some of the known mechanistic pathways associated with the key hallmark events before the asthma onset. In particular, we examine how the recent advent of multiaxial -omics technologies and systems biology could help to clarify our current understanding of the pathway. We review how a large volume of molecular, genomic data generated by multiaxial technologies could be digested to identify cogent pathophysiologic molecular networks. We highlight some recent successes in application of these technologies within the context of other disease conditions for therapeutic interventions. We conclude by summarizing the research needs for the predictive value of preclinical biomarkers.
Collapse
|
23
|
Wang AL, Tantisira KG. Personalized management of asthma exacerbations: lessons from genetic studies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016; 1:487-495. [PMID: 29051920 DOI: 10.1080/23808993.2016.1269600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The genetics of severe asthma and asthma exacerbations are distinct from milder forms of asthma. Gene-environmental interactions contribute to the complexity and heterogeneity of severe asthma and asthma exacerbations, and pharmacogenomic studies have also identified genes that affect susceptibility to asthma exacerbations. AREAS COVERED Studies on the genetics, gene-environment interactions, and pharmacogenomics of asthma exacerbations are reviewed. Multiple individual genetic variants have been identified to be associated with asthma exacerbations but each genetic polymorphism explains only a fraction of the disease and by itself is not able to translate into clinical practice. Research is shifting from candidate gene studies and genome wide association studies towards more integrative approaches to translate genetic findings into clinical diagnostic and therapeutic tools. EXPERT COMMENTARY Integrative approaches combining polygenic or genomic data with multi-omics technologies have the potential to discover new biologic mechanisms and biomarkers for severe asthma and asthma exacerbations. Greater understanding of genomics and underlying biologic pathways will also lead to improved prevention and treatment, lowering costs, morbidity, and mortality. The utilization of genomic testing and personalized medicine may revolutionize asthma management, in particular for patients with severe, refractory asthma.
Collapse
Affiliation(s)
- Alberta L Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Landgraf-Rauf K, Anselm B, Schaub B. The puzzle of immune phenotypes of childhood asthma. Mol Cell Pediatr 2016; 3:27. [PMID: 27468754 PMCID: PMC4965363 DOI: 10.1186/s40348-016-0057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/19/2016] [Indexed: 02/07/2023] Open
Abstract
Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient’s disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of new immunological molecules, the complex puzzle of childhood asthma is still far from being completed. Addressing the current challenges of distinct clinical asthma and wheeze phenotypes, including their stability and underlying endotypes, involves addressing the interplay of innate and adaptive immune regulatory mechanisms in large, interdisciplinary cohorts.
Collapse
Affiliation(s)
- Katja Landgraf-Rauf
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU, Lindwurmstraße 4, 80337, Munich, Germany.,Member of German Lung Centre (DZL), CPC, Munich, Germany
| | - Bettina Anselm
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU, Lindwurmstraße 4, 80337, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU, Lindwurmstraße 4, 80337, Munich, Germany. .,Member of German Lung Centre (DZL), CPC, Munich, Germany.
| |
Collapse
|
25
|
Agache I, Akdis CA. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine. Allergol Int 2016; 65:243-52. [PMID: 27282212 DOI: 10.1016/j.alit.2016.04.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Discoveries from basic science research in the last decade have brought significant progress in knowledge of pathophysiologic processes of allergic diseases, with a compelling impact on understanding of the natural history, risk prediction, treatment selection or mechanism-specific prevention strategies. The view of the pathophysiology of allergic diseases developed from a mechanistic approach, with a focus on symptoms and organ function, to the recognition of a complex network of immunological pathways. Several subtypes of inflammation and complex immune-regulatory networks and the reasons for their failure are now described, that open the way for the development of new diagnostic tools and innovative targeted-treatments. An endotype is a subtype of a disease condition, which is defined by a distinct pathophysiological mechanism, whereas a disease phenotype defines any observable characteristic of a disease without any implication of a mechanism. Another key word linked to disease endotyping is biomarker that is measured and evaluated to examine any biological or pathogenic processes, including response to a therapeutic intervention. These three keywords will be discussed more and more in the future with the upcoming efforts to revolutionize patient care in the direction of precision medicine and precision health. The understanding of disease endotypes based on pathophysiological principles and their validation across clinically meaningful outcomes in asthma, allergic rhinitis, chronic rhinosinusitis, atopic dermatitis and food allergy will be crucial for the success of precision medicine as a new approach to patient management.
Collapse
|