1
|
Evidence of absence with a twist: voltage-operated Ca2+ channel β subunit in T cells. Cell Calcium 2022; 106:102632. [DOI: 10.1016/j.ceca.2022.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
|
2
|
Erdogmus S, Concepcion AR, Yamashita M, Sidhu I, Tao AY, Li W, Rocha PP, Huang B, Garippa R, Lee B, Lee A, Hell JW, Lewis RS, Prakriya M, Feske S. Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca 2+ channel function. Nat Commun 2022; 13:2033. [PMID: 35440113 PMCID: PMC9018955 DOI: 10.1038/s41467-022-29725-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary β subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVβ1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVβ1 regulates T cell function, these effects are independent of VGCC channel activity.
Collapse
Affiliation(s)
- Serap Erdogmus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wenyi Li
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ralph Garippa
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Giang N, Mars M, Moreau M, Mejia JE, Bouchaud G, Magnan A, Michelet M, Ronsin B, Murphy GG, Striessnig J, Guéry J, Pelletier L, Savignac M. Separation of the Ca V 1.2-Ca V 1.3 calcium channel duo prevents type 2 allergic airway inflammation. Allergy 2022; 77:525-539. [PMID: 34181765 DOI: 10.1111/all.14993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Voltage-gated calcium (Cav 1) channels contribute to T-lymphocyte activation. Cav 1.2 and Cav 1.3 channels are expressed in Th2 cells but their respective roles are unknown, which is investigated herein. METHODS We generated mice deleted for Cav 1.2 in T cells or Cav 1.3 and analyzed TCR-driven signaling. In this line, we developed original fast calcium imaging to measure early elementary calcium events (ECE). We also tested the impact of Cav 1.2 or Cav 1.3 deletion in models of type 2 airway inflammation. Finally, we checked whether the expression of both Cav 1.2 and Cav 1.3 in T cells from asthmatic children correlates with Th2-cytokine expression. RESULTS We demonstrated non-redundant and synergistic functions of Cav 1.2 and Cav 1.3 in Th2 cells. Indeed, the deficiency of only one channel in Th2 cells triggers TCR-driven hyporesponsiveness with weakened tyrosine phosphorylation profile, a strong decrease in initial ECE and subsequent reduction in the global calcium response. Moreover, Cav 1.3 has a particular role in calcium homeostasis. In accordance with the singular roles of Cav 1.2 and Cav 1.3 in Th2 cells, deficiency in either one of these channels was sufficient to inhibit cardinal features of type 2 airway inflammation. Furthermore, Cav 1.2 and Cav 1.3 must be co-expressed within the same CD4+ T cell to trigger allergic airway inflammation. Accordingly with the concerted roles of Cav 1.2 and Cav 1.3, the expression of both channels by activated CD4+ T cells from asthmatic children was associated with increased Th2-cytokine transcription. CONCLUSIONS Thus, Cav 1.2 and Cav 1.3 act as a duo, and targeting only one of these channels would be efficient in allergy treatment.
Collapse
Affiliation(s)
- Nicolas Giang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Marion Mars
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Marc Moreau
- Centre de Biologie du Développement Centre de Biologie Intégrative Université de ToulouseCNRSUniversité Paul Sabatier III Toulouse France
| | - Jose E. Mejia
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | | | - Antoine Magnan
- Institut du Thorax INSERM CNRSUniversité de Nantes Nantes France
- Service de Pneumologie Centre Hospitalier Universitaire de Nantes Nantes France
| | - Marine Michelet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
- Pediatric Pneumology and Allergology Unit Hôpital des EnfantsCentre Hospitalier Universitaire Toulouse Toulouse France
- Unité de Recherche Clinique Pédiatrique/module plurithématique pédiatrique du CIC Toulouse France
| | - Brice Ronsin
- Centre de Biologie du Développement Centre de Biologie Intégrative Université de ToulouseCNRSUniversité Paul Sabatier III Toulouse France
| | - Geoffrey G. Murphy
- Molecular and Behavioral Neuroscience Institute University of Michigan Ann Arbor MI USA
| | - Joerg Striessnig
- Department of Pharmacology and Toxicology Institute of Pharmacy Center for Molecular Biosciences University of Innsbruck Innsbruck Austria
| | - Jean‐Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Lucette Pelletier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| |
Collapse
|
4
|
Pelletier L, Moreau M. Ca v1 channels is also a story of non excitable cells: Application to calcium signalling in two different non related models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118996. [PMID: 33675852 DOI: 10.1016/j.bbamcr.2021.118996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Calcium is a second messenger essential, in all cells, for most cell functions. The spatio-temporal control of changes in intracellular calcium concentration is partly due to the activation of calcium channels. Voltage-operated calcium channels are present in excitable and non-excitable cells. If the mechanism of voltage-operated calcium channels is well known in excitable cells the Ca2+ toolkit used in non-excitable cells to activate the calcium channels is less described. Herein we discuss about very similar pathways involving voltage activated Cav1 channels in two unrelated non-excitable cells; ectoderm cells undergoing neural development and effector Th2 lymphocytes responsible for parasite elimination and also allergic diseases. We will examine the way by which these channels operate and are regulated, as well as the consequences in terms of gene transcription. Finally, we will consider the questions that remain unsolved and how they might be a challenge for the future.
