1
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
2
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl-Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2024. [PMID: 38555566 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
- BioTechMed Graz, Austria
| | - Holger Heine
- Research Center Borstel - Leibniz Lung Center, Division of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
3
|
Immunomodulatory action of Lactococcuslactis. J Biosci Bioeng 2023; 135:1-9. [PMID: 36428209 DOI: 10.1016/j.jbiosc.2022.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Fermented foods are gaining popularity due to health-promoting properties with high levels of nutrients, phytochemicals, bioactive compounds, and probiotic microorganisms. Due to its unique fermentation process, Lactococcus lactis plays a key role in the food business, notably in the manufacturing of dairy products. The superior biological activities of L. lactis in these functional foods include anti-inflammatory and immunomodulatory capabilities. L. lactis boosted growth performance, controlled amino acid profiles, intestinal immunology, and microbiota. Besides that, the administration of L. lactis increased the rate of infection clearance. Innate and acquired immune responses would be upregulated in both local and systemic compartments, resulting in these consequences. L. lactis is often employed in the food sector and is currently being exploited as a delivery vehicle for biological research. These bacteria are being eyed as potential candidates for biotechnological applications. With this in mind, we reviewed the immunomodulatory effects of different L. lactis strains.
Collapse
|
4
|
Imrat, Labala RK, Behara AK, Jeyaram K. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus. Funct Integr Genomics 2022; 23:10. [PMID: 36542169 DOI: 10.1007/s10142-022-00934-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Small double-stranded RNAs (dsRNAs) abundantly produced by lactic acid bacteria demonstrate immunomodulatory activity and antiviral protective immunity. However, the extracellular secretion of dsRNA from lactic acid bacteria and their compositional and functional differences compared to the intracellular dsRNA is unknown. In this study, we compared the intracellular and secreted extracellular dsRNA of the lactic acid bacteria, Tetragenococcus halophilus, commonly present in fermented foods, by growing in RNA-free and RNase-free media. We used RNA deep sequencing and in-silico analysis to annotate potential regulatory functions for the comparison. A time series sampling of T. halophilus culture demonstrated growth phase-dependent dynamics in extracellular dsRNA secretion with no major change in the intracellular dsRNA profile. The RNA deep sequencing resulted in thousands of diverse dsRNA fragments with 14-21 nucleotides in size from T. halophilus culture. Over 70% of the secreted extracellular dsRNAs were unique in their sequences compared to the intracellular dsRNAs. Furthermore, the extracellular dsRNA abundantly contains sequences that are not T. halophilus genome encoded, not detected intracellularly and showed higher hits on human transcriptome during in-silico analysis, which suggests the presence of extrachromosomal mobile regulatory elements. Further analysis showed significant enrichment of dsRNA target genes of human transcriptome on cancer pathways and transcription process, indicating the extracellular dsRNA of T. halophilus is different not only at the sequence level but also in function. Studying the bacterial extracellular dsRNA is a promising area of future research, particularly for developing postbiotic fermented functional foods and understanding the impact of commensal gut bacteria on human health.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Rajendra Kumar Labala
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Abhisek Kumar Behara
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,IBSD Regional Centre, Tadong, Gangtok, 737102, Sikkim, India
| |
Collapse
|
5
|
