1
|
Davalos OA, Sebastian A, Leon NF, Rangel MV, Miranda N, Murugesh DK, Phillips AM, Hoyer KK, Hum NR, Loots GG, Weilhammer DR. Spatiotemporal analysis of lung immune dynamics in lethal Coccidioides posadasii infection. mBio 2024:e0256224. [PMID: 39611685 DOI: 10.1128/mbio.02562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Coccidioidomycosis, or Valley fever, is a lung disease caused by inhalation of Coccidioides fungi, prevalent in the Southwestern United States, Mexico, and parts of Central and South America. Annually, the United States reports 10,000-20,000 cases, although those numbers are expected to increase as climate change expands the fungal geographic range. While 60% of infections are asymptomatic, 40% symptomatic infections are often misdiagnosed due to similarities with bronchitis or pneumonia. A small subset of infection progress to severe illness, necessitating a better understanding of immune responses during lethal infection. Using single-cell RNA sequencing and spatial transcriptomics, we characterized lung responses during Coccidioides infection. We identified monocyte-derived Spp1-expressing macrophages as potential mediators of tissue remodeling and fibrosis, marked by high expression of profibrotic and proinflammatory transcripts. These macrophages showed elevated TGF-β and IL-6 signaling, pathways involved in fibrosis pathogenesis. Additionally, we observed significant neutrophil infiltration and defective lymphocyte responses, indicating severe adaptive immunity dysregulation in lethal, acute infection. These findings enhance our understanding of Coccidioides infection and suggest new therapeutic targets.IMPORTANCECoccidioidomycosis, commonly known as Valley fever, is a lung disease caused by the inhalation of Coccidioides fungi, which is prevalent in the Southwestern United States, Mexico, and parts of Central and South America. With climate change potentially expanding the geographic range of this fungus, understanding the immune responses during severe infections is crucial. Our study used advanced techniques to analyze lung responses during Coccidioides infection, identifying specific immune cells that may contribute to tissue damage and fibrosis. These findings provide new insights into the disease mechanisms and suggest potential targets for therapeutic intervention, which could improve outcomes for patients suffering from severe Valley fever.
Collapse
Affiliation(s)
- Oscar A Davalos
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nicole F Leon
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Margarita V Rangel
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nadia Miranda
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ashlee M Phillips
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Katrina K Hoyer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Gabriela G Loots
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Dina R Weilhammer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Tejeda-Garibay S, Hoyer KK. Coccidioidomycosis and Host Microbiome Interactions: What We Know and What We Can Infer from Other Respiratory Infections. J Fungi (Basel) 2023; 9:586. [PMID: 37233297 PMCID: PMC10219296 DOI: 10.3390/jof9050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Between 70 and 80% of Valley fever patients receive one or more rounds of antibiotic treatment prior to accurate diagnosis with coccidioidomycosis. Antibiotic treatment and infection (bacterial, viral, fungal, parasitic) often have negative implications on host microbial dysbiosis, immunological responses, and disease outcome. These perturbations have focused on the impact of gut dysbiosis on pulmonary disease instead of the implications of direct lung dysbiosis. However, recent work highlights a need to establish the direct effects of the lung microbiota on infection outcome. Cystic fibrosis, chronic obstructive pulmonary disease, COVID-19, and M. tuberculosis studies suggest that surveying the lung microbiota composition can serve as a predictive factor of disease severity and could inform treatment options. In addition to traditional treatment options, probiotics can reverse perturbation-induced repercussions on disease outcomes. The purpose of this review is to speculate on the effects perturbations of the host microbiome can have on coccidioidomycosis progression. To do this, parallels are drawn to aa compilation of other host microbiome infection studies.