Collapse
Affiliation(s)
- Lucette Pelletier
- Infinity - Toulouse Institute For Infectious and Inflammatory Diseases INSERM UMR1291, CNRS UMR5051, University Toulouse III CHU Purpan, BP 3028, 31024 Toulouse CEDEX 3, France
| | - Marc Moreau
- Université Toulouse3, Centre de biologie du développement, CNRS UMR5547, 118 route de Narbonne, F31062 Toulouse Cedex 04, France.
| |
Collapse
|
5
|
Samra YA, Amin MN, Said E. Cardio-protective impact of gabapentin against doxorubicin-induced myocardial toxicity in rats; emphasis on modulation of inflammatory-apoptotic signaling. Int Immunopharmacol 2021; 90:107125. [PMID: 33199237 DOI: 10.1016/j.intimp.2020.107125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Cardiotoxicity is one of the most commonly encountered adverse effects observed alongside the therapeutic use of doxorubicin (DOX), thus curbing its therapeutic utility. METHODS The current study was conducted to evaluate the cardioprotective effect of gabapentin (Gaba), a Ca + 2 channel blocker with emerging pharmacological merits, against DOX-induced cardiotoxicity. Gaba was orally administered at two dose levels (10 and 30 mg/kg) for 21 days parallel to DOX injection. RESULTS DOX induced significant functional, biochemical, and histopathological injury to the myocardium. Gaba treatment revealed a cardioprotective effect as manifested in the significant restoration of electrocardiogram parameters, including the heart rate, ST segment elevation, QRS and T wave amplitudes, and QT and PR intervals. The biomarkers of myocardial injury, namely serum creatine kinase, aspartate aminotransferase, and lactate dehydrogenase activities, significantly declined as well as the concomitant improvement of the myocardial oxidative status. Mechanistically, Gaba treatment significantly reduced the myocardial contents of c-Jun N-terminal kinase (JNK), the major modulator of inflammatory/apoptotic signaling. However, the myocardial contents of the apoptotic biomarkers caspase-8 and TRAIL also significantly declined. In isolated cardiomyocytes, Gaba treatment maintained the morphological characteristics of the cardiomyocytes and preserved their spontaneous beating characteristics. Nevertheless, the protein expression of caspase-8, JNK 1/2, and CD95L significantly declined with Gaba treatment. CONCLUSION Gaba confers cardioprotective effects against DOX-induced myocardial injury and cardiotoxicity by modulating the inflammatory/apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
6
|
Fenninger F, Jefferies WA. What's Bred in the Bone: Calcium Channels in Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1021-1030. [PMID: 30718290 DOI: 10.4049/jimmunol.1800837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; .,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; and.,Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
7
|
Yosri H, Said E, Elkashef WF, Gameil NM. Modulatory role of gabapentin against ovalbumin-induced asthma, bronchial and airway inflammation in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:18-25. [PMID: 30286334 DOI: 10.1016/j.etap.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Allergic asthma is a type of chronic immune-mediated inflammatory lung disorders with constantly increased worldwide prevalence. Gabapentin is an L-type calcium channel blocker used essentially as antiepileptic and recently has been indicated for management of post-operative and neuropathic pains as an anti-inflammatory. The current study was conducted to evaluate the anti-inflammatory and anti-allergic properties of gabapentin in a mouse-model of Ovalbumin-induced allergic asthma. Mice received OVA (10 mg) adsorbed on Al(OH)3 on days 0 and 7 and were challenged by exposure to nebulized OVA solution (1%) form days 14-16. Asthma induction was associated with significant biochemical, oxidative and inflammatory imbalance. Daily oral gabapentin (50 mg/kg), significantly reduced lung inflammatory cells counts', serum LDH and catalase activities and lung/body weight index. Moreover, gabapentin significantly increased lung GSH concentration and enhanced SOD activity. Lung contents of TNFα, IL-4 and IL-13 significantly declined as well. IL-13; is the major contributor to airway hyper-responsiveness; the charetrestic hallmark of asthma and IL-4; a major chemoattractant cytokine. Lung histopathology significantly improved parallel to the biochemical improvements. In conclusion; Gabapentin's modulatory effect on IL-4, IL-13 and TNFα activities accounts for the observed anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Haidy Yosri
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Wagdi F Elkashef
- Dep. of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Sekiguchi F, Tsubota M, Kawabata A. Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull 2018; 41:1127-1134. [PMID: 30068860 DOI: 10.1248/bpb.b18-00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are classified into high-voltage-activated (HVA) channels and low-voltage-activated channels consisting of Cav3.1-3.3, known as T ("transient")-type VGCC. There is evidence that certain types of HVA channels are involved in neurogenic inflammation and inflammatory pain, in agreement with reports indicating the therapeutic effectiveness of gabapentinoids, ligands for the α2δ subunit of HVA, in treating not only neuropathic, but also inflammatory, pain. Among the Cav3 family members, Cav3.2 is abundantly expressed in the primary afferents, regulating both neuronal excitability at the peripheral terminals and spontaneous neurotransmitter release at the spinal terminals. The function and expression of Cav3.2 are modulated by a variety of inflammatory mediators including prostanoids and hydrogen sulfide (H2S), a gasotransmitter. The increased activity of Cav3.2 by H2S participates in colonic, bladder and pancreatic pain, and regulates visceral inflammation. Together, VGCCs are involved in inflammation and inflammatory pain, and Cav3.2 T-type VGCC is especially a promising therapeutic target for the treatment of visceral inflammatory pain in patients with irritable bowel syndrome, interstitial cystitis/bladder pain syndrome, pancreatitis, etc., in addition to neuropathic pain.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| |
Collapse
|