Xing Y, Wang MH, Leung TF, Wong CK, Roponen M, Schaub B, Li J, Wong GWK. Poultry exposure and environmental protection against asthma in rural children. Allergy 2022; 77:2949-2960. [PMID: 35531632 DOI: 10.1111/all.15365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Asthma is one of the most common chronic diseases in childhood, and the prevalence has been increasing over the past few decades. One of the most consistent epidemiological findings is that children living in a farming or rural environment are protected from development of asthma and allergies, but the protective factors in rural China are not clear. METHODS A community-based, cross-sectional epidemiological study was performed in a total of 17,587 children aged 5-8 years, 3435 from Hong Kong (urban) and 14,152 from Conghua (rural county in southern China). Asthma and allergic symptoms as well as environmental exposures were ascertained by using a standardized and validated questionnaire. RESULTS The prevalence of current wheeze was significantly lower in rural Conghua than that of urban Hong Kong (1.7% vs. 7.7%, p < 0.001). A lower rate of asthma ever was also reported in rural children compared with their urban counterparts (2.5% vs. 5.3%, p < 0.001). After adjusting for confounding factors, exposure to agricultural farming (adjusted odds ratio 0.74, 95% confidence interval: 0.56-0.97) and poultry (0.75, 0.59-0.96) were the most important factors associated with the asthma-protective effect in the rural area. Further propensity score-adjusted analysis indicated that such protection conferred by living in the rural environment was mainly attributable to poultry exposure. CONCLUSIONS We confirmed that the prevalence of asthma and atopic disorders was significantly lower in rural children when compared with their urban peers. Exposure to poultry and agricultural farming are the most important factors associated with asthma protection in the rural area.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H Wang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fan Leung
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gary W K Wong
- Department of Paediatrics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Fu X, Ou Z, Sun Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:133-146. [PMID: 38075599 PMCID: PMC10702906 DOI: 10.1016/j.eehl.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/20/2023]
Abstract
The prevalence of allergic diseases, such as asthma, rhinitis, eczema, and sick building syndrome (SBS), has increased drastically in the past few decades. Current medications can only relieve the symptoms but not cure these diseases whose development is suggested to be greatly impacted by the indoor microbiome. However, no study comprehensively summarizes the progress and general rules in the field, impeding subsequent translational application. To close knowledge gaps between theoretical research and practical application, we conducted a comprehensive literature review to summarize the epidemiological, environmental, and molecular evidence of indoor microbiome studies. Epidemiological evidence shows that the potential protective indoor microorganisms for asthma are mainly from the phyla Actinobacteria and Proteobacteria, and the risk microorganisms are mainly from Bacilli, Clostridia, and Bacteroidia. Due to extremely high microbial diversity and geographic variation, different health-associated species/genera are detected in different regions. Compared with indoor microbial composition, indoor metabolites show more consistent associations with health, including microbial volatile organic compounds (MVOCs), lipopolysaccharides (LPS), indole derivatives, and flavonoids. Therefore, indoor metabolites could be a better indicator than indoor microbial taxa for environmental assessments and health outcome prediction. The interaction between the indoor microbiome and environmental characteristics (surrounding greenness, relative humidity, building confinement, and CO2 concentration) and immunology effects of indoor microorganisms (inflammatory cytokines and pattern recognition receptors) are briefly reviewed to provide new insights for disease prevention and treatment. Widely used tools in indoor microbiome studies are introduced to facilitate standard practice and the precise identification of health-related targets.
Collapse
Affiliation(s)
- Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
7
|
Xing Y, Wong GWK. Environmental Influences and Allergic Diseases in the Asia-Pacific Region: What Will Happen in Next 30 Years? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:21-39. [PMID: 34983105 PMCID: PMC8724831 DOI: 10.4168/aair.2022.14.1.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022]
Abstract