Collapse
Affiliation(s)
- Susana Tejeda-Garibay
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Katrina K. Hoyer
- Department of Molecular and Cell Biology, University California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
3
|
Jaffey JA, Shubitz LF, Johnson MDL, Bolch CA, da Cunha A, Murthy AK, Lopez BS, Monasky R, Carswell I, Spiker J, Neubert MJ, Menghani SV. Evaluation of Host Constitutive and Ex Vivo Coccidioidal Antigen-Stimulated Immune Response in Dogs with Naturally Acquired Coccidioidomycosis. J Fungi (Basel) 2023; 9:213. [PMID: 36836327 PMCID: PMC9959558 DOI: 10.3390/jof9020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The early innate immune response to coccidioidomycosis has proven to be pivotal in directing the adaptive immune response and disease outcome in mice and humans but is unexplored in dogs. The objectives of this study were to evaluate the innate immune profile of dogs with coccidioidomycosis and determine if differences exist based on the extent of infection (i.e., pulmonary or disseminated). A total of 28 dogs with coccidioidomycosis (pulmonary, n = 16; disseminated, n = 12) and 10 seronegative healthy controls were enrolled. Immunologic testing was performed immediately, without ex vivo incubation (i.e., constitutive), and after coccidioidal antigen stimulation of whole blood cultures. Whole blood cultures were incubated with a phosphate-buffered solution (PBS) (negative control) or a coccidioidal antigen (rCTS1 (105-310); 10 µg/mL) for 24 h. A validated canine-specific multiplex bead-based assay was used to measure 12 cytokines in plasma and cell culture supernatant. Serum C-reactive protein (CRP) was measured with an ELISA assay. Leukocyte expression of toll-like receptors (TLRs)2 and TLR4 was measured using flow cytometry. Dogs with coccidioidomycosis had higher constitutive plasma keratinocyte chemotactic (KC)-like concentrations (p = 0.02) and serum CRP concentrations compared to controls (p < 0.001). Moreover, dogs with pulmonary coccidioidomycosis had higher serum CRP concentrations than those with dissemination (p = 0.001). Peripheral blood leukocytes from dogs with coccidioidomycosis produced higher concentrations of tumor necrosis factor (TNF)-α (p = 0.0003), interleukin (IL)-6 (p = 0.04), interferon (IFN)-γ (p = 0.03), monocyte chemoattractant protein (MCP)-1 (p = 0.02), IL-10 (p = 0.02), and lower IL-8 (p = 0.003) in supernatants following coccidioidal antigen stimulation when compared to those from control dogs. There was no detectable difference between dogs with pulmonary and disseminated disease. No differences in constitutive or stimulated leukocyte TLR2 and TLR4 expression were found. These results provide information about the constitutive and coccidioidal antigen-specific stimulated immune profile in dogs with naturally acquired coccidioidomycosis.
Collapse
Affiliation(s)
- Jared A. Jaffey
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, College of Medicine-Tucson, University of Arizona, Tucson, AZ 85724, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, Valley Fever Center for Excellence, BIO5 Institute, Asthma and Airway Disease Research Center, University of Arizona, College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Charlotte A. Bolch
- Office of Research and Sponsored Programs, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Anderson da Cunha
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Ashlesh K. Murthy
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Brina S. Lopez
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Ross Monasky
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Imani Carswell
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Justine Spiker
- Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Miranda J. Neubert
- Department of Immunobiology, College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Sanjay V. Menghani
- Department of Immunobiology, Medical Scientist Training Program, College of Medicine-Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Diep AL, Tejeda-Garibay S, Miranda N, Hoyer KK. Macrophage and Dendritic Cell Activation and Polarization in Response to Coccidioidesposadasii Infection. J Fungi (Basel) 2021; 7:jof7080630. [PMID: 34436169 PMCID: PMC8397226 DOI: 10.3390/jof7080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. The host immune responses that define disease outcome during infection are largely unknown, although T helper responses are required. Adaptive immunity is influenced by innate immunity as antigen-presenting cells activate and educate adaptive responses. Macrophage and dendritic cell (DC) recognition of pathogen surface molecules are critical for Coccidioides clearance. We characterize the broad innate immune responses to Coccidioides by analyzing macrophage and dendritic cell responses to Coccidioides arthroconidia using avirulent, vaccine Coccidioides strain NR-166 (Δcts2/Δard1/Δcts3), developed from parental virulent strain C735. We developed a novel flow cytometry-based method to analyze macrophage phagocytosis to complement traditional image-scoring methods. Our study found that macrophage polarization is blocked at M0 phase and activation reduced, while DCs polarize into proinflammatory DC1s, but not anti-inflammatory DC2, following interaction with Coccidioides. However, DCs exhibit a contact-dependent reduced activation to Coccidioides as defined by co-expression of MHC-II and CD86. In vivo, only modest DC1/DC2 recruitment and activation was observed with avirulent Coccidioides infection. In conclusion, the vaccine Coccidioides strain recruited a mixed DC population in vivo, while in vitro data suggest active innate immune cell inhibition by Coccidioides.