Asia-Pacific is a populous region with remarkable variations in socioeconomic development and environmental exposure among countries. The prevalence rates of asthma and allergic rhinitis appear to have recently reached a plateau in Western countries, whereas they are still increasing in many Asian countries. Given the large population in Asia, even a slight increase in the prevalence rate will translate into an overwhelming number of patients. To reduce the magnitude of the increase in allergic diseases in next few decades in Asia, we must understand the potential factors leading to the occurrence of these disorders and the development of potential preventive strategies. The etiology of allergic disorders is likely due to complex interactions among genetic, epigenetic, and environmental factors for the manifestations of inappropriate immune responses. As urbanization and industrialization inevitably progress in Asia, there is an urgent need to curtail the upcoming waves of the allergy epidemic. Potentially modifiable risk exposure, such as air pollution, should be minimized through timely implementation of effective legislations. Meanwhile, re-introduction of protective factors that were once part of the traditional farming lifestyle might give new insight into primary prevention of allergy.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
9
|
Athayde LA, de Aguiar SLF, Miranda MCG, Brito RVJ, de Faria AMC, Nobre SAM, Andrade MC. Lactococcus lactis Administration Modulates IgE and IL-4 Production and Promotes Enterobacteria Growth in the Gut from Ethanol-Intake Mice. Protein Pept Lett 2021; 28:1164-1179. [PMID: 34315363 DOI: 10.2174/0929866528666210727102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that alcohol can trigger inflammatory effects in the gastrointestinal tract (GIT) interfering with mucosal homeostasis. OBJECTIVE This study evaluated the effectiveness of Lactococcus lactis treatment in controlling the increase in molecular biomarkers related to allergic inflammation, and the effect on the diversity and abundance of the Enterobacteriaceae family in the GIT after high-dose acute administration of ethanol. METHODS Mice received ethanol or saline solution by gavage for four consecutive days, and 24 h after the last administration the animals were given L. lactis or M17 broth orally ad libitum for two consecutive days. The animals were subsequently sacrificed and dissected. RESULTS L. lactis treatment was able to restore basal levels of secretory immunoglobulin A in the gastric mucosa, serum total immunoglobulin E, interleukin (IL)-4 production in gastric and intestinal tissues, and IL-10 levels in gastric tissue. L. lactis treatment encouraged the diversification of the Enterobacteriaceae population, particularly the commensal species, in the GIT. CONCLUSION This research opens a field of studies regarding the modulatory effect of L. lactis on immunological and microbial changes induced after alcohol intake.
Collapse
|
10
|
Cervantes-García D, Jiménez M, Rivas-Santiago CE, Gallegos-Alcalá P, Hernández-Mercado A, Santoyo-Payán LS, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Salinas E. Lactococcus lactis NZ9000 Prevents Asthmatic Airway Inflammation and Remodelling in Rats through the Improvement of Intestinal Barrier Function and Systemic TGF-β Production. Int Arch Allergy Immunol 2020; 182:277-291. [PMID: 33147596 DOI: 10.1159/000511146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The use of probiotics has been broadly popularized due to positive effects in the attenuation of aberrant immune responses such as asthma. Allergic asthma is a chronic respiratory disease characterized by airway inflammation and remodelling. OBJECTIVE This study was aimed to evaluate the effect of oral administration of Lactococcus lactis NZ9000 on asthmatic airway inflammation and lung tissue remodelling in rats and its relation to the maintenance of an adequate intestinal barrier. METHODS Wistar rats were ovalbumin (OVA) sensitized and challenged and orally treated with L. lactis. Lung inflammatory infiltrates and cytokines were measured, and remodelling was evaluated. Serum OVA-specific immunoglobulin (Ig) E levels were assessed. We also evaluated changes on intestinal environment and on systemic immune response. RESULTS L. lactis diminished the infiltration of proinflammatory leucocytes, mainly eosinophils, in the bronchoalveolar compartment, decreased lung IL-4 and IL-5 expression, and reduced the level of serum allergen-specific IgE. Furthermore, L. lactis prevented eosinophil influx, collagen deposition, and goblet cell hyperplasia in lung tissue. In the intestine, L. lactis-treated asthmatic rats increased Peyer's patch and goblet cell quantity and mRNA expression of IgA, MUC-2, and claudin. Additionally, intestinal morphological alterations were normalized by L. lactis administration. Splenocyte proliferative response to OVA was abolished, and serum levels of transforming growth factor (TGF)-β were increased by L. lactis treatment. CONCLUSIONS These findings suggest that L. lactis is a potential candidate for asthma prevention, and the effect is mediated by the improvement of intestinal barrier function and systemic TGF-β production.
Collapse
Affiliation(s)
- Daniel Cervantes-García
- National Council of Science and Technology, Mexico City, Mexico.,Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - César E Rivas-Santiago
- National Council of Science and Technology, Mexico City, Mexico.,Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Alicia Hernández-Mercado
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Leslie S Santoyo-Payán
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | | | - Odila Saucedo-Cardenas
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Nuevo Leon, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico,
| |
Collapse
|
11
|
Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol 2020; 21:177-191. [PMID: 32918062 DOI: 10.1038/s41577-020-00420-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Allergies, including asthma, food allergy and atopic dermatitis, are increasing in prevalence, particularly in westernized countries. Although a detailed mechanistic explanation for this increase is lacking, recent evidence indicates that, in addition to genetic predisposition, lifestyle changes owing to modernization have an important role. Such changes include increased rates of birth by caesarean delivery, increased early use of antibiotics, a westernized diet and the associated development of obesity, and changes in indoor and outdoor lifestyle and activity patterns. Most of these factors directly and indirectly impact the formation of a diverse microbiota, which includes bacterial, viral and fungal components; the microbiota has a leading role in shaping (early) immune responses. This default programme is markedly disturbed under the influence of environmental and lifestyle risk factors. Here, we review the most important allergy risk factors associated with changes in our exposure to the microbial world and the application of this knowledge to allergy prevention strategies.
Collapse
|
12
|
Peters M, Peters K, Bufe A. Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun 2020; 25:326-336. [PMID: 31291810 PMCID: PMC7103613 DOI: 10.1177/1753425918821732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the first description of dendritic cells by Steinman and Cohn in 1973, this
important cell type has gained increasing attention. Over 4000 papers have been
published on this topic annually during the last few years. At the beginning,
dendritic cells were recognized for their immune stimulatory properties and
their importance in initiating an adaptive immune response. Later, it was found
that dendritic cells do not only initiate but also regulate immune responses.
This attribute makes the so-called regulatory dendritic cells highly important
for the prevention of exaggerated immune responses. Immune cells make contact
with different Ags every day and must be tightly controlled to prevent excessive
inflammation and subsequent organ destruction, particularly in organs such as
the gut and lungs. Here, we give a brief overview of our current knowledge on
how immune responses are controlled by dendritic cells, highlighting how they
are involved in the induction of peripheral tolerance. We focus on what is known
about these processes in the lung, with a closer look at their role in the
induction and control of diseases such as bronchial asthma, chronic obstructive
pulmonary disease and lung infections. Finally, we summarize some current
approaches to modulate the behavior of dendritic cells that may hopefully lead
to future therapeutics to control exaggerated immune responses.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Karin Peters
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University Bochum, Germany
| |
Collapse
|
13
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
14
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
15
|
Skevaki C, Renz H. Advances in mechanisms of allergic disease in 2017. J Allergy Clin Immunol 2018; 142:1730-1739. [PMID: 30315828 DOI: 10.1016/j.jaci.2018.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023]
Abstract
This review highlights advances in mechanisms of allergic disease, particularly type 2 innate lymphoid cells, TH2 lymphocytes, B cells, dendritic cells, microbiome and barrier function, eosinophils, and mast cells. During the last year, considerable progress has been made in the further characterization of type 2 inflammation controlled by both adaptive (TH2) and type 2 innate lymphoid effector cells. New pathways of lymphocyte activation, trafficking, and recruitment and effector cell mechanisms have been discovered. The plasticity of lymphocyte effector cell responses is another area in which major progress has been achieved. Accumulating evidence will influence both our understanding of allergic disease and our efforts for allergy prevention and treatment.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
16
|
Michels KR, Lukacs NW, Fonseca W. TLR Activation and Allergic Disease: Early Life Microbiome and Treatment. Curr Allergy Asthma Rep 2018; 18:61. [PMID: 30259206 DOI: 10.1007/s11882-018-0815-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Allergy and asthma are growing problems in the developed world. The accelerated increase of these diseases may be related to microbiome modification that leads to aberrant activation of Toll-like receptors (TLRs). Current research supports the concept that changes in microbial communities in early life impact TLR activation, resulting in an altered risk for the development of asthma and allergies. RECENT FINDINGS Prenatal and early childhood events that generate microbiome modification are closely related with TLR activation. Early childhood exposure to a rich array of TLR agonists, particularly lipopolysaccharide, strongly predicts protection against allergic disease later in life even when other lifestyle factors are accounted for. Genetic deletion of TLR signaling components in mice results in reduced function of tolerogenic cell populations in the gut. In contrast, weak TLR signaling can promote allergic sensitization later in life. This review summarizes the role of TLR signaling in microbiome-mediated protection against allergy.