Collapse
Affiliation(s)
- Anh L. Diep
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Susana Tejeda-Garibay
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Nadia Miranda
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Katrina K. Hoyer
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-(209)-228-4229
| |
Collapse
|
6
|
Ward RA, Thompson GR, Villani AC, Li B, Mansour MK, Wuethrich M, Tam JM, Klein BS, Vyas JM. The Known Unknowns of the Immune Response to Coccidioides. J Fungi (Basel) 2021; 7:jof7050377. [PMID: 34065016 PMCID: PMC8151481 DOI: 10.3390/jof7050377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Coccidioidomycosis, otherwise known as Valley Fever, is caused by the dimorphic fungi Coccidioides immitis and C. posadasii. While most clinical cases present with self-limiting pulmonary infection, dissemination of Coccidioides spp. results in prolonged treatment and portends higher mortality rates. While the structure, genome, and niches for Coccidioides have provided some insight into the pathogenesis of disease, the underlying immunological mechanisms of clearance or inability to contain the infection in the lung are poorly understood. This review focuses on the known innate and adaptive immune responses to Coccidioides and highlights three important areas of uncertainty and potential approaches to address them. Closing these gaps in knowledge may enable new preventative and therapeutic strategies to be pursued.
Collapse
Affiliation(s)
- Rebecca A. Ward
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (R.A.W.); (M.K.M.)
| | - George R. Thompson
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 96817, USA;
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (A.-C.V.); (B.L.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA;
| | - Bo Li
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (A.-C.V.); (B.L.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA;
| | - Michael K. Mansour
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (R.A.W.); (M.K.M.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Marcel Wuethrich
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.W.); (B.S.K.)
| | - Jenny M. Tam
- Harvard Medical School, Boston, MA 02115, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.W.); (B.S.K.)
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jatin M. Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (R.A.W.); (M.K.M.)
- Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-643-6444
| |
Collapse
|
7
|
Diep AL, Hoyer KK. Host Response to Coccidioides Infection: Fungal Immunity. Front Cell Infect Microbiol 2020; 10:581101. [PMID: 33262956 PMCID: PMC7686801 DOI: 10.3389/fcimb.2020.581101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. This emerging infectious disease ranges from asymptomatic to pulmonary disease and disseminated infection. Most infections are cleared with little to no medical intervention whereas chronic disease often requires life-long medication with severe impairment in quality of life. It is unclear what differentiates hosts immunity resulting in disease resolution versus chronic infection. Current understanding in mycology-immunology suggests that chronic infection could be due to maladaptive immune responses. Immunosuppressed patients develop more severe disease and mouse studies show adaptive Th1 and Th17 responses are required for clearance. This is supported by heightened immunosuppressive regulatory responses and lowered anti-fungal T helper responses in chronic Coccidioides patients. Diagnosis and prognosis is difficult as symptoms are broad and overlapping with community acquired pneumonia, often resulting in misdiagnosis and delayed treatment. Furthermore, we lack clear biomarkers of disease severity which could aid prognosis for more effective healthcare. As the endemic region grows and population increases in endemic areas, the need to understand Coccidioides infection is becoming urgent. There is a growing effort to identify fungal virulence factors and host immune components that influence fungal immunity and relate these to patient disease outcome and treatment. This review compiles the known immune responses to Coccidioides spp. infection and various related fungal pathogens to provide speculation on Coccidioides immunity.
Collapse
Affiliation(s)
- Anh L. Diep
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
| | - Katrina K. Hoyer
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California Merced, Merced, CA, United States
| |
Collapse
|
8
|
Tsai M, Thauland TJ, Huang AY, Bun C, Fitzwater S, Krogstad P, Douine ED, Nelson SF, Lee H, Garcia-Lloret MI, Butte MJ. Disseminated Coccidioidomycosis Treated with Interferon-γ and Dupilumab. N Engl J Med 2020; 382:2337-2343. [PMID: 32521134 PMCID: PMC7333509 DOI: 10.1056/nejmoa2000024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe a case of life-threatening disseminated coccidioidomycosis in a previously healthy child. Like most patients with disseminated coccidioidomycosis, this child had no genomic evidence of any known, rare immune disease. However, comprehensive immunologic testing showed exaggerated production of interleukin-4 and reduced production of interferon-γ. Supplementation of antifungal agents with interferon-γ treatment slowed disease progression, and the addition of interleukin-4 and interleukin-13 blockade with dupilumab resulted in rapid resolution of the patient's clinical symptoms. This report shows that blocking of type 2 immune responses can treat infection. This immunomodulatory approach could be used to enhance immune clearance of refractory fungal, mycobacterial, and viral infections. (Supported by the Jeffrey Modell Foundation and the National Institutes of Health.).