Collapse
Affiliation(s)
- Kathryn R Michels
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Haspeslagh E, Heyndrickx I, Hammad H, Lambrecht BN. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr Opin Immunol 2018; 54:102-108. [PMID: 29986301 PMCID: PMC6202673 DOI: 10.1016/j.coi.2018.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Microbial and environmental signals set tonic activation status of barrier tissues. Signaling from barrier tissues licenses dendritic cells to induce T helper 2 cells. Pulmonary immune system in early-life prone to asthma development. Mechanistic understanding needed to translate epidemiological findings in therapies.
The hygiene hypothesis was initially proposed as an explanation for the alarming rise in allergy prevalence in the last century. The immunological idea behind this hypothesis was a lack of infections associated with a Western lifestyle and a consequential reduction in type 1 immune responses. It is now understood that the development of tolerance to allergens depends on microbial colonization and immunostimulatory environmental signals during early-life or passed on by the mother. These environmental cues are sensed and integrated by barrier epithelial cells of the lungs and possibly skin, which in turn instruct dendritic cells to regulate or impede adaptive T cell responses. Recent reports also implicate immunoregulatory macrophages as powerful suppressors of allergy by the microbiome. We propose that loss of adequate microbial stimulation due to a Western lifestyle may result in hypersensitive barrier tissues and the observed rise in type 2 allergic disease.
Collapse
Affiliation(s)
- Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium
| | - Ines Heyndrickx
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep 2018; 8:6435. [PMID: 29691472 PMCID: PMC5915382 DOI: 10.1038/s41598-018-24879-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein A subunit (NapA) has been identified as a virulence factor, a protective antigen and a potent immunomodulator. NapA shows unique application potentials for anti-H. pylori vaccines and treatment strategies of certain allergic diseases and carcinomas. However, appropriate production and utilization modes of NapA still remain uncertain to date. This work has established a novel efficient production and utilization mode of NapA by using L. lactis as an expression host and delivery vector, and demonstrated immune protective efficacy and immune modulatory activity of the engineered L. lactis by oral vaccination of mice. It was observed for the first time that H. pylori NapA promotes both polarized Th17 and Th1 responses, which may greatly affect the clinical application of NapA. This report offers a promising anti-H. pylori oral vaccine candidate and a potent mucosal immune modulatory agent. Meanwhile, it uncovers a way to produce and deliver the oral vaccine and immunomodulator by fermentation of food like milk, which might have striking effects on control of H. pylori infection, gastrointestinal cancers, and Th2 bias allergic diseases, including many food allergies.
Collapse
|
19
|
Kawashima T, Ikari N, Watanabe Y, Kubota Y, Yoshio S, Kanto T, Motohashi S, Shimojo N, Tsuji NM. Double-Stranded RNA Derived from Lactic Acid Bacteria Augments Th1 Immunity via Interferon-β from Human Dendritic Cells. Front Immunol 2018; 9:27. [PMID: 29410667 PMCID: PMC5787129 DOI: 10.3389/fimmu.2018.00027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria (LAB) are one of the major commensal species in the small intestine and known for contributing to maintenance of protective immunity and immune homeostasis. However, currently there has been no evidence regarding the cellular mechanisms involved in the probiotic effects of LAB on human immune cells. Here, we demonstrated that LAB double-stranded RNA (dsRNA) triggered interferon-β (IFN-β) production by human dendritic cells (DCs), which activated IFN-γ-producing T cells. Interleukin-12 (IL-12) secretion from human DCs in response to LAB was abrogated by depletion of bacterial dsRNA, and was attenuated by neutralizing IFN-β, indicating LAB dsRNA primarily activated the IFN-β/IL-12 pathway. Moreover, the induction of IL-12 secretion from DCs by LAB was abolished by the inhibition of endosomal acidification, confirming the critical role of the endosomal digestion of LAB. In a coculture of human naïve CD4+ T cells and BDCA1+ DCs, DCs stimulated with LAB containing dsRNA induced IFN-γ-producing T cells. These results indicate that human DCs activated by LAB enhance Th1 immunity depending on IFN-β secretion in response to bacterial dsRNA.
Collapse
Affiliation(s)
- Tadaomi Kawashima
- Research and Development Division, Kikkoman Corporation, Chiba, Japan.,Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naho Ikari
- Research and Development Division, Kikkoman Corporation, Chiba, Japan.,Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yohei Watanabe
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshiro Kubota
- Kikkoman General Hospital, Kikkoman Corporation, Chiba, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriko M Tsuji
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
20
|
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss-Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy 2017; 72:1859-1867. [PMID: 28600901 DOI: 10.1111/all.13220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of allergic diseases and asthma has dramatically increased over the last decades, resulting in a high burden for patients and healthcare systems. Thus, there is an unmet need to develop preventative strategies for these diseases. Epidemiological studies show that reduced exposure to environmental bacteria in early life (eg, birth by cesarean section, being formula-fed, growing up in an urban environment or with less contact to various persons) is associated with an increased risk to develop allergies and asthma later in life. Conversely, a reduced risk for asthma is consistently found in children growing up on traditional farms, thereby being exposed to a wide spectrum of microbes. However, clinical studies with bacteria to prevent allergic diseases are still rare and to some extent contradicting. A detailed mechanistic understanding of how environmental microbes influence the development of the human microbiome and the immune system is important to enable the development of novel preventative approaches that are based on the early modulation of the host microbiota and immunity. In this mini-review, we summarize current knowledge and experimental evidence for the potential of bacteria and their metabolites to be used for the prevention of asthma and allergic diseases.
Collapse
Affiliation(s)
- G. Jatzlauk
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - S. Bartel
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - H. Heine
- Division of Innate Immunity; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - M. Schloter
- Research Unit Environmental Genomics; Helmholtz Zentrum München; Oberschleißheim Germany
| | - S. Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
- Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
21
|
Vierbuchen T, Bang C, Rosigkeit H, Schmitz RA, Heine H. The Human-Associated Archaeon Methanosphaera stadtmanae Is Recognized through Its RNA and Induces TLR8-Dependent NLRP3 Inflammasome Activation. Front Immunol 2017; 8:1535. [PMID: 29181003 PMCID: PMC5694038 DOI: 10.3389/fimmu.2017.01535] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
The archaeon Methanosphaera stadtmanae is a member of the gut microbiota; yet, the molecular cross-talk between archaea and the human immune system and its potential contribution to inflammatory diseases has not been evaluated. Although archaea are as bacteria prokaryotes, they form a distinct domain having unique features such as different cell wall structures and membrane lipids. So far, no microbe-associated molecular patterns of archaea which activate innate immune receptors have been identified. By stimulating human myeloid cells with M. stadtmanae and purified archaeal nucleic acids, we identified both the microorganism and its RNA as potent stimuli for the innate immune system. To dissect the recognition and activation pathways induced by M. stadtmanae, human monocytic BLaER1 knockout cells were generated using the CRISPR/Cas9 system targeting components of TLR and inflammasome signaling. While the recognition of M. stadtmanae is mediated by TLR7 and TLR8, activation of the NLRP3 inflammasome depends solely on TLR8 engagement. Notably, this process resembles hallmarks of both the canonical and the recently described alternative inflammasome activation. Thus, we have demonstrated for the first time the specific recognition of and response to an archaeon by human cells at the molecular level.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany
| | - Corinna Bang
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hanna Rosigkeit
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|