Collapse
Affiliation(s)
- Monica Tsai
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Timothy J Thauland
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Alden Y Huang
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Chantana Bun
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Sean Fitzwater
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Paul Krogstad
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Emilie D Douine
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Stanley F Nelson
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Hane Lee
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Maria I Garcia-Lloret
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| | - Manish J Butte
- From the Divisions of Immunology, Allergy, and Rheumatology (M.T., T.J.T., C.B., M.I.G.-L., M.J.B.) and Infectious Diseases (S.F., P.K.), Department of Pediatrics, the Department of Human Genetics (E.D.D., S.F.N., H.L.), the Department of Pathology and Laboratory Medicine (H.L.), and the California Center for Rare Diseases, Institute for Precision Health (A.Y.H., S.F.N., M.J.B.), University of California, Los Angeles, Los Angeles
| |
Collapse
|
9
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
10
|
Krogstad P, Johnson R, Garcia-Lloret MI, Heidari A, Butte MJ. Host-Pathogen Interactions in Coccidioidomycosis: Prognostic Clues and Opportunities for Novel Therapies. Clin Ther 2019; 41:1939-1954.e1. [PMID: 31648806 PMCID: PMC10482146 DOI: 10.1016/j.clinthera.2019.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Coccidioidomycosis (CM) is a systemic fungal disease caused by the dimorphic fungi Coccidioides immitis and Coccidioides posadasii. In its endemic areas of the United States, CM is growing as a public health challenge with a marked increase in incidence in the last 15 years. Although Coccidioides infection is asymptomatic in most cases, symptomatic pulmonary disease occurs in ~40% and disseminated coccidioidomycosis (DCM) occurs in ~1% of previously healthy children and adults. DCM is markedly more common in immunocompromised people, who often experience life-threatening disease despite use of antifungal medications. Although options for antifungal therapy have improved, lifelong therapy is needed for those who develop coccidioidal meningitis. The purpose of this article was to review the state of antifungal therapy and recent studies of host-pathogen interactions in CM in light of advances in immunomodulatory therapy. METHODS The study included a review of PubMed and abstracts of the Coccidioidomycosis Study Group (years 2000-2019). FINDINGS Current therapy for CM relies upon azole and polyene antifungal agents. Murine models and studies of DCM in patients with monogenic primary immunodeficiency states and acquired immunodeficiency have revealed the importance of both innate and adaptive immune responses in the control of infections with Coccidioides species. In particular, defects in sensing of fungi and induction of cellular immune responses have been frequently reported. More recently, polymorphisms in key signaling pathways and in the generation of Th17 and Th1 immune responses have been linked with DCM. IMPLICATIONS Antifungal therapy is sufficient to control disease in most cases of CM, but treatment failure occurs in cases of severe pulmonary disease and nonmeningeal disseminated disease. Lifelong therapy is recommended for meningitis in view of the very high risk of recurrence. Corticosteroid therapy is advised by some experts for severe pulmonary disease and for some neurologic complications of DCM. DCM is only rarely the result of a severe monogenic immunodeficiency. Case studies suggest that reorienting cellular immune responses or augmenting effector immune responses may help resolve DCM. Systematic investigation of immunotherapy for coccidioidomycosis is advisable and may help to address the recent marked increase in reports of the disease in endemic areas.
Collapse
Affiliation(s)
- Paul Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.
| | - Royce Johnson
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Maria I Garcia-Lloret
- Department of Pediatrics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Arash Heidari
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Manish J Butte
- Department of Pediatrics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Van Dyke MCC, Thompson GR, Galgiani JN, Barker BM. The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Front Immunol 2019; 10:2188. [PMID: 31572393 PMCID: PMC6749157 DOI: 10.3389/fimmu.2019.02188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas of the western United States, most notably in California and Arizona, where infections continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the United States each year. Thus, there is an urgent need for the development of a vaccine and new therapeutic drugs against Coccidioides infection. In this review, we discuss the battle against Coccidioides including the development of potential vaccines, the quest for new therapeutic drugs, and our current understanding of the protective host immune response to Coccidioides infection.
Collapse
Affiliation(s)
